1
|
Konzal J, Murley M, Wolter A, Camou L, Oberbroeckling A, Dekker M, Wagner G, Jennejohn K, Peters M, Hayes N, Franklin C, Tobin S, Collier E, MacKenzie I. Towards Designer Photocatalysts: Structure-Property Relationships in 2,6-Diaryl-pyryliums. Chemistry 2025; 31:e202403543. [PMID: 39551700 DOI: 10.1002/chem.202403543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
Fully organic photocatalyst systems are highly attractive, not merely because they are transition-metal free, but more importantly due to their unique and often potent reactivity. A detailed understanding of the various redox states, both ground and excited state, and specifically what structural parameters control them is therefore crucial for harnessing the full potential of these systems in organic synthesis. However, unlike their organometallic counterparts, detailed structure-property relationships for organic photocatalysts are largely absent from the literature. In this study, we demonstrate linear free-energy relationships across a range of key photophysical and electrochemical properties of 2,6-diarylpyryliums. Electronic absorption and emission maxima can be carefully tuned over the ranges of 83 nm and 102 nm respectively. Intramolecular charge transfer (ICT) interactions were revealed in cases of substitution with polarizable heavy-atoms. A strong linear dependence of ground state reduction potentials on substituent electronics was observed. Notably, the excited state reduction potential, E*red, could be controlled over a range of nearly 1000 mV. Systematic errors in computational modeling of ground and excited state redox potentials were identified and corrected. We believe the quantitative structure-property relationships identified here provide foundational tools for rational and predictive organic photocatalyst design.
Collapse
Affiliation(s)
- Jenna Konzal
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - McKenna Murley
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Alaina Wolter
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Lazlo Camou
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Alex Oberbroeckling
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Madilyn Dekker
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Gillianne Wagner
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Kate Jennejohn
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Madison Peters
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Natalie Hayes
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Cory Franklin
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Sydney Tobin
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Elizabeth Collier
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| | - Ian MacKenzie
- Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818, USA
| |
Collapse
|
2
|
Harimoto T, Ishigaki Y. Recent Advances in NIR-Switchable Multi-Redox Systems Based on Organic Molecules. Chemistry 2025; 31:e202403273. [PMID: 39503432 DOI: 10.1002/chem.202403273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 11/24/2024]
Abstract
Electrochromic systems capable of switching absorption in the near-infrared (NIR) region (750-2500 nm) are attractive from the viewpoint of applications for material and life science, and thus several examples have been reported to date. In general, the development of organic-based systems is needed to reduce the environmental impact and improve biocompatibility. Although extending the switchable spectral range is crucial for the application of organic electrochromic molecules, the switching of NIR absorption based on redox interconversion is still a challenging issue regarding reversibility and durability during interconversion. To overcome this potential instability, the introduction of heteroatoms into the molecular backbone and/or π-extension could be useful strategies in terms of effective delocalization of charge and spin in the corresponding redox states. In this review, we focus on redox-active well-defined small molecules that enable ON/OFF switching of NIR absorption based on precise control of the redox states, and present recent studies on their intrinsic electrochemical and spectroscopic properties and/or structural characterization of their charged states.
Collapse
Affiliation(s)
- Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Present address: Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
3
|
Ishigaki Y, Mizuno SI, Harimoto T, Shimajiri T, Suzuki T. Structural-Change-Induced Two-Stage Redox Behavior of Pentacenebisquinodimethane with Tricolor Chromism. Chem Asian J 2024; 19:e202400316. [PMID: 38818666 DOI: 10.1002/asia.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Tricolor electrochromism was realized through the interconversion among the neutral (yellow), dicationic (green), and tetracationic (blue) states, even though only one kind of chromophore is generated upon oxidation. Both dicationic and tetracationic states were isolated as stable salts, and their different colors come from the effective inter-chromophore interaction only in the tetracationic state but not in the dicationic state. Despite the negligible Coulombic repulsion in the tetracationic state with four cyanine-type chromophores, pentacenebisquinodimethane undergoes stepwise two-stage two-electron oxidation when radical-stabilizing 5-(4-octyloxyphenyl)-2-thienyl groups are attached on the exomethylene bonds. A contribution from the biradical form only in the neutral state but not in the dicationic state is the reason for the observed negative cooperativity during the electrochemical oxidation.
Collapse
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, Hokkaido, 060-0810, JAPAN
| | - Shin-Ichi Mizuno
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, Hokkaido, 060-0810, JAPAN
| | - Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, Hokkaido, 060-0810, JAPAN
| | - Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, Hokkaido, 060-0810, JAPAN
- Creative Research Institution, Hokkaido University, N21 W10, North-ward, Sapporo, Hokkaido, 001-0021, JAPAN
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, Hokkaido, 060-0810, JAPAN
| |
Collapse
|
4
|
Song Y, Song H, Choi Y, Seo J, Lee E. Synthesis of sterically congested unsymmetrical 1,2-dicarbonyl radicals through a stepwise approach. Chem Commun (Camb) 2024; 60:8043-8046. [PMID: 38989550 DOI: 10.1039/d4cc02092h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A simplified and stepwise synthetic method for producing sterically congested unsymmetrical 1,2-dicarbonyl radicals was successfully demonstrated including detailed characterization of each radical cation. Using this approach, an aryl- and N-heterocyclic carbene-substituted 1,2-dicarbonyl radical in its neutral form is generated, revealing the stabilizing role of N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Yuna Song
- Department of Chemistry, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yunseop Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
5
|
Sau SC, Schmitz M, Burdenski C, Baumert M, Antoni PW, Kerzig C, Hansmann MM. Dicationic Acridinium/Carbene Hybrids as Strongly Oxidizing Photocatalysts. J Am Chem Soc 2024; 146:3416-3426. [PMID: 38266168 DOI: 10.1021/jacs.3c12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A new design concept for organic, strongly oxidizing photocatalysts is described based upon dicationic acridinium/carbene hybrids. A highly modular synthesis of such hybrids is presented, and the dications are utilized as novel, tailor-made photoredox catalysts in the direct oxidative C-N coupling. Under optimized conditions, benzene and even electron-deficient arenes can be oxidized and coupled with a range of N-heterocycles in high to excellent yields with a single low-energy photon per catalytic turnover, while commonly used acridinium photocatalysts are not able to perform the challenging oxidation step. In contrast to traditional photocatalysts, the hybrid photocatalysts reported here feature a reversible two-electron redox system with regular or inverted redox potentials for the two-electron transfer. The different oxidation states could be isolated and structurally characterized supported by NMR, EPR, and X-ray analysis. Mechanistic experiments employing time-resolved emission and transient absorption spectroscopy unambiguously reveal the outstanding excited-state potential of our best-performing catalyst (+2.5 V vs SCE), and they provide evidence for mechanistic key steps and intermediates.
Collapse
Affiliation(s)
- Samaresh C Sau
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Chris Burdenski
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Marcel Baumert
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| |
Collapse
|
6
|
Chrysochos N, Pätsch S, Elvers BJ, Krummenacher I, Nandeshwar M, Prabusankar G, Braunschweig H, Schulzke C, Ravat P, Jana A. Introducing an orthogonally polarized electron-rich alkene: synthesis of a zwitterionic boron-containing π-conjugated system. Chem Commun (Camb) 2023; 59:12350-12353. [PMID: 37767978 DOI: 10.1039/d3cc03975g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The synthesis of an alkene is reported which is concurrently twisted (twist angle = 86.6(8)°), push-pull (dipole moment = 7.48 D), and electron-rich (E1/2 = -1.45 V and -0.52 V vs. Fc/Fc+) in nature, comprising a unique trinity combination for the alkene class of compounds. Subsequently, this newly synthesized alkene-motif was used as a donor for the synthesis of a zwitterionic boron-containing π-conjugated compound (dipole moment = 12.17 D) through an intramolecular charge transfer process exploiting the π-conjugated donor-acceptor system.
Collapse
Affiliation(s)
- Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | - Sebastian Pätsch
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489, Greifswald, Germany.
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489, Greifswald, Germany.
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Muneshwar Nandeshwar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502284, India.
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502284, India.
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489, Greifswald, Germany.
| | - Prince Ravat
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| |
Collapse
|
7
|
Harimoto T, Sugai Y, Sugawara K, Suzuki T, Ishigaki Y. Double Dynamic Structural Change Enabling Tricolor Chromism by the Realization of Apparent Two-Electron Transfer to Skip the Open-Shell State. Chemistry 2023; 29:e202301476. [PMID: 37311709 DOI: 10.1002/chem.202301476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Most redox systems generally cannot avoid the involvement of open-shell species upon generating multiply charged species, which often reduces reversibility in multi-color electrochromic systems. In this study, we newly synthesized octakis(aminophenyl)-substituted pentacenebisquinodimethane (BQD) derivatives and their hybrids with alkoxyphenyl analogues. Thanks to apparent two-electron transfer accompanied by double dramatic changes in the structure of the arylated quinodimethane skeleton, the dicationic and tetracationic states were generated and isolated quantitatively because of the negligible steady-state concentration of intermediary open-shell species such as monocation or trication radicals. When two electrophores with different donating abilities are attached to the BQD skeleton, a dicationic state with a different color can be isolated in addition to the neutral and tetracationic states. For these tetracations, an interchromophore interaction induces a red-shift of the NIR absorptions, thus realizing tricolor UV/Vis/NIR electrochromic behavior involving only closed-shell states.
Collapse
Affiliation(s)
- Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Yuka Sugai
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Kazuma Sugawara
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| |
Collapse
|
8
|
Song H, Lee E. Revisiting the Reaction of IPr with Tritylium: An Alternative Mechanistic Pathway. Chemistry 2023; 29:e202203364. [PMID: 36445754 DOI: 10.1002/chem.202203364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Despite a recent proposal on the mechanism of a single-electron transfer (SET) process between tritylium and 2,6-bis(diisopropylphenyl)imidazol-2-ylidene (IPr) based on evidence of transient IPr radical cation intermediate ([IPr]⋅+ ) formation, such oxidation is still contentious because of the high oxidation potential of N-heterocyclic carbenes. Our experimental analysis indicates that the appearance of deep purple color, previously considered to be from transient [IPr]⋅+ , originates from a zwitterionic intermediate (3 a), not a radical cation. Here, we propose an alternative mechanism for the reaction involving tritylium and IPr. This mechanism is noteworthy for explaining how [NHC-H]+ can be generated without the formation of transient [NHC]⋅+ , which has been frequently proposed as an intermediate for the reaction between NHC and oxidants. These results also show that a transient strong single-electron donor (3 a) could be generated by the alternative mechanism for oxidants using NHCs, which is a more feasible explanation for the reactivity of NHCs with oxidants.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
9
|
Peltier JL, Serrato MR, Thery V, Pecaut J, Tomás-Mendivil E, Bertrand G, Jazzar R, Martin D. An air-stable radical with a redox-chameleonic amide. Chem Commun (Camb) 2023; 59:595-598. [PMID: 36524847 DOI: 10.1039/d2cc05404c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An air-stable (amino)(amido)radical was synthesized by reacting a cyclic (alkyl)(amino)carbene with carbazoyl chloride, followed by one-electron reduction. We show that an adjacent radical center weakens the amide bond. It enables the amino group to act as a strong acceptor under steric contraint, thus enhancing the stabilizing capto-dative effect.
Collapse
Affiliation(s)
- Jesse L Peltier
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Melinda R Serrato
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Valentin Thery
- University Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
| | - Jacques Pecaut
- University Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819, Grenoble 38000, France
| | | | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - David Martin
- University Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
| |
Collapse
|
10
|
Glaser F, Wenger OS. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem Sci 2022; 14:149-161. [PMID: 36605743 PMCID: PMC9769107 DOI: 10.1039/d2sc05229f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
By combining the energy input from two red photons, chemical reactions that would normally require blue or ultraviolet irradiation become accessible. Key advantages of this biphotonic excitation strategy are that red light usually penetrates deeper into complex reaction mixtures and causes less photo-damage than direct illumination in the blue or ultraviolet. Here, we demonstrate that the primary light-absorber of a dual photocatalytic system comprised of a transition metal-based photosensitizer and an organic co-catalyst can completely alter the reaction outcome. Photochemical reductions are achieved with a copper(i) complex in the presence of a sacrificial electron donor, whereas oxidative substrate activation occurs with an osmium(ii) photosensitizer. Based on time-resolved laser spectroscopy, this changeover in photochemical reactivity is due to different underlying biphotonic mechanisms. Following triplet energy transfer from the osmium(ii) photosensitizer to 9,10-dicyanoanthracene (DCA) and subsequent triplet-triplet annihilation upconversion, the fluorescent singlet excited state of DCA triggers oxidative substrate activation, which initiates the cis to trans isomerization of an olefin, a [2 + 2] cycloaddition, an aryl ether to ester rearrangement, and a Newman-Kwart rearrangement. This oxidative substrate activation stands in contrast to the reactivity with a copper(i) photosensitizer, where photoinduced electron transfer generates the DCA radical anion, which upon further excitation triggers reductive dehalogenations and detosylations. Our study provides the proof-of-concept for controlling the outcome of a red-light driven biphotonic reaction by altering the photosensitizer, and this seems relevant in the greater context of tailoring photochemical reactivities.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
11
|
Nayak MK, Sarkar P, Elvers BJ, Mehta S, Zhang F, Chrysochos N, Krummenacher I, Vijayakanth T, Narayanan RS, Dolai R, Roy B, Malik V, Rawat H, Mondal A, Boomishankar R, Pati SK, Braunschweig H, Schulzke C, Ravat P, Jana A. A bis-NHC-CAAC dimer derived dicationic diradical. Chem Sci 2022; 13:12533-12539. [PMID: 36382295 PMCID: PMC9629079 DOI: 10.1039/d2sc03937k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/21/2022] [Indexed: 08/11/2023] Open
Abstract
The isolation of carbon-centered diradicals is always challenging due to synthetic difficulties and their limited stability. Herein we report the synthesis of a trans-1,4-cyclohexylene bridged bis-NHC-CAAC dimer derived thermally stable dicationic diradical. The diradical character of this compound was confirmed by EPR spectroscopy. The variable temperature EPR study suggests the singlet state to be marginally more stable than the triplet state (2J = -5.5 cm-1 (ΔE ST = 0.065 kJ mol-1)). The presence of the trans-1,4-cyclohexylene bridge is instrumental for the successful isolation of this dicationic diradical. Notably, in the case of ethylene or propylene bridged bis-NHC-CAAC dimers, the corresponding dicationic diradicals are transient and rearrange to hydrogen abstracted products.
Collapse
Affiliation(s)
| | - Pallavi Sarkar
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore-560064 India
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald Felix-Hausdorff-Straße 4 D-17489, Greifswald Germany
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore 560012 India
| | - Fangyuan Zhang
- Institute of Organic Chemistry, University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Thangavel Vijayakanth
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pune 411008 India
| | | | - Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| | - Biswarup Roy
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| | - Vishal Malik
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| | - Hemant Rawat
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore 560012 India
| | - Ramamoorthy Boomishankar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pune 411008 India
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore-560064 India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald Felix-Hausdorff-Straße 4 D-17489, Greifswald Germany
| | - Prince Ravat
- Institute of Organic Chemistry, University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| |
Collapse
|
12
|
Ishigaki Y, Fukagawa R, Sugawara K, Harimoto T, Suzuki T. Geometrical and Electronic Structure of Cation Radical Species of Tetraarylanthraquinodimethane: An Intermediate for Unique Electrochromic Behavior. Chem Asian J 2022; 17:e202200914. [DOI: 10.1002/asia.202200914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/13/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Ishigaki
- Hokkaido University: Hokkaido Daigaku department of chemistry JAPAN
| | | | | | | | - Takanori Suzuki
- Hokkaido University: Hokkaido Daigaku Department of Chemistry Hokkaido UniversityNorth 10, West 8, North-ward 060-0810 Sapporo JAPAN
| |
Collapse
|
13
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022; 61:e202206390. [PMID: 35796423 PMCID: PMC9545232 DOI: 10.1002/anie.202206390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/29/2022]
Abstract
Carbenes, including N-heterocyclic carbene (NHC) ligands, are used extensively to stabilize open-shell transition metal complexes and organic radicals. Yet, it remains unknown, which carbene stabilizes a radical well and, thus, how to design radical-stabilizing C-donor ligands. With the large variety of C-donor ligands experimentally investigated and their electronic properties established, we report herein their radical-stabilizing effect. We show that radical stabilization can be understood by a captodative frontier orbital description involving π-donation to- and π-donation from the carbenes. This picture sheds a new perspective on NHC chemistry, where π-donor effects usually are assumed to be negligible. Further, it allows for the intuitive prediction of the thermodynamic stability of covalent radicals of main group- and transition metal carbene complexes, and the quantification of redox non-innocence.
Collapse
Affiliation(s)
- Kevin Breitwieser
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Hilke Bahmann
- Physical and Theoretical ChemistrySaarland UniversityCampus B2.266123SaarbrückenGermany
| | - Robert Weiss
- Organische ChemieFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergHenkestr. 4291054ErlangenGermany
| | - Dominik Munz
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
- Inorganic and General ChemistryFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergEgerlandstr. 191058ErlangenGermany
| |
Collapse
|
14
|
Théry V, Molton F, Sirach S, Tillet N, Pécaut J, Tomás-Mendivil E, Martin D. The curious case of a sterically crowded Stenhouse salt. Chem Sci 2022; 13:9755-9760. [PMID: 36091895 PMCID: PMC9400627 DOI: 10.1039/d2sc01895k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
We report a peculiar Stenhouse salt. It does not evolve into cyclopentenones upon basification, due to the steric hindrance of its bulky stable carbene patterns. This allowed for the observation and characterization of the transient open-chain neutral derivative, which was isolated as its cyclized form. The latter features an unusually long reactive C-O bond (150 pm) and a rich electrochemistry, including oxidation into an air-persistent radical cation.
Collapse
Affiliation(s)
| | | | - Selim Sirach
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| | - Neven Tillet
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819 Grenoble 38000 France
| | | | - David Martin
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| |
Collapse
|
15
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Breitwieser
- Saarland University: Universitat des Saarlandes Coordination Chemistry GERMANY
| | - Hilke Bahmann
- Saarland University: Universitat des Saarlandes Theoretical Chemistry GERMANY
| | - Robert Weiss
- FAU Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Organic Chemistry GERMANY
| | - Dominik Munz
- Universitat des Saarlandes Inorganic Chemistry: Coordination Chemistry Campus C 4.1 66123 Saarbrücken GERMANY
| |
Collapse
|
16
|
Antoni PW, Golz C, Hansmann MM. Organic Four-Electron Redox Systems Based on Bipyridine and Phenanthroline Carbene Architectures. Angew Chem Int Ed Engl 2022; 61:e202203064. [PMID: 35298870 PMCID: PMC9325510 DOI: 10.1002/anie.202203064] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Novel organic redox systems that display multistage redox behaviour are highly sought-after for a series of applications such as organic batteries or electrochromic materials. Here we describe a simple strategy to transfer well-known two-electron redox active bipyridine and phenanthroline architectures into novel strongly reducing four-electron redox systems featuring fully reversible redox events with up to five stable oxidation states. We give spectroscopic and structural insight into the changes involved in the redox-events and present characterization data on all isolated oxidation states. The redox-systems feature strong UV/Vis/NIR polyelectrochromic properties such as distinct strong NIR absorptions in the mixed valence states. Two-electron charge-discharge cycling studies indicate high electrochemical stability at strongly negative potentials, rendering the new redox architectures promising lead structures for multi-electron anolyte materials.
Collapse
Affiliation(s)
- Patrick W. Antoni
- Fakultät für Chemie und Chemische BiologieTechnische Universität DortmundOtto-Hahn-Str.644227DortmundGermany
| | - Christopher Golz
- Georg-August Universität GöttingenInstitut für Organische und Biomolekulare ChemieTammannstr. 237077GöttingenGermany
| | - Max M. Hansmann
- Fakultät für Chemie und Chemische BiologieTechnische Universität DortmundOtto-Hahn-Str.644227DortmundGermany
| |
Collapse
|
17
|
Jerigová M, Odziomek M, López-Salas N. "We Are Here!" Oxygen Functional Groups in Carbons for Electrochemical Applications. ACS OMEGA 2022; 7:11544-11554. [PMID: 35449944 PMCID: PMC9016857 DOI: 10.1021/acsomega.2c00639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Heteroatom doping of carbon networks may introduce active functional groups on the surface of the material, induce electron density changes that alter the polarity of the carbon surface, promote the formation of binding sites for molecules or ions, or make the surface catalytically active for different reactions, among many other alterations. Thus, it is no surprise that heteroatom doping has become a well-established strategy to enhance the performance of carbon-based materials for applications ranging from water remediation and gas sorption to energy storage and conversion. Although oxygen functionalization is sometimes inevitable (i.e., many carbon precursors contain oxygen functionalities), its participation in carbon materials performance is often overlooked on behalf of other heteroatoms (mainly nitrogen). In this Mini-review, we summarize recent and relevant publications on the effect that oxygen functionalization has on carbonaceous materials performance in different electrochemical applications and some strategies to introduce such functionalization purposely. Our aim is to revert the current tendency to overlook it and raise the attention of the materials science community on the benefits of using oxygen functionalization in many state-of-the-art applications.
Collapse
Affiliation(s)
- Mária Jerigová
- Colloid
Chemistry Department, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Mateusz Odziomek
- Colloid
Chemistry Department, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nieves López-Salas
- Colloid
Chemistry Department, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
18
|
Harimoto T, Ishigaki Y. Redox‐Active Hydrocarbons: Isolation and Structural Determination of Cationic States toward Advanced Response Systems. Chempluschem 2022; 87:e202200013. [DOI: 10.1002/cplu.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Harimoto
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science JAPAN
| | - Yusuke Ishigaki
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science North 10, West 8, North-ward 060-0810 Sapporo JAPAN
| |
Collapse
|
19
|
Antoni PW, Golz C, Hansmann MM. Organic Four‐Electron Redox Systems Based on Bipyridine and Phenanthroline Carbene Architectures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patrick W. Antoni
- TU Dortmund: Technische Universitat Dortmund Fakultät für Chemie und Chemische Biologie GERMANY
| | - Christopher Golz
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institut für Organische und Biomolekulare Chemie GERMANY
| | - Max M. Hansmann
- TU Dortmund: Technische Universitat Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn Str.6 44227 Dortmund GERMANY
| |
Collapse
|
20
|
Cyclic (alkyl)(amino)carbene (CAAC) ligands: Electronic structure and application as chemically- and redox-non-innocent ligands and chromophores. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
A crystalline radical cation derived from Thiele's hydrocarbon with redox range beyond 1 V. Nat Commun 2021; 12:7052. [PMID: 34862371 PMCID: PMC8642399 DOI: 10.1038/s41467-021-27104-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Thiele’s hydrocarbon occupies a central role as an open-shell platform for new organic materials, however little is known about its redox behaviour. While recent synthetic approaches involving symmetrical carbene substitution of the CPh2 termini yield isolable neutral/dicationic analogues, the intervening radical cations are much more difficult to isolate, due to narrow compatible redox ranges (typically < 0.25 V). Here we show that a hybrid BN/carbene approach allows access to an unsymmetrical analogue of Thiele’s hydrocarbon 1, and that this strategy confers markedly enhanced stability on the radical cation. 1•+ is stable across an exceptionally wide redox range (> 1 V), permitting its isolation in crystalline form. Further single-electron oxidation affords borenium dication 12+, thereby establishing an organoboron redox system fully characterized in all three redox states. We perceive that this strategy can be extended to other transient organic radicals to widen their redox stability window and facilitate their isolation. Organic molecules that can access various redox states have potential applications in electronics, batteries, catalysis, among others. Here the authors report the preparation of an unsymmetrical organoboron analogue of Thiele’s hydrocarbon and study its one- and two-electron oxidation reactions; remarkably, the radical cation is stable over a redox range of > 1 V and can also be isolated.
Collapse
|
22
|
Ozaki T, Yorimitsu H, Perry GJP. Primary Sulfonamide Functionalization via Sulfonyl Pyrroles: Seeing the N-Ts Bond in a Different Light. Chemistry 2021; 27:15387-15391. [PMID: 34409663 DOI: 10.1002/chem.202102748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/17/2022]
Abstract
Despite common occurrence in molecules of value, methods for transforming sulfonamides are distinctly lacking. Here we introduce easy-to-access sulfonyl pyrroles as synthetic linchpins for sulfonamide functionalization. The versatility of the sulfonyl pyrrole unit is shown by generating a variety of products through chemical, electrochemical and photochemical pathways. Preliminary results on the direct functionalization of primary sulfonamides are also provided, which may lead to new modes of activation.
Collapse
Affiliation(s)
- Tomoya Ozaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Gregory J P Perry
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
23
|
Bellotti P, Koy M, Hopkinson MN, Glorius F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat Rev Chem 2021; 5:711-725. [PMID: 37118184 DOI: 10.1038/s41570-021-00321-1] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/18/2022]
Abstract
N-Heterocyclic carbenes, despite being isolated and characterized three decades ago, still capture scientists' interest as versatile, modular and strongly coordinating moieties. In the last decade, driven by the increasingly refined fundamental understanding of their behaviour, the emergence of new carbene frameworks and cogent sustainability issues, N-heterocyclic carbenes have experienced a tremendous increase in utilization across several disparate fields. In this Review, a concise overview of N-heterocyclic carbenes encompassing their history, properties and applications in transition metal catalysis, on-surface chemistry, main group chemistry and organocatalysis is provided. Emphasis is placed on developments emerging in the last seven years and on envisaging future directions.
Collapse
|
24
|
Glaser F, Kerzig C, Wenger OS. Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications. Chem Sci 2021; 12:9922-9933. [PMID: 34349964 PMCID: PMC8317647 DOI: 10.1039/d1sc02085d] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sensitization-initiated electron transfer (SenI-ET) describes a recently discovered photoredox strategy that relies on two consecutive light absorption events, triggering a sequence of energy and electron transfer steps. The cumulative energy input from two visible photons gives access to thermodynamically demanding reactions, which would be unattainable by single excitation with visible light. For this reason, SenI-ET has become a very useful strategy in synthetic photochemistry, but the mechanism has been difficult to clarify due to its complexity. We demonstrate that SenI-ET can operate via sensitized triplet-triplet annihilation upconversion, and we provide the first direct spectroscopic evidence for the catalytically active species. In our system comprised of fac-[Ir(ppy)3] as a light absorber, 2,7-di-tert-butylpyrene as an annihilator, and N,N-dimethylaniline as a sacrificial reductant, all photochemical reaction steps proceed with remarkable rates and efficiencies, and this system is furthermore suitable for photocatalytic aryl dehalogenations, pinacol couplings and detosylation reactions. The insights presented here are relevant for the further rational development of photoredox processes based on multi-photon excitation, and they could have important implications in the greater contexts of synthetic photochemistry and solar energy conversion.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
25
|
Munz D, Meyer K. Charge frustration in ligand design and functional group transfer. Nat Rev Chem 2021; 5:422-439. [PMID: 37118028 DOI: 10.1038/s41570-021-00276-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Molecules with different resonance structures of similar importance, such as heterocumulenes and mesoionics, are prominent in many applications of chemistry, including 'click chemistry', photochemistry, switching and sensing. In coordination chemistry, similar chameleonic/schizophrenic entities are referred to as ambidentate/ambiphilic or cooperative ligands. Examples of these had remained, for a long time, limited to a handful of archetypal compounds that were mere curiosities. In this Review, we describe ambiphilicity - or, rather, 'charge frustration' - as a general guiding principle for ligand design and functional group transfer. We first give a historical account of organic zwitterions and discuss their electronic structures and applications. Our discussion then focuses on zwitterionic ligands and their metal complexes, such as those of ylidic and redox-active ligands. Finally, we present new approaches to single-atom transfer using cumulated small molecules and outline emerging areas, such as bond activation and stable donor-acceptor ligand systems for reversible 1e- chemistry or switching.
Collapse
|
26
|
Kim H, Kim M, Song H, Lee E. Indol‐2‐ylidene (IdY): Ambiphilic N‐Heterocyclic Carbene Derived from Indole**. Chemistry 2021; 27:3849-3854. [DOI: 10.1002/chem.202004879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Hyunho Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Minseop Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Hayoung Song
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Eunsung Lee
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| |
Collapse
|
27
|
Messelberger J, Kumar M, Goodner SJ, Munz D. Wanzlick's equilibrium in tri- and tetraaminoolefins. Org Chem Front 2021. [DOI: 10.1039/d1qo01320c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
How to isolate small carbenes, previously reported to from dimers instantaneously, and how to split triaminoolefins into free carbenes.
Collapse
Affiliation(s)
- Julian Messelberger
- Saarland University, Inorganic Chemistry: Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Manoj Kumar
- Saarland University, Inorganic Chemistry: Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Stephen J. Goodner
- Saarland University, Inorganic Chemistry: Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy: Chair of Inorganic and General Chemistry, Egerlandstraße 1, D-91058 Erlangen, Germany
| | - Dominik Munz
- Saarland University, Inorganic Chemistry: Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy: Chair of Inorganic and General Chemistry, Egerlandstraße 1, D-91058 Erlangen, Germany
| |
Collapse
|
28
|
Das A, Ahmed J, Rajendran NM, Adhikari D, Mandal SK. A Bottleable Imidazole-Based Radical as a Single Electron Transfer Reagent. J Org Chem 2021; 86:1246-1252. [PMID: 33280378 DOI: 10.1021/acs.joc.0c02465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reduction of 1,3-bis(2,6-diisopropylphenyl)-2,4-diphenyl-1H-imidazol-3-ium chloride (1) resulted in the formation of the first structurally characterized imidazole-based radical 2. 2 was established as a single electron transfer reagent by treating it with an acceptor molecule tetracyanoethylene. Moreover, radical 2 was utilized as an organic electron donor in a number of organic transformations such as in activation of an aryl-halide bond, alkene hydrosilylation, and in catalytic reduction of CO2 to methoxyborane, all under ambient temperature and pressure.
Collapse
Affiliation(s)
- Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - N M Rajendran
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
29
|
Back J, Kwon G, Byeon JE, Song H, Kang K, Lee E. Tunable Redox-Active Triazenyl-Carbene Platforms: A New Class of Anolytes for Non-Aqueous Organic Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37338-37345. [PMID: 32692157 DOI: 10.1021/acsami.0c09400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-aqueous all organic redox flow batteries (NORFBs) are one of the promising options for large-scale renewable energy storage systems owing to their scalability with energy and power along with the affordability. The discovery of new redox-active organic molecules (ROMs) for the anolyte/catholyte would bring them one step closer to the practical application, thus it is highly demanded. Here, we report a new class of ROMs based on cationic triazenyl systems supported by N-heterocyclic carbenes (NHCs) and demonstrate, for the first time, that the triazenyl can serve as a new redox motif for ROMs and could be significantly stabilized for the use in NORFBs by the coupling with NHCs even at radical states. A series of NHC-triazenyl ROM families were successfully synthesized via the reaction of a synthon, N-heterocyclic carbene azido cation, with various Lewis bases including NHCs. Remarkably, it is revealed that NHCs substituted on the triazenyl fragments can serve as a versatile platform for tailoring the electrochemical activity and stability of triazenyl-based compounds, introducing various ROMs exploiting triazenyl redox motif, as demonstrated in the full cell of NORFBs for an anolyte.
Collapse
Affiliation(s)
- Jisu Back
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Giyun Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jung Eun Byeon
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kisuk Kang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
- Center for Nanoparticle Research, Institute of Basic Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
30
|
Mandal D, Stein F, Chandra S, Neuman NI, Sarkar P, Das S, Kundu A, Sarkar A, Rawat H, Pati SK, Chandrasekhar V, Sarkar B, Jana A. Trisubstituted geminal diazaalkene derived transient 1,2-carbodications. Chem Commun (Camb) 2020; 56:8233-8236. [PMID: 32558832 DOI: 10.1039/d0cc02807j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coulombic repulsion between two adjacent cation centres of 1,2-carbodications is known to decrease with π- and/or n-donor substituents by a positive charge delocalization. Here we report the delocalization of the positive charge of transient 1,2-carbodications having one H-substituent by an intramolecular base-coordination. N-heterocyclic olefin (NHO) derived 2-pyrrolidinyl appended trisubstituted geminal diazaalkenes were used for the generation of transient 1,2-carbodications through a 2-e chemical oxidation process. We have also studied the 1-e oxidation reaction of trisubstituted geminal diazaalkenes (electrochemically and chemically) and also studied them using in situ EPR spectroscopy.
Collapse
Affiliation(s)
- Debdeep Mandal
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500107, Telangana, India.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stolar M. Organic electrochromic molecules: synthesis, properties, applications and impact. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2018-1208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AbstractOrganic electronics are at the forefront of modern research, with goals of creating more efficient and environmentally benign devices. Organic molecules can achieve this as they typically result in materials that are solution-processable and less toxic than their transition-metal counterparts. Electrochromic molecules have unique color changing properties upon passing an electrical current making them highly sought after for colored displays, dimming mirrors, and smart windows. Part of my PhD work was devoted to developing a new class of electrochromic molecules, the phosphoryl-bridged viologens, with more favorable redox properties and new color changing modes. In order to understand the necessity and potential of new electrochromes, it is important to assess the history of the field and its future. In addition to designing new molecules for electrochromic devices, it is equally important to design a multifunctional species with a bright, competitive future across various organic electronic applications.
Collapse
Affiliation(s)
- Monika Stolar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
32
|
Messelberger J, Grünwald A, Goodner SJ, Zeilinger F, Pinter P, Miehlich ME, Heinemann FW, Hansmann MM, Munz D. Aromaticity and sterics control whether a cationic olefin radical is resistant to disproportionation. Chem Sci 2020; 11:4138-4149. [PMID: 34760147 PMCID: PMC8562513 DOI: 10.1039/d0sc00699h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
We elucidate why some electron rich-olefins such as tetrathiafulvalene (TTF) or paraquat (1,1'-dimethyl-4,4'-bipyridinylidene) form persistent radical cations, whereas others such as the dimer of N,N'-dimethyl benzimidazolin-2-ylidene (benzNHC) do not. Specifically, three heterodimers derived from cyclic (alkyl) (amino) carbenes (CAAC) with N,N'-dimethyl imidazolin-2-ylidene (NHC), N,N'-dimethyl imidazolidin-2-ylidene (saNHC) and N-methyl benzothiazolin-2-ylidene (btNHC) are reported. Whereas the olefin radical cations with the NHC and btNHC are isolable, the NHC compound with a saturated backbone (saNHC) disproportionates instead to the biscation and olefin. Furthermore, the electrochemical properties of the electron-rich olefins derived from the dimerization of the saNHC and btNHC were assessed. Based on the experiments, we propose a general computational method to model the electrochemical potentials and disproportionation equilibrium. This method, which achieves an accuracy of 0.07 V (0.06 V with calibration) in reference to the experimental values, allows for the first time to rationalize and predict the (in)stability of olefin radical cations towards disproportionation. The combined results reveal that the stability of heterodimeric olefin radical cations towards disproportionation is mostly due to aromaticity. In contrast, homodimeric radical cations are in principle isolable, if lacking steric bulk in the 2,2' positions of the heterocyclic monomers. Rigid tethers increase accordingly the stability of homodimeric radical cations, whereas the electronic effects of substituents seem much less important for the disproportionation equilibrium.
Collapse
Affiliation(s)
- Julian Messelberger
- Lehrstuhl für Allgemeine und Anorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Annette Grünwald
- Lehrstuhl für Allgemeine und Anorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Stephen J Goodner
- Lehrstuhl für Allgemeine und Anorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Florian Zeilinger
- Lehrstuhl für Allgemeine und Anorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Piermaria Pinter
- Lehrstuhl für Allgemeine und Anorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Matthias E Miehlich
- Lehrstuhl für Allgemeine und Anorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Frank W Heinemann
- Lehrstuhl für Allgemeine und Anorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Max M Hansmann
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Organische Chemie, Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Dominik Munz
- Lehrstuhl für Allgemeine und Anorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| |
Collapse
|
33
|
Glaser F, Kerzig C, Wenger OS. Multiphotonen‐Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915762] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Felix Glaser
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Christoph Kerzig
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Oliver S. Wenger
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
34
|
Glaser F, Kerzig C, Wenger OS. Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods. Angew Chem Int Ed Engl 2020; 59:10266-10284. [PMID: 31945241 DOI: 10.1002/anie.201915762] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/16/2020] [Indexed: 01/28/2023]
Abstract
The energy of visible photons and the accessible redox potentials of common photocatalysts set thermodynamic limits to photochemical reactions that can be driven by traditional visible-light irradiation. UV excitation can be damaging and induce side reactions, hence visible or even near-IR light is usually preferable. Thus, photochemistry currently faces two divergent challenges, namely the desire to perform ever more thermodynamically demanding reactions with increasingly lower photon energies. The pooling of two low-energy photons can address both challenges simultaneously, and whilst multi-photon spectroscopy is well established, synthetic photoredox chemistry has only recently started to exploit multi-photon processes on the preparative scale. Herein, we have a critical look at currently developed reactions and mechanistic concepts, discuss pertinent experimental methods, and provide an outlook into possible future developments of this rapidly emerging area.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
35
|
Nayak MK, Stubbe J, Neuman NI, Narayanan RS, Maji S, Schulzke C, Chandrasekhar V, Sarkar B, Jana A. N,N'-Ethylene-Bridged Bis-2-Aryl-Pyrrolinium Cations to E-Diaminoalkenes: Non-Identical Stepwise Reversible Double-Redox Coupled Bond Activation Reactions. Chemistry 2020; 26:4425-4431. [PMID: 31994763 PMCID: PMC7187269 DOI: 10.1002/chem.202000255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/31/2022]
Abstract
This work presents a stepwise reversible two‐electron transfer induced hydrogen shift leading to the conversion of a bis‐pyrrolinium cation to an E‐diaminoalkene and vice versa. Remarkably, the forward and the reverse reaction, which are both reversible, follow two completely different reaction pathways. Establishing such unprecedented property in this type of processes was possible by developing a novel synthetic route towards the starting dication. All intermediates involved in both the forward and the backward reactions were comprehensively characterized by a combination of spectroscopic, crystallographic, electrochemical, spectroelectrochemical, and theoretical methods. The presented synthetic route opens up new possibilities for the generation of multi‐pyrrolinium cation scaffold‐based organic redox systems, which constitute decidedly sought‐after molecules in contemporary chemistry.
Collapse
Affiliation(s)
- Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500107, India
| | - Jessica Stubbe
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Nicolás I Neuman
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.,Instituto de Desarrollo Tecnológico para la Industria Química, CCT Santa Fe CONICET-UNL, Colectora Ruta Nacional 168, Km 472, Paraje El Pozo, 3000, Santa Fe, Argentina
| | | | - Sandipan Maji
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500107, India
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500107, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.,Institut für Anorganische Chemie, Lehrstuhl für Anorganische Koordinationschemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500107, India
| |
Collapse
|
36
|
Tan P, Wang SR. Reductive (3 + 2) Annulation of Benzils with Pyrylium Salts: Stereoselective Access to Furyl Analogues of cis-Chalcones. Org Lett 2019; 21:6029-6033. [DOI: 10.1021/acs.orglett.9b02182] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengwei Tan
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China
| | - Sunewang R. Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Lu, Shanghai 200062, China
| |
Collapse
|
37
|
Verschueren RH, De Borggraeve WM. Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis. Molecules 2019; 24:E2122. [PMID: 31195644 PMCID: PMC6600520 DOI: 10.3390/molecules24112122] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/05/2022] Open
Abstract
This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis.
Collapse
Affiliation(s)
- Rik H Verschueren
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium.
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium.
| |
Collapse
|
38
|
Antoni PW, Bruckhoff T, Hansmann MM. Organic Redox Systems Based on Pyridinium–Carbene Hybrids. J Am Chem Soc 2019; 141:9701-9711. [DOI: 10.1021/jacs.9b04249] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Patrick W. Antoni
- Georg-August Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tim Bruckhoff
- Georg-August Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Max M. Hansmann
- Georg-August Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
39
|
Theunissen C, Ashley MA, Rovis T. Visible-Light-Controlled Ruthenium-Catalyzed Olefin Metathesis. J Am Chem Soc 2019; 141:6791-6796. [PMID: 31010292 PMCID: PMC7097883 DOI: 10.1021/jacs.8b13663] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Olefin metathesis is now one of the most efficient ways to create new carbon-carbon bonds. While most efforts focused on the development of ever-more efficient catalysts, a particular attention has recently been devoted to developing latent metathesis catalysts, inactive species that need an external stimulus to become active. This furnishes an increased control over the reaction which is crucial for applications in materials science. Here, we report our work on the development of a new system to achieve visible-light-controlled metathesis by merging olefin metathesis and photoredox catalysis. The combination of a ruthenium metathesis catalyst bearing two N-heterocyclic carbenes with an oxidizing pyrylium photocatalyst affords excellent temporal and spatial resolution using only visible light as stimulus. Applications of this system in synthesis, as well as in polymer patterning and photolithography with spatially resolved ring-opening metathesis polymerization, are described.
Collapse
Affiliation(s)
- Cédric Theunissen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Melissa A. Ashley
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
40
|
Zhang Y, Wang H, Ye J, Qiu Y. Redox-triggered switch based on platinum(ii) acetylacetonate complexes bearing an isomeric donor–acceptor conjugation ligand shows a high second-order nonlinear optical response. NEW J CHEM 2019. [DOI: 10.1039/c9nj02183c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pt(ii) acetylcetonate complexes with an isomeric D–A ligand exhibiting exceptionally large hyperpolarizabilities are promising redox-triggered NLO switches.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Hongqiang Wang
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Jinting Ye
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Yongqing Qiu
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| |
Collapse
|
41
|
Novoa N, Manzur C, Roisnel T, Dorcet V, Cabon N, Robin-Le Guen F, Ledoux-Rak I, Kahlal S, Saillard JY, Carrillo D, Hamon JR. Redox-switching of ternary Ni(ii) and Cu(ii) complexes: synthesis, experimental and theoretical studies along with second-order nonlinear optical properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj01774g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The redox-switching behavior of the title compounds has been probed for the Ni(ii) derivatives using time-resolved spectroelectrochemistry under thin-layer conditions.
Collapse
|