1
|
Cheng H, Cheng M, Tudi A, Hou X. K 2PbB 5P 3O 17: A Mixed-Coordinated Borophosphate with Enhanced Birefringence Driven by the [B 2O 5] Unit. Inorg Chem 2025. [PMID: 39991915 DOI: 10.1021/acs.inorgchem.4c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Mixed-coordinated borophosphates containing π-conjugated [BO3] and non-π-conjugated [BO4] and [PO4] tetrahedra have been a research hot spot benefiting from their diverse structures and the presentation of pre-eminent optical performances. Through the high-temperature solution method, a new mixed-coordinated borophosphate K2PbB5P3O17 was synthesized. This compound exhibits an unprecedented [B5P3O21] fundamental building block consisting of apex-sharing [B3O7], [BO4], and [PO4] units, possessing a short ultraviolet cutoff edge of 234 nm as well as moderate birefringence (0.045@1064 nm). Compared with the tetra-coordinated borophosphate KPbBP2O8 with the same elemental composition, the birefringence of K2PbB5P3O17 achieves a great enhancement induced by the introduction of the planar [B2O5] unit.
Collapse
Affiliation(s)
- Huanhuan Cheng
- Chinese Academy of Sciences, Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, 40-1 South Beijing Road, Urumqi 830011, China
| | - Meng Cheng
- Chinese Academy of Sciences, Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, 40-1 South Beijing Road, Urumqi 830011, China
| | - Abudukadi Tudi
- Chinese Academy of Sciences, Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, 40-1 South Beijing Road, Urumqi 830011, China
| | - Xueling Hou
- Chinese Academy of Sciences, Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, 40-1 South Beijing Road, Urumqi 830011, China
| |
Collapse
|
2
|
Lu J, Ok KM. Synergistic engineering of ultraviolet metal-free crystals with exceptional birefringence via pyridine-derived dimers. Chem Sci 2025:d5sc00112a. [PMID: 39935502 PMCID: PMC11808400 DOI: 10.1039/d5sc00112a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Crystals with giant birefringence are essential for practical applications in lasers, optical communication, and polarimetry, where precise control of polarized light is critical. Coplanar six-membered ring (6-MR) primitives with large polarizability anisotropy are particularly effective in enhancing birefringence. This study successfully combines different pyridine derivatives into two novel metal-free crystals: supramolecular one-dimensional [(4-HP)(4-H2P)][3-pySO3] (1; HP = hydroxypyridine; py = pyridine) and two-dimensional [4-AP][3-pySO3] (2; AP = aminopyridne), synthesized via a facile aqueous solution method. Compound 1 features unique [4-HP/4-H2P]+ cationic dimer pairs linked by hydrogen bonds, in contrast to the single monovalent [4-AP]+ cations in compound 2. This structural distinction leads to optimized anionic [3-pySO3]- arrangements, a reduced dimensionality of linkage, and denser spatial distribution of cationic pseudo-layers, significantly enhancing birefringence. Compound 1 exhibits a superior birefringence value of 0.443 at 546 nm, compared to 0.296 for compound 2, representing the highest birefringence among sulfate derivatives incorporating an additional birefringence-active group in the ultraviolet (UV) region. It also surpasses all reported metal-free compounds with single 6-MRs in the short-wave UV range. Theoretical calculations confirm the synergistic effects between cationic and anionic pyridine derivatives, further elucidating their contributions to enhanced birefringence. In addition, compound 1 demonstrates a short UV cut-off edge at 279 nm and favorable growth characteristics, making it a promising candidate for UV birefringent applications. This research offers new insights into designing and optimizing birefringence by exploring the relationship between the composition and arrangement of organic cations and their optical properties in UV metal-free systems through synergistic effects.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
3
|
Liu H, Yi G, Lv J, Dong X, Zeng H, Huang L, Lin Z, Zou G. Design and Synthesis of Two Sn-Centered Mixed Halide Crystals with Enhanced Birefringence. Inorg Chem 2025; 64:2140-2145. [PMID: 39835776 DOI: 10.1021/acs.inorgchem.4c05378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Enhancing the optical anisotropy of compounds has attracted significant interest in the optical field. Sn-centered crystals, containing stereochemically active lone pairs, are widely regarded as promising birefringent materials. In this study, we successfully synthesized two novel Sn-centered mixed halide birefringent crystals, NaSn2F4Br and Na2Sn2F5I. These crystals, composed of Sn-centered mixed halide polyhedra, exhibit more than a 2-fold increase in birefringence from NaSn2F4Br to Na2Sn2F5I. Among all known Sn-centered halides, the Na2Sn2F5I crystal demonstrates the highest birefringence (Δn = 0.408@546 nm). Theoretical calculations indicate that the exceptional optical properties of Na2Sn2F5I arise from the large polarization anisotropy induced by the Sn-I bond within the Sn-centered polyhedra. These findings provide valuable insights for the development of high-quality birefringent crystal materials in Sn-centered mixed halide systems.
Collapse
Affiliation(s)
- Hongkun Liu
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Gangji Yi
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Jiarong Lv
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Xie CH, Jiang XM, Liu BW, Guo GC. BaFS: Birefringence Enhanced by the Transformation from Optical Isotropy to Anisotropy via Interlayer Anion Substitution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409705. [PMID: 39807690 DOI: 10.1002/smll.202409705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Improved birefringence, given its capacity to modulate polarized light, holds a lively role in the optoelectronic industry. Traditionally, alkaline-earth metal halides have possessed low birefringence due to their nearly optical isotropic properties. Herein, the substitution of interlayer anion with linear S─S unit that meticulously engineered by reduced valence state and strong covalent bond is integrated into the optically isotropic BaF2, offering the new salt-inclusion chalcogenide BaFS. Notably, it has dramatically enhanced optical anisotropy, thereby significantly boosting birefringence of 0.238@546 nm, achieved by overall considering experimental observations with theoretical analysis. Theoretical investigation has established the significant effect of the covalent S─S bond on the birefringence index. Additionally, BaFS demonstrates a remarkable laser-induced damage threshold (LIDT, 12.0 × AgGaS2@1064 nm), illuminating a promising pathway for designing materials with significant birefringence properties in laser applications.
Collapse
Affiliation(s)
- Chao-Hong Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiao-Ming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
5
|
Ma X, Zhao X, Zhang Q, Long X, Yang Y. Structural modification of hydroxyborates by adjusting the number of shared oxygen atoms and hydroxyl groups for further performance enhancement. Dalton Trans 2025; 54:2122-2131. [PMID: 39704216 DOI: 10.1039/d4dt03136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In recent years, hydroxyborates with excellent properties have attracted much attention. Through dedicated efforts, three new hydroxyborates-K2B5O8(OH), CsB5O6(OH)4, and CsB5O7(OH)2-have been successfully synthesized in a closed system. The ultraviolet (UV) cut-off edges of both K2B5O8(OH) and CsB5O7(OH)2 are below 200 nm, indicating their potential as candidates for deep-ultraviolet (DUV) materials. Furthermore, K2B5O8(OH) exhibits nonlinear optical (NLO) activity and demonstrates significant second harmonic generation (SHG) effects, approximately 2 × KH2PO4 (KDP). Interestingly, although all three compounds are alkali metal borates containing five boron atoms, the calculated birefringence is 0.025 at 1064 nm for K2B5O8(OH), whereas it is 0.067 and 0.070 at 1064 nm for CsB5O6(OH)4 and CsB5O7(OH)2, respectively, which are about three times that of K2B5O8(OH). The reason for the nearly threefold difference in birefringence is analyzed from the view of the structure-property relationship. Furthermore, the effect of the number of hydroxyl groups and shared oxygen atoms on the structural dimensions, birefringence, and band gaps in all alkali and alkaline-earth metal hydroxyborates with five boron atoms has been studied and analyzed. A solid foundation for the use of hydroxyl groups to tune and design structures has been provided.
Collapse
Affiliation(s)
- Xiaoqin Ma
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang, 835000, China.
| | - Xinjun Zhao
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang, 835000, China.
| | - Qianzhen Zhang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xifa Long
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zhang Q, An R, Long X, Yang Z, Pan S, Yang Y. Exploiting Deep-Ultraviolet Nonlinear Optical Material Rb 2ScB 3O 6F 2 Originated from Congruously Oriented [B 3O 6] Groups. Angew Chem Int Ed Engl 2025; 64:e202415066. [PMID: 39301844 DOI: 10.1002/anie.202415066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 11/01/2024]
Abstract
The exploration and research for deep-ultraviolet (UV) nonlinear optical (NLO) crystals are of great significance for all-solid-state lasers. This work is based on the excellent structural [B3O6] units which manipulate the excellent performances of famous commercial NLO crystal β-BaB2O4 (β-BBO) to explore new alternatives of deep-UV NLO materials. A deep-UV rare-earth metal borate fluoride Rb2ScB3O6F2 (RSBF) is successfully designed by combining the heterovalent ions substitution strategy, and fluorination strategy. Expectedly, RSBF exhibits an extremely short cutoff edge below 175 nm (189 nm for β-BBO), and a moderate birefringence of 0.088 at 1064 nm. The shortest phase-matching (PM) wavelength of RSBF (λPM=182 nm) is shortened by 23 nm compared with β-BBO (λPM=205 nm) due to the improvements in the chromatic dispersion and cutoff edge, and an experimental frequency-doubling effect 1.4×KH2PO4 (KDP) further suggests that RSBF can output a deep-UV harmonic laser. This work provides new sights from the original influencing factors for the rational and purposeful design of deep-UV NLO materials.
Collapse
Affiliation(s)
- Qianzhen Zhang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran An
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xifa Long
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Yang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Zhou H, Cheng M, Chu D, Liu X, An R, Pan S, Yang Z. Sulfate Derivatives with Heteroleptic Tetrahedra: New Deep-Ultraviolet Birefringent Materials in which Weak Interactions Modulate Functional Module Ordering. Angew Chem Int Ed Engl 2025; 64:e202413680. [PMID: 39143747 DOI: 10.1002/anie.202413680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Deep-ultraviolet (UV) birefringent materials are urgently needed to facilitate light polarization in deep-UV lithography. Maximizing anisotropy by regulating the alignment of functional modules is essential for improving the linear optical performance of birefringent materials. In this work, we proposed a strategy to design deep-UV birefringent materials that achieve functional module ordering via weak interactions. Following this strategy, four compounds CN4H7SO3CF3, CN4H7SO3CH3, C(NH2)3SO3CH3, and C(NH2)3SO3CF3 were identified as high-performance candidates for deep-UV birefringent materials. The millimeter-sized crystals of CN4H7SO3CF3, CN4H7SO3CH3, and C(NH2)3SO3CH3 were grown, and the transmittance spectra show that their cutoff edges are below 200 nm. CN4H7SO3CF3 exhibits the largest birefringence (0.149 @ 546 nm, 0.395 @ 200 nm) in the deep-UV region among reported sulfates and sulfate derivatives. It reveals that the hydrogen bond can modulate the module ordering of the heteroleptic tetrahedra and planar π-conjugated cations, thus greatly enhancing the birefringence. Our study not only discovers new deep-UV birefringent materials but also provides an upgraded strategy for optimizing optical anisotropy to achieve efficient birefringence.
Collapse
Affiliation(s)
- Huan Zhou
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Cheng
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
| | - Ran An
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Hu C, Li H, Xu G, Yang Z, Han J, Pan S. The New Paradigm of Ligand Substitution-Driven Enhancement of Anisotropy from SO 4 Units in Short-Wavelength Region. ACS CENTRAL SCIENCE 2024; 10:2312-2320. [PMID: 39735303 PMCID: PMC11673188 DOI: 10.1021/acscentsci.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024]
Abstract
For non-π-conjugated [SO4] units, it is challenging to generate sufficient birefringence, owing to the high symmetry of the regular tetrahedron. Unlike the traditional trial-and-error approach, we propose a new paradigm for birefringence engineering to tune the optical properties based on [SO4] units. Through the strategy of ligand substitution, we can predict its effect on the band gap and anisotropy. Theoretical evaluations reveal generalized results that the anisotropic electron distribution of new functional groups induced by the suitable ligand substitution contributes to the band gap and birefringence. To further validate the correctness of the paradigm, we experimentally synthesized and characterized nine novel compounds with selected functional modules. By the new paradigm of ligand substitution, they can reach up to 4-6 times the birefringence of the corresponding sulfate and maintain the wide bandgap. Through rational design, (CN4H7)SO3NH2 exhibits about 35 times the birefringence of Li2SO4, which is a significant order of magnitude improvement and verifies the superiority of our proposed paradigm. This work provides a new paradigm for the modification to the non-π-conjugated group and will guide and accelerate the exploration of novel birefringent crystals in the short-wavelength region.
Collapse
Affiliation(s)
- Chenhui Hu
- Research
Center for Crystal Materials, State Key Laboratory of Functional Materials
and Devices for Special Environmental Conditions, Xinjiang Key Laboratory
of Functional Crystal Materials, Xinjiang
Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Li
- Research
Center for Crystal Materials, State Key Laboratory of Functional Materials
and Devices for Special Environmental Conditions, Xinjiang Key Laboratory
of Functional Crystal Materials, Xinjiang
Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Guangsheng Xu
- Research
Center for Crystal Materials, State Key Laboratory of Functional Materials
and Devices for Special Environmental Conditions, Xinjiang Key Laboratory
of Functional Crystal Materials, Xinjiang
Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research
Center for Crystal Materials, State Key Laboratory of Functional Materials
and Devices for Special Environmental Conditions, Xinjiang Key Laboratory
of Functional Crystal Materials, Xinjiang
Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- Research
Center for Crystal Materials, State Key Laboratory of Functional Materials
and Devices for Special Environmental Conditions, Xinjiang Key Laboratory
of Functional Crystal Materials, Xinjiang
Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research
Center for Crystal Materials, State Key Laboratory of Functional Materials
and Devices for Special Environmental Conditions, Xinjiang Key Laboratory
of Functional Crystal Materials, Xinjiang
Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Li S, Dou D, Chen C, Shi Q, Zhang B, Wang Y. [C(NH 2) 3] 2S 2O 6: A SBBO-Like Dithionate Crystal with Large Optical Anisotropy. Inorg Chem 2024; 63:24076-24082. [PMID: 39662983 DOI: 10.1021/acs.inorgchem.4c04843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Investigating ultraviolet (UV) birefringent crystals is a focal point of research in recent years. The development of superior birefringent materials faces substantial challenges, primarily due to the need to pinpoint optimal fundamental building blocks and to perfect their geometric arrangement within the crystal lattice. By selecting a planar π-conjugated [C(NH2)3] group and a staggered [S2O6] group, we have successfully synthesized an organic-inorganic hybrid crystal, [C(NH2)3]2S2O6. Similar to the famous inorganic crystal Sr2Be2B2O7 (SBBO), [C(NH2)3]2S2O6 exhibits a two-dimensional double-layered crystal structure connected by N-H···O hydrogen bonding. Due to the ideal spatial arrangements of the planar π-conjugated [C(NH2)3] group, this crystal displays a large birefringence (0.150 at 546 nm) among sulfate derivatives in the short-wave UV region. Meanwhile, [C(NH2)3]2S2O6 has a large band gap of 5.23 eV. This work indicates that the [S2O6] unit, acting as a direct structural motif, is beneficial for the discovery of UV birefringent crystals.
Collapse
Affiliation(s)
- Siyu Li
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Danyang Dou
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Cheng Chen
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Qi Shi
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Bingbing Zhang
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Ying Wang
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
10
|
Zeng W, Tian Y, Zeng H, Lin Z, Zou G. Breaking Performance Barriers in KBe 2BO 3F 2 (KBBF) Analogs by Functional Group Self-Polymerization. Angew Chem Int Ed Engl 2024:e202422818. [PMID: 39714395 DOI: 10.1002/anie.202422818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024]
Abstract
Enhancing the conversion efficiency of all-solid-state lasers through the rational design of crystal materials with superior linear and nonlinear optical (NLO) properties remains a formidable challenge. Herein, we present a novel approach to optimizing these properties in KBe2BO3F2 (KBBF)-analog crystals via functional group self-polymerization. This strategy led to the synthesis of two new optical crystals: noncentrosymmetric CsAs2O3Br and centrosymmetric CsAs4O6Br. By incorporating highly optically active [AsO3]3- units into the classical 2D [Be2BO3F]∞ - framework, we facilitated the self-assembly of [As2O3]∞ layers, forming a densely packed and highly ordered structure that enhances macroscopic optical activity. CsAs2O3Br exhibited an extraordinary second-harmonic generation (SHG) response, 20.5 times stronger than KH2PO4 (KDP), while CsAs4O6Br demonstrated exceptional birefringence (0.26 at 546 nm), setting new performance benchmarks among KBBF analogs. Theoretical analyses reveal that these superior properties arise from the efficient alignment and high density of self-polymerized functional units. This work represents a significant advancement in the design of high-performance UV NLO materials, particularly for fourth-harmonic generation, and paves the way for future innovations in photonic technologies, including solar-blind UV laser systems and advanced photonic devices.
Collapse
Affiliation(s)
- Wei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Yao Tian
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
11
|
Bu F, Liu X, Yu H, Liu R, Hu Z, Wang J, Wu Y, Wu H. K 15La 7(BO 3) 12: A KBBF-Like Nonlinear-Optical Material with a Short Cutoff Edge and a Strong Second-Harmonic-Generation Response. Inorg Chem 2024; 63:24059-24064. [PMID: 39644237 DOI: 10.1021/acs.inorgchem.4c04196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Nonlinear-optical (NLO) crystals capable of expanding the spectral regions of solid-state lasers are urgently needed by many high-technological applications. However, in the deep-ultraviolet (DUV) region, there are few crystals available, except KBe2BO3F2 (KBBF), which still suffers from the layered growth habit and high toxicity for raw materials. Herein, through the use of rare-earth (RE) La3+ to substitute Be2+ cations, a novel KBBF-like borate without beryllium has been successfully synthesized. K15La7(BO3)12 (KLBO) crystallizes in the noncentrosymmetric space group Pn (No. 7) and features a three-dimensional framework composed of [La12B7O78]∞ layers, which are further linked together through interlayer [BO3] groups. The property measurements show that KLBO not only possesses an ideal NLO performance including a short UV-cutoff edge (λcutoff < 190 nm) and a remarkable second-harmonic-generation response (∼2.5 × KH2PO4) with phase-matching ability, but also overcomes the layered habit of KBBF. Besides, theoretical calculations indicate that the good NLO performance is primarily attributed to the BO3 units and LaO8 polyhedra. These results demonstrate that KLBO has the potential to be a UV or DUV NLO crystal.
Collapse
Affiliation(s)
- Fanlu Bu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaorong Liu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Runqing Liu
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
12
|
Li X, Zhang L, Li F, Yang Z, Hou X, Zhang F. Syntheses, structures and properties of two new members of the pentaborate family: NaKB 5O 8(OH)·H 2O and KB 5O 8·2H 2O. Dalton Trans 2024; 53:18782-18788. [PMID: 39498534 DOI: 10.1039/d4dt02672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Two new members of the pentaborate family, NaKB5O8(OH)·H2O (I) and KB5O8·2H2O (II), were successfully synthesized, which crystallize in the space groups of P1̄ and Fddd, respectively. In compound I, [B5O10(OH)] fundamental building blocks (FBBs) form a two-dimensional (2D) 2[B5O8(OH)]∞ layer through corner-sharing, whereas in compound II, [B5O10] FBBs form two independent interpenetrating 3D 3[B5O8]∞ networks by sharing common O atoms. The UV-vis-NIR diffuse reflectance spectrum and first-principles calculations suggest that the two compounds possess deep-ultraviolet (DUV) transparency windows. Real-space atom-cutting and response electron distribution anisotropy (REDA) analyses show that the birefringence of both compounds mainly originates from the π-conjugated units.
Collapse
Affiliation(s)
- Xiaojing Li
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyong Zhang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuming Li
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueling Hou
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfang Zhang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Deng YL, Hu CL, Mao JG. [C 3H 7N 6] 3[B 3O 5(OH) 2] and [C 3H 8N 6] 4[B 12O 19(OH) 6]: Two Melamine Borates with Large Birefringence. Inorg Chem 2024. [PMID: 39556319 DOI: 10.1021/acs.inorgchem.4c04170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The π-conjugated [C3H6+xN6]x+ (x = 0-3) cations are good functional groups, which are widely employed in the preparations of nonlinear optical (NLO) and birefringent materials due to their high hyperpolarizability and optical anisotropy. In this paper, the first melamine hydroxyborate [C3H7N6]3[B3O5(OH)2] (MelBO-I) was synthesized by the boric acid melting method under the molar ratio of H3BO3:C3H6N6 = 1:1. MelBO-I (P21/c) exhibits a two-dimensional (2D) {[C3H7N6]3[B3O5(OH)2]}∞ layer composed of [C3H7N6]+ cations and [B3O5(OH)2]3- anions interconnected via hydrogen bonds. MelBO-I exhibits significant birefringence (Δn = 0.286@546 nm). Under the molar ratio of H3BO3/C3H6N6 = 3:1, [C3H8N6]4[B12O19(OH)6] (MelBO-II) was isolated. In MelBO-II (P21), highly polymerized [B12O19(OH)6]8- groups form a 3D network through hydrogen bonding, featuring 1D tunnels of 8-membered and 16-membered rings filled by [C3H8N6]2+ cations. MelBO-II is the first noncentrosymmetric (NCS) bifunctional melamine borate with a moderate SHG response (0.4 × KDP) and large birefringence (Δn = 0.285@546 nm). The results indicate that incorporating [C3H6+xN6]x+ (x = 0-3) cations into borate can effectively induce birefringence. A high concentration of boric acid promotes the formation of large boric acid cluster anions and facilitates the transformation from the CS to NCS structure.
Collapse
Affiliation(s)
- Ya-Lan Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Dong L, Xu B, Xiao D, Liu F, Zhang X, Pan X, Gong P, Lin Z. LaAgSiS 4: Increasing Optical Birefringence in Rare Earth Chalcogenide by Addition of Planar [AgS 3] Groups. Inorg Chem 2024; 63:21590-21596. [PMID: 39454075 DOI: 10.1021/acs.inorgchem.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Optoelectronic materials with excellent birefringent properties are of significant importance in the fields of optical communications and laser technology. Recently, rare earth (RE) chalcogenides with anisotropic [RESn] groups have been proven to be high-performance infrared birefringent materials. Herein, we demonstrate that the addition of planar groups can further increase the birefringence in RE chalcogenides, as realized by incorporating planar [AgS3] groups into the RE-I-IV-S4 family for the first time. The newly obtained LaAgSiS4 compound shows higher polarity anisotropy than its homologue LaLiSiS4 and LaKSiS4, which resulted in a larger birefringence (0.12@600 nm) at least twice as large as that of the latter two compounds (0.05/0.06@600 nm). The structure-property relationship of LaAgSiS4 was investigated through structural analysis and first-principles calculations. The results indicate that the increased optical birefringence in LaAgSiS4 originates from the synergic effects of the distorted [LaSn] polyhedra and planar [AgS3] triangles. This work provides an effective strategy for enhancing optical birefringence in IR chalcogenides.
Collapse
Affiliation(s)
- Linfeng Dong
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohui Xu
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deshuai Xiao
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Fan Liu
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Xuanlin Pan
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pifu Gong
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zheshuai Lin
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Li K, Wu H, Yu H, Hu Z, Wang J, Wu Y. Ba 2GeF 2Q 3 (Q = S, Se) and Ba 3GeF 2Se 4: new F-based chalcohalides with enhanced birefringence. Chem Commun (Camb) 2024; 60:12734-12737. [PMID: 39397726 DOI: 10.1039/d4cc04530k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Three new F-based chalcohalides, Ba2GeF2Q3 (Q = S, Se) and Ba3GeF2Se4, have been successfully synthesized. On going from Ba3GeF2Se4 (Δn = 0.063@1064 nm) to Ba2GeF2Q3 (Q = S, Se) (Δn = 0.109 and 0.103@1064 nm, respectively), the birefringence doubled. The structure-property relationship study shows that the enhanced birefringence originates from the modulation of the configuration of the ionic lattices and highly polymerized covalent lattices. This provides not only promising IR birefringent crystals, Ba2GeF2Q3, but also some insights into the design of IR birefringent materials.
Collapse
Affiliation(s)
- Kaixuan Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
16
|
Chen J, Xu MB, Wu HY, Wu JY, Du KZ. Halogen Bond Unlocks Ultra-High Birefringence. Angew Chem Int Ed Engl 2024; 63:e202411503. [PMID: 38985723 DOI: 10.1002/anie.202411503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Anisotropy is crucial for birefringence (Δn) in optical materials, but optimizing it remains a formidable challenge (Δn >0.3). Supramolecular frameworks incorporating π-conjugated components are promising for achieving enhanced birefringence because of their structural diversity and inherent anisotropy. Herein, we first synthesized (C6H6NO2)+Cl- (NAC) and then constructed a halogen-bonded supramolecular framework I+(C6H4NO2)- (INA) by halogen aliovalent substitution of Cl- with I+. The organic moieties are protonated and deprotonated nicotinic acid (NA), respectively. The antiparallel arrangement of birefringent-active units in NAC and INA leads to significant differences in the bonding characteristics between the interlayer and intralayer domains. Moreover, the [O⋅⋅⋅I+⋅⋅⋅N] halogen bond in 1D [I+(C6H4NO2)-] chain exhibits stronger interactions and stricter directionality, resulting in a more pronounced in-plane anisotropy between the intrachain and interchain directions. Consequently, INA exhibits exceptional birefringent performance, with a value of 0.778 at 550 nm, twice that of NAC (0.363 at 550 nm). This value significantly exceeds those of commercial birefringent crystals, such as CaCO3 (0.172 at 546 nm), and is the highest reported value among ultraviolet birefringent crystals. This work presents a novel design strategy that employs halogen bonds as connection sites and modes for birefringent-active units, opening new avenues for developing high-performance birefringent crystals.
Collapse
Affiliation(s)
- Jin Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Miao-Bin Xu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Huai-Yu Wu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jun-Yan Wu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
17
|
Guo X, Wang Y, Niu H. Prediction of ultraviolet optical materials in the K 2O-B 2O 3 system. Phys Chem Chem Phys 2024; 26:24954-24962. [PMID: 39295592 DOI: 10.1039/d4cp02424a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Ultraviolet (UV) birefringent crystals play a crucial role in various fields, such as laser technologies, optical telecommunications, and advanced scientific instrumentation. Alkali metal borates, with their diverse structures and remarkable ultraviolet optical properties, have garnered significant attention in recent years. In this study, employing the evolutionary crystal structure prediction algorithm USPEX, in conjunction with ionic substitutions and first-principles calculations, we systematically explored the pseudo-binary K2O-B2O3 system and predicted two stable structures (oP56-K3BO3 and mC44-K4B2O5) previously unreported, and twelve metastable structures in the K2O-B2O3 system. A comprehensive analysis of their structural, electronic and optical properties is conducted. The coplanar arrangement of BO3 and B3O6 groups is found to enhance optical anisotropy, thereby increasing the birefringence. In the K2O-B2O3 system, six structures with wide band gaps and high birefringence (mP28-1-K3BO3, tR72-KBO2, oP112-1-KB5O8, oP112-2-KB5O8, mC220-K5B19O31, and hR21-K3BO3) are found to be possible candidates for UV optical materials. Importantly, hR21-K3BO3, the only non-centrosymmetric structure in this system, exhibits a significant frequency doubling coefficient (about 4.6 KDP) and a moderate birefringence index (0.056@1064 nm), marking it a promising UV nonlinear optical material.
Collapse
Affiliation(s)
- Xiaoqing Guo
- State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Yanting Wang
- State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Haiyang Niu
- State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
18
|
Li Y, Zhou Y, Ahmed B, Xu Q, Huang W, Song Y, Song X, Chen B, Luo J, Zhao S. A highly birefringent metal-free crystal assembled by cooperative non-covalent interactions. MATERIALS HORIZONS 2024; 11:4393-4399. [PMID: 38946550 DOI: 10.1039/d4mh00422a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Birefringent crystals can manipulate the phase and polarization of light, so they are widely used as essential components in various optical devices. Common strategies to construct birefringent crystals are introducing metal cations that are either able to realize favorable coordination with functional anionic units or are susceptible to polarizability anisotropy. Herein, we report a metal-free crystal, NH4(H2C6N7O3)·2H2O, synthesized using the facile solution method. In the crystal structure of NH4(H2C6N7O3)·2H2O, (H2C6N7O3)- functional units are assembled in an optimal manner by cooperative non-covalent interactions, i.e., hydrogen bonding and π-π interactions. As a result, this metal-free crystal possesses exceptional birefringence up to 0.54@550 nm, which is larger than those of most metal-containing birefringent crystals. In addition, the interference color of this crystal does not change obviously from 243 K to 313 K, indicating that the birefringence is robust at different temperatures. This work will inspire useful insights into the role of non-covalent interactions in designing outstanding birefringent crystals for efficient polarized optical devices.
Collapse
Affiliation(s)
- Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Belal Ahmed
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
| | - Qianting Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
| | - Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianyu Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
| | - Bin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian 350108, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian 350108, China
| |
Collapse
|
19
|
Li Y, Ok KM. Breaking Boundaries: Giant Ultraviolet Birefringence in Dimension-Reduced Zn-Based Crystals. Angew Chem Int Ed Engl 2024; 63:e202409336. [PMID: 38923746 DOI: 10.1002/anie.202409336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Birefringent crystals have essential applications in optical communication areas. Low-dimensional structures with inherited structural anisotropy are potential systems for investigating birefringent materials with large birefringence. In this work, the zero-dimensional (0D) [(p-C5H5NO)2ZnCl2] (1) and [p-C5H6NO]2[ZnCl4] (2) were obtained by introducing the π-conjugated p-C5H5NO (4HP) into the three-dimensional (3D) ZnCl2. Remarkably, 1 exhibits a giant birefringence of 0.482@546 nm, which is the largest among Zn-based ultraviolet (UV) compounds and 160 times that of ZnCl2. According to structural and theoretical calculation analyses, the large optical polarizability, high spatial density, ideal distribution of the [(4HP)2ZnCl2]0 cluster, and the low dimension of 1 result in the dramatically increased birefringence compared to ZnCl2. This work will provide a valid route for accelerating the design and synthesis of compounds with excellent birefringence in low-dimensional systems.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
20
|
Feng C, Wu H, Hu Z, Wang J, Wu Y, Yu H. K 3Y 3(BO 3) 4: A Potential UV Nonlinear-Optical Crystal Designed by a Chemical Substitution Strategy. Inorg Chem 2024. [PMID: 39264114 DOI: 10.1021/acs.inorgchem.4c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Nonlinear-optical (NLO) crystals capable of controlling and manipulating light to generate coherent radiation at challenging wavelengths are of significant interest. However, designing a new UV NLO crystal remains difficult due to the rigid requirements for structure and properties. Herein, we have successfully designed and synthesized a novel noncentrosymmetric (NCS) rare-earth borate UV NLO crystal, K3Y3(BO3)4, through the heterovalence substitution of YAl3(BO3)4. K3Y3(BO3)4 (KYBO) crystallizes in the NCS and polar space group of P63mc, with the structure formed by the interconnectioned BO3 triangles and YO8 polyhedra through corner-sharing and edge-sharing. The property measurements indicate that KYBO is second-harmonic-generation-active with a moderate response, ∼2 × KDP. Meanwhile, KYBO can exhibit a short UV cutoff edge (λcutoff < 190 nm), indicating its potential as a new UV or deep-UV NLO crystal.
Collapse
Affiliation(s)
- Chao Feng
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
21
|
Zhang X, Xu B, Xiao D, Dong L, Zhang X, Gong P, Lin Z. C 2H 12N 6C 4O 4·2H 2O and Na 2C 4O 4·3H 2O: Two Ultraviolet Birefringent Compounds with the [C 4O 4] 2- Group. Inorg Chem 2024. [PMID: 39256055 DOI: 10.1021/acs.inorgchem.4c03167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In modern optics, birefringent materials that can manipulate light polarization play important roles in lasers and information fields. The search for ultraviolet (UV) crystals with large birefringence is the focus of attention in the field of optical materials. In this work, we synthesized two birefringent crystals, C2H12N6C4O4·2H2O and Na2C4O4·3H2O, containing planar π-conjugated [C4O4]2- groups. Attributed to the large structural anisotropy and relatively ordered arrangement of the [C4O4]2- groups, C2H12N6C4O4·2H2O and Na2C4O4·3H2O possess large birefringence of 0.20-0.21 at 1064 nm. Meanwhile, they exhibit short ultraviolet cutoff edges at about 280-300 nm, corresponding to the large band gaps of 4.35 and 4.24 eV, respectively. Using structural analysis and first-principles calculations, the origins of such large birefringence are investigated and discussed. This work provides two potential UV birefringent crystals and prompts the search for novel birefringent materials.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohui Xu
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deshuai Xiao
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Linfeng Dong
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Pifu Gong
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zheshuai Lin
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Tian Y, Zeng W, Dong X, Huang L, Zhou Y, Zeng H, Lin Z, Zou G. Enhanced UV Nonlinear Optical Properties in Layered Germanous Phosphites through Functional Group Sequential Construction. Angew Chem Int Ed Engl 2024; 63:e202409093. [PMID: 38850113 DOI: 10.1002/anie.202409093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
This study pioneers a novel strategy for synthesizing solar-blind ultraviolet (UV) nonlinear optical (NLO) crystals through functional groups sequential construction, effectively addressing the inherent trade-offs among broad transmittance, enhanced second-harmonic generation (SHG), and optimal birefringence. We have developed two innovative van der Waals layered germanous phosphites: GeHPO3, the first Ge(II)-based oxide NLO crystal which exhibits a black phosphorus-like structure, and K(GeHPO3)2Br, distinguished by its exceptional birefringence and graphene-like structure. Significantly, GeHPO3 exhibits a remarkable array of NLO properties, including the highest SHG coefficient recorded among all NLO crystals for phase-matching and generating 266 nm coherent light via quadruple frequency conversion. It delivers a potent SHG intensity, surpassing KH2PO4 (KDP) by 10.3 times at 1064 nm and β-BaB2O4 by 1.3 times at 532 nm, complemented by a distinct UV absorption edge at 211 nm and moderate birefringence of 0.062 at 546 nm. Comprehensive theoretical analysis links these exceptional characteristics to the unique NLO-active GeO3 4- units and the distinctive, highly ordered layered structures. Our findings deliver essential experimental insights into the development of Ge(II)-based optoelectronic materials and present a strategic blueprint for engineering structure-driven functional materials with customized properties.
Collapse
Affiliation(s)
- Yao Tian
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Yuqiao Zhou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
23
|
Yan Z, Fan J, Chu D, Yang Z, Lu J, Pan S, Zhang M. LiNa 2Ca 8B 12O 24F 6Cl and Li 1.2Na 2.8B 6O 11: A Case of Cation-Induced Birefringence Enhancement via Dimensional Changes of Highly Polymerized [B 12O 24] Motifs. Inorg Chem 2024; 63:16461-16469. [PMID: 39167696 DOI: 10.1021/acs.inorgchem.4c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Borates, due to their structural chemistry diversity and exceptional performance, are premier material systems for investigating UV optical crystals. The B-O anionic groups with high polymerization (B ≥ 6) are much less in the borate-based system, which is worthy of further research. Herein, cations with different radii and proportions are introduced to borate system, and two new highly polymerized borates, LiNa2Ca8B12O24F6Cl (LNCBFC) and Li1.2Na2.8B6O11 (LNBO) were designed and synthesized successfully. LNCBFC possesses commonly isolated high-symmetry [B12O24] groups, while the structure of LNBO contains an unprecedented 1∞[B12O22] chain constructed by [B12O24] groups. Owing to the orientation of the functional motifs in the chain structure, LNBO displays an enhanced birefringence, which is about 25 × higher than that of LNCBFC and retains a short UV cutoff edge (< 200 nm). Even more significantly, a discussion of the cationic modulation of [B12O24]-based compounds and the patterns of isolated [BnO2n] motifs consisting of B-O rings was carried out by reviewing previous studies and existing borates. This work puts forward a decent structure design and property regulation strategy for highly polymerized borates.
Collapse
Affiliation(s)
- Ziting Yan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbin Fan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Lu
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
| | - Shilie Pan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Li Y, Chen X, Ok KM. Strategically designed metal-free deep-ultraviolet birefringent crystals with superior optical properties. Chem Sci 2024:d4sc04155k. [PMID: 39184299 PMCID: PMC11342152 DOI: 10.1039/d4sc04155k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Finding new birefringent materials with deep-ultraviolet (DUV, λ < 200 nm) transparency is urgent, as current commercial materials cannot meet the rapidly growing demands in related application fields. Herein, three guanidinium-based compounds, C(NH2)3CH3SO3, β-C(NH2)3Cl, and γ-C(NH2)3Cl, all featuring [C(NH2)3·X]∞ (X = CH3SO3 and Cl) pseudo layers, were designed through structural motif tailoring. Theoretical calculations indicate that these metal-free compounds all possess broad bandgaps (6.49-6.71 eV, HSE06) and remarkable birefringence (cal. 0.166-0.211 @ 1064 nm). Centimeter-sized C(NH2)3CH3SO3 crystals have been grown using a feasible aqua-solution method. Subsequently, to further optimize the properties, β/γ-C(NH2)3Cl was remolded by further tailoring the [C(NH2)3]+ cationic unit and the acceptor Cl- anion, and then the fourth compound NH2COF was theoretically constructed. Interestingly, NH2COF exhibits the desired coexistence of a wider bandgap (7.87 eV, HSE06) and giant birefringence (cal. 0.241 @ 1064 nm) attributed to its higher density of well-aligned birefringence-active groups (BAGs). Furthermore, among these four designed compounds, C(NH2)3CH3SO3 has been experimentally synthesized and exhibits a short UV cutoff edge. Centimeter-sized crystals have been grown using a feasible aqueous solution method. This study provides an effective strategy to optimize the density of BAGs for large birefringence and offers valuable insights into the strategic design of metal-free DUV birefringent crystals.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Xinglong Chen
- Materials Science Division, Argonne National Laboratory Lemont Illinois 60439 USA
| | - Kang Min Ok
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
25
|
Song J, Kong X, Li C, Jiao J, She Y, Ye N, Hu Z, Wu Y. A Rare-Earth-Based Borate Optical Crystal with Enlarged Dihedral Angles of Distinct [BO 3] Groups Exhibiting a Wide UV Transparent Range. Inorg Chem 2024; 63:14786-14793. [PMID: 39054963 DOI: 10.1021/acs.inorgchem.4c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Borates, as advanced optical materials, have garnered wide interest due to their diverse structural configurations and great potential for applications in the ultraviolet (UV) regions. Herein, we synthesized a new rare-earth borate crystal, namely, K2NaYB2O6, which is classified as one of the ABReB2O6 compounds, where A and B represent alkali metal and Re denotes rare-earth metal. K2NaYB2O6 adopts in the monoclinic space group P21/c (No. 14), showcasing a three-dimensional (3D) framework composed of a planar triangular configuration of [BO3] units and distortive [YO7] polyhedra. Notably, both dihedral angles between distinct [BO3] units reach 79.6°, which represents an unprecedented structural feature in monoclinic ABReB2O6-type crystals. Moreover, the compound has a short UV absorption edge at around 204 nm, corresponding to a wide band gap of approximately 5.67 eV. Additionally, it possesses a moderate birefringence of 0.028 at 1064 nm. Further analysis utilizing theoretical calculations suggests that the optical behaviors of K2NaYB2O6 are mainly governed by its basic structural unit [BO3] triangles and distorted [YO7] polyhedra. These findings enrich the structure chemistry of rare-earth borates and offer valuable insights for the design of optical crystals in the UV wavelength range.
Collapse
Affiliation(s)
- Jie Song
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Xianghao Kong
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Conggang Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jinmiao Jiao
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yuheng She
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
26
|
Liu L, Yuan F, Zhang L, Huang Y, Lin Z. NaK 5La 2(SO 4) 6: Enhanced Birefringence of Multiple-Alkali Metal Sulfate Systems via Rare Earth Metal-Centered Polyhedra. Inorg Chem 2024; 63:14721-14726. [PMID: 39038254 DOI: 10.1021/acs.inorgchem.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Polarization modulation of ultraviolet (UV) birefringent crystals is crucial for various applications. Here, we introduce distorted La-O polyhedra into alkali metal sulfates to synthesize a novel birefringent material with excellent UV transmission and birefringence. The incorporation of distorted La-O polyhedra significantly increases the birefringence to 0.0255 at 550 nm, surpassing that of many alkali metal sulfates while maintaining excellent UV transparency. The material exhibits excellent thermal stability up to 450 °C. Theoretical calculations show the connection between the crystal structure and optical functionality, confirming that the incorporation of La-O polyhedra enhances birefringence. This research provides novel insights into the discovery and design of outstanding birefringence materials.
Collapse
Affiliation(s)
- LeHui Liu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - FeiFei Yuan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - LiZhen Zhang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - YiSheng Huang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - ZhouBin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Du Z, Song X, Liu W, Wang Z, Sha H, Xu Q, Zhou Y, Li Y, Luo J, Zhao S. Combining rigid and deformable groups to construct a robust birefringent crystal for compact polarization components. Sci Bull (Beijing) 2024; 69:2205-2211. [PMID: 38599957 DOI: 10.1016/j.scib.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
There is a pressing demand for the development of novel birefringent crystals tailored for compact optical components, especially for crystals exhibiting large birefringence across a range of temperatures. This has commonly been achieved by introducing various deformable groups with high polarizability anisotropy. In this study, we combined both rigid and deformable groups to synthesise a new birefringent crystal, Al2Te2MoO10, which demonstrates an exceptional birefringence value of 0.29@550 nm at room temperature. Not only is this higher birefringence than that of commercial crystals, but Al2Te2MoO10 exhibits excellent birefringence stability over a wide temperature range, from 123 to 503 K. In addition, the first-principles theory calculations and structural analyses suggest that although the rigid AlO6 groups do not make much contribution to the prominent birefringence, they nonetheless played a role in maintaining the structural anisotropy at elevated temperatures. Based on these findings, this paper proposes a novel structural design strategy to complement conventional approaches for developing optimal birefringent crystals under various environmental conditions.
Collapse
Affiliation(s)
- Zhipeng Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; College of Chemistry, Fuzhou University, Fuzhou 350108, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xianyu Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; College of Chemistry, Fuzhou University, Fuzhou 350108, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Wei Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ziyi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hongyuan Sha
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qianting Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.
| |
Collapse
|
28
|
Wang D, Luo H, Wang T, Dong X, Cao L, Huang L, Zou G. Gradual Increase in Birefringence of Antimony Oxalates through Precise Tuning of the Sb 3+/[C 2O 4] 2- Ratio. Inorg Chem 2024; 63:13793-13799. [PMID: 38987980 DOI: 10.1021/acs.inorgchem.4c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Birefringent crystals play a crucial role in modulating and controlling the polarization of light in the optical communication and laser industries. Recently, adopting appropriate strategies to enhance the birefringence of crystals has become a prominent area of research focus. Herein, four UV antimony oxalate birefringent crystals, namely, K5Sb2(C2O4)5.5·3H2O, BaSb(C2O4)2.5·3H2O, Na4Sb2O(C2O4)4·6H2O, and Na3Sb(C2O4)2F2·2H2O, have been successfully synthesized. These compounds feature a similar zero-dimensional (0D) cluster structure and share the same functional groups, including π-conjugated [C2O4]2- groups and Sb3+-based distorted polyhedra with stereochemically active lone pairs (SCALPs). Interestingly, we achieved a stepwise increase in birefringence by precisely controlling the Sb3+/[C2O4]2- ratio, ultimately resulting in the compound Na3Sb(C2O4)2F2·2H2O exhibiting a large birefringence (0.21@546 nm). Additionally, we confirmed that the synergistic effects between the π-conjugated [C2O4]2- groups and the distorted polyhedra based on Sb3+ are responsible for the excellent optical properties observed in the reported compounds.
Collapse
Affiliation(s)
- Dan Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Han Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Tingyu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
29
|
Lu J, Li Y, Kuk Y, Choi S, Kim K, Ko C, Bai Z, Ok KM. Bi(SO 4)F·H 2O and Bi(SO 4)(NO 3)·3H 2O: Chemical Substitution-Induced Birefringence Enhancement in Bismuth Sulfates. Inorg Chem 2024; 63:13748-13754. [PMID: 38961705 DOI: 10.1021/acs.inorgchem.4c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Two new Bi(III)-based sulfates, namely, Bi(SO4)F·H2O (BSOF) and Bi(SO4)(NO3)·3H2O (BSNO), have been successfully synthesized through aliovalent replacement of partial [SO4]2- groups with F- and [NO3]- anions, respectively, in the parent structure of Bi2(SO4)3. Such chemical replacement altered the coordination environment of Bi3+ cations, facilitating changes in the structure and optical properties. Notably, the birefringence values of BSOF and BSNO are found to be 4.4 and 15.5 times that of parent Bi2(SO4)3. Further investigation into the structure-property relationship revealed that the birefringence enhancement in BSOF and BSNO is attributed to the improvement of the polarizability anisotropy of Bi3+-centered polyhedra in BSOF and BSNO compared to that of Bi2(SO4)3. In addition, the existence and optimized arrangement of planar [NO3]- groups are also indispensable for further birefringence improvement of the BSNO compound.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Yang Li
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Yunseung Kuk
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Seunghun Choi
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Kyungmo Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Chanhee Ko
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Zhiyong Bai
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
30
|
Li Y, Ok KM. Crystal clear: unveiling giant birefringence in organic-inorganic cocrystals. Chem Sci 2024; 15:10193-10199. [PMID: 38966371 PMCID: PMC11220600 DOI: 10.1039/d4sc02569e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 07/06/2024] Open
Abstract
Coplanar groups with large anisotropic polarizability are suitable as birefringence-active groups for investigating compounds with significant birefringence. In this study, the organic coplanar raw reagent, o-C5H5NO (4HP), was selected as an individual complement. Utilizing the cocrystal engineering strategy, we successfully designed two cocrystals: [LiNO3·H2O·4HP]·4HP (Li-4HP2) and [Mg(NO3)2·6H2O]·(4HP)2 (Mg-4HP), and one by-product: LiNO3·H2O·4HP (Li-4HP), which were grown using a mild aqua-solution method. The synergy of the coplanar groups of NO3 - and 4HP in the structures resulted in unexpectedly large birefringence values of 0.376-0.522@546 nm. Furthermore, the compounds exhibit large bandgaps (4.08-4.51 eV), short UV cutoff edges (275-278 nm), and favorable growth habits, suggesting their potential as short-wave UV birefringent materials.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
31
|
You B, Yuan S, Tian Y, Zhang H, Zhu X, Mortensen NA, Cheng Y. Lithium niobate on insulator - fundamental opto-electronic properties and photonic device prospects. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3037-3057. [PMID: 39634939 PMCID: PMC11501937 DOI: 10.1515/nanoph-2024-0132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 12/07/2024]
Abstract
Lithium niobate on insulator (LNOI) combines a variety of optoelectronic properties and can meet practical performance requirements that are uncommon in optoelectronic materials. This review introduces the fundamentals and the photonic device concepts that arise from the LNOI materials platform. Firstly, the nonlinear optical response of LNOI is presented, including birefringent phase matching (BPM), modal phase matching (MPM), and quasi-phase matching (QPM). The tunable properties are also introduced, including electro-optical (EO), thermo-optical (TO), and acousto-optical (AO) effects. The structures of nonlinear optical devices, such as ridge waveguides (including periodically polarized inversion waveguides), Mach-Zehnder interferometer (MZI) modulators and micro-resonators (such as disks and rings) are demonstrated. Finally, the future of LNOI devices is discussed. In the already mature and developed optoelectronic material systems, it is rare to find one particular material system supporting so many basic optical components, photonic devices and optoelectronic devices as LNOI does in the field of integrated photonic chips.
Collapse
Affiliation(s)
- Bin You
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai200241, China
| | - Shuangxiu Yuan
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai200241, China
| | - Yuan Tian
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai200241, China
| | - Haisu Zhang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai200241, China
| | - Xiaolong Zhu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai200241, China
| | - N. Asger Mortensen
- POLIMA—Center for Polariton-driven Light–Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Odense, Denmark
| | - Ya Cheng
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai200241, China
| |
Collapse
|
32
|
Liu H, Jiao J, Tudi A, Liu Q, Yang Z, Pan S, Zhang M. CsAlB 3O 6Cl: the rational construction of a KBBF-type structure with aligned 2∞[AlB 3O 6Cl] layers via introducing unprecedented [AlO 3Cl] tetrahedra. Chem Commun (Camb) 2024; 60:6516-6519. [PMID: 38836308 DOI: 10.1039/d4cc01827c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The first chloroaluminoborate, CsAlB3O6Cl, with innovative AlO3Cl tetrahedra and a perfect planar arrangement of [B3O6] groups, was structurally designed and synthesized via chlorination of [AlO4] tetrahedra. Simultaneously, the smooth introduction of the [AlO3Cl] group into borates initiates the development of a chloroaluminoborate and greatly enriches the structural chemistry of aluminoborates.
Collapse
Affiliation(s)
- Haoran Liu
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Jiao
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abudukadi Tudi
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyu Liu
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Wang Y, Dong X, Huang L, Zeng H, Lin Z, Zou G. Two Short-Wave UV Beryllium Selenites Exhibiting Diverse Optical Properties Stemming from Functional Group Arrangements. Inorg Chem 2024; 63:10854-10859. [PMID: 38781121 DOI: 10.1021/acs.inorgchem.4c01611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The arrangement of functional groups exerts a crucial role in determining the characteristics of compounds. In this study, we synthesized two novel short-wave ultraviolet (UV) nonlinear optical (NLO) crystals: KBe2(SeO3)2(OH)·H2O and K2Be(SeO3)2. Interestingly, the two compounds show the same SeO3 triangular pyramids and K-O polyhedra. However, the two compounds exhibit distinct beryllium-oxygen anion groups: BeO3(OH) for KBe2(SeO3)2(OH)·H2O and BeO4 for K2Be(SeO3)2. This results in the SeO3 groups within the structure having different orientations, ultimately leading to the two compounds exhibiting completely different optical properties. KBe2(SeO3)2(OH)·H2O displays a large second harmonic generation (SHG) effect equivalent to 2× KH2PO4 (KDP), coupled with a large birefringence of 0.078 at 546 nm. In contrast, the SHG effect and birefringence of K2Be(SeO3)2 are only 0.33× that of KDP and 0.024 at 546 nm, respectively. Structural analyses and theoretical calculations indicate that these pronounced differences in optical properties stem from variations in the arrangement of the SeO3 functional groups. This study not only sheds light on the correlation between crystal structure and optical behavior but also presents a hopeful avenue for the advancement of materials in the short-wave UV spectrum.
Collapse
Affiliation(s)
- Yurui Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
34
|
Chen M, Wei W, Zhao J, An D, Chen Y. Discovery of a new bimetallic borate with strong optical anisotropy activated by π-conjugated [B 2O 5] units. Dalton Trans 2024; 53:8898-8904. [PMID: 38747712 DOI: 10.1039/d4dt01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Birefringent materials with high optical anisotropy have been identified as a research hotspot owing to their significant scientific and technological significance in modern optoelectronics for manipulating light polarization. Researchers studying borate systems have discovered that adding π-conjugated units placed in parallel can significantly increase the birefringence of crystalline solids; some examples include [BO3] units, [B2O5] units, and [B3O6] units. However, there are not many borates with strictly parallel configurations of π-conjugated [B2O5] units. In this study, a new bimetallic borate Sr2Cd4(B2O5)3 with near-parallel arrangement of π-conjugated [B2O5] units was discovered. Sr2Cd4(B2O5)3 possesses the maximum number density of [B2O5] units, shortest dihedral angle of [B2O5] units (between the two [BO3]), and largest degree of [CdO6] octahedral distortion among all the currently known Sr-Cd-B-O tetragonal system borates, making it demonstrate a large birefringence of 0.102 at 532 nm. Theoretical analysis proves that π-conjugated [B2O5] anions are the primary source of the large birefringence of Sr2Cd4(B2O5)3.
Collapse
Affiliation(s)
| | - Wei Wei
- Changji University, Changji 831100, China.
| | | | - Donghai An
- Changji University, Changji 831100, China.
| | - Yanna Chen
- Changji University, Changji 831100, China.
| |
Collapse
|
35
|
Zhang MS, Yao WD, Pei SM, Liu BW, Jiang XM, Guo GC. HgBr 2: an easily growing wide-spectrum birefringent crystal. Chem Sci 2024; 15:6891-6896. [PMID: 38725498 PMCID: PMC11077557 DOI: 10.1039/d4sc00836g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 05/12/2024] Open
Abstract
Birefringent materials are of great significance to the development of modern optical technology; however, research on halide birefringent crystals with a wide transparent range remains limited. In this work, mercuric bromide (HgBr2) has been investigated for the first time as a promising birefringent material with a wide transparent window spanning from ultraviolet (UV) to far-infrared (far-IR) spectral regions (0.34-22.9 μm). HgBr2 has an exceptionally large birefringence (Δn, 0.235 @ 546 nm), which is 19.6 times that of commercial MgF2. The ordered linear motif [Br-Hg-Br] with high polarizability anisotropy within the molecule is the inherent source of excellent birefringence, making it an efficient building block for birefringent materials. In addition, HgBr2 can be easily grown under mild conditions and remain stable in air for prolonged periods. Studying the birefringent properties of HgBr2 crystals would provide new ideas for future exploration of wide-spectrum birefringent materials.
Collapse
Affiliation(s)
- Ming-Shu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wen-Dong Yao
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Shao-Min Pei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Xiao-Ming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
36
|
Huang W, Song X, Li Y, Zhou Y, Xu Q, Song Y, Wang H, Li M, Zhao S, Luo J. Designing a Hybrid Perovskite with Enlarged Birefringence and Bandgap for Modulation of Light Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306158. [PMID: 37863830 DOI: 10.1002/smll.202306158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Indexed: 10/22/2023]
Abstract
Birefringent crystals have important applications in optoelectronics areas due to their ability to modulate and polarize light. Despite increasing discovery of the birefringence potential of new crystals, it remains a great challenge to optimize both birefringence and bandgap simultaneously. Herein, a 1D chain-like hybrid perovskite birefringent crystal designed by 3D-to-1D dimensional tailoring, (GAM)2 PbI7 ·H2 O (GAM = C5 N10 H10 ), is presented, showing enlarged birefringence of 0.49@550 nm and enlarged optical bandgap (2.48 eV). Consequently, the birefringent quality factor of (GAM)2 PbI7 ·H2 O is up to 2.8 times that of the template MAPbI3 . In particular, the birefringence is much larger than those of commercial birefringent crystals and surpasses that of the vast majority of hybrid perovskite known to date. Theoretical calculations reveal that the strongly anisotropic arrangement of (GAM)2.5+ π-conjugated cations and ordered PbI6 octahedra contributes to the large birefringence and wide bandgap of (GAM)2 PbI7 ·H2 O. It is believed that this work will provide a new pathway toward the rational design and synthesis of hybrid perovskite birefringent crystals for compact wide-bandgap polarization dependent devices.
Collapse
Affiliation(s)
- Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xianyu Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Qianting Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Han Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Minjuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
37
|
Wu T, Jiang X, Duanmu K, Wu C, Lin Z, Huang Z, Humphrey MG, Zhang C. Giant Optical Anisotropy in a Covalent Molybdenum Tellurite via Oxyanion Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306670. [PMID: 38288532 DOI: 10.1002/advs.202306670] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Indexed: 02/07/2024]
Abstract
Large birefringence is a crucial but hard-to-achieve optical parameter that is a necessity for birefringent crystals in practical applications involving modulation of the polarization of light in modern opto-electronic areas. Herein, an oxyanion polymerization strategy that involves the combination of two different types of second-order Jahn-Teller distorted units is employed to realize giant anisotropy in a covalent molybdenum tellurite. Mo(H2O)Te2O7 (MTO) exhibits a record birefringence value for an inorganic UV-transparent oxide crystalline material of 0.528 @ 546 nm, which is also significantly larger than those of all commercial birefringent crystals. MTO has a UV absorption edge of 366 nm and displays a strong powder second-harmonic generation response of 5.4 times that of KH2PO4. The dominant roles of the condensed polytellurite oxyanions [Te8O20]8- in combination with the [MoO6]6- polyhedra in achieving the giant birefringence in MTO are clarified by structural analysis and first-principles calculations. The results suggest that polymerization of polarizability-anisotropic oxyanions may unlock the promise of birefringent crystals with exceptional birefringence.
Collapse
Affiliation(s)
- Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaining Duanmu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chao Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhipeng Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mark G Humphrey
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
38
|
Hu C, Wu M, Han J, Yang Z, Han S, Pan S. New antimony fluorooxoborates with strong birefringence and unprecedented structural characterisation. Chem Commun (Camb) 2024; 60:2653-2656. [PMID: 38348788 DOI: 10.1039/d3cc05784d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Fluorooxoborates constitute a rich source of optical crystals due to their structural diversity and excellent performance. Antimony fluorooxoborates with stereochemically active lone pairs of electrons still have not been found, although the first antimony borate was discovered several years ago. In this study, we have achieved the successful synthesis of the first antimony(III) fluorooxoborate with an unprecedented [B2O4F]∞ chain, namely SbB2O4F. Remarkably, SbB2O4F shows strong birefringence (0.171@1064 nm) and short UV cutoff edges (about 220 nm) according to calculations. The birefringence of SbB2O4F mainly originates from the highly distorted [SbO4] groups.
Collapse
Affiliation(s)
- Chenhui Hu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfan Wu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujuan Han
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Lan Y, Luo H, Wang L, Huang L, Cao L, Dong X, Zou G. Two Short-Wave UV Antimony(III) Sulfates Exhibiting Large Birefringence. Inorg Chem 2024; 63:2814-2820. [PMID: 38265337 DOI: 10.1021/acs.inorgchem.3c04404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
In the present work, we have successfully obtained two new UV antimony-based sulfates, NH4Sb(SO4)2 and Ca2Sb2O(SO4)4, by a conventional hydrothermal method. Interestingly, both compounds share similar structural building blocks, such as SbO4 seesaws and SO4 tetrahedra, yet they endow discrepant birefringence values measured at 546 nm with values of 0.150 and 0.114, respectively, owing to the different distortions of the SbO4 groups with SCALP electrons. Moreover, both compounds display large band gaps (4.32 and 4.43 eV, respectively), so they can be used as short-wavelength UV birefringent materials. Moreover, NH4Sb(SO4)2 is a noncentrosymmetric compound, showing a frequency doubling effect of 0.2 × KDP. Detailed structural analyses and calculations confirm the source of superior optical performance and the reasons for the different birefringence of the two compounds. This work provides ideas for the following discovery of antimony-based optical materials with excellent properties.
Collapse
Affiliation(s)
- Yang Lan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Han Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Luli Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Liling Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Xuehua Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
40
|
Choi MH, Li Y, Ok KM. Designing Optical Anisotropy: Silver-Aminoalkylpyridine Nitrate Complexes with Tunable Structures. Inorg Chem 2024; 63:2793-2802. [PMID: 38258810 DOI: 10.1021/acs.inorgchem.3c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
To introduce a design strategy for improving optical properties, two silver-amino alkylpyridine nitrate complexes, AgC6H8N3O3 and Ag2C14H20N6O6, were successfully synthesized using a recrystallization method. By employing polarizable π-conjugated [NO3-] ions, two types of pyridine ligands, and silver cations with a high affinity for pyridine, we obtained a one-dimensional chain structure with 4-aminomethylpyridine (AgC6H8N3O3) and a zero-dimensional molecular compound by introducing a relatively flexible aliphatic chain with 4-(2-aminoethyl)pyridine (Ag2C14H20N6O6). The compounds crystallize in the triclinic crystal system with the centrosymmetric P-1 space group, exhibiting a change in orientation between the π-conjugated system and the silver ion. Despite similar optical band gaps (3.69 eV for AgC6H8N3O3 and 3.73 eV for Ag2C14H20N6O6), AgC6H8N3O3 shows higher absorption in the 350-600 nm range. Electronic structure calculations support the ultraviolet absorption findings, suggesting that charge transfer with π-conjugated systems influences birefringence. Ag2C14H20N6O6 exhibits experimental birefringence (0.261@546.1 nm) surpassing that of AgC6H8N3O3 (0.212@546.1 nm), placing it among the highest recorded values within metal-pyridine incorporating nitrate complexes. The nonconventional orientation of π-conjugated [NO3-] ions contributes to this phenomenon, enhancing the action of free π-conjugated orbitals. This design strategy for micromodulating the alignment of the π-conjugated system promises to be an effective approach for enhancing optical properties, such as birefringence.
Collapse
Affiliation(s)
- Myung-Ho Choi
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Yang Li
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
41
|
Wu Z, Li H, Zhang Z, Su X, Shi H, Huang YN. Design of Deep-Ultraviolet Zero-Order Waveplate Materials by Rational Assembly of [AlO 2F 4] and [SO 4] Groups. Inorg Chem 2024; 63:1674-1681. [PMID: 38175192 DOI: 10.1021/acs.inorgchem.3c03904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Zero-order waveplates are widely used in the manufacture of laser polarizer waves, which are important in polarimetry and the laser industry. However, there are still challenges in designing deep-ultraviolet (DUV) waveplate materials that satisfy large band gaps and small optical anisotropy simultaneously. Herein, three cases of aluminum sulfate fluorides: Na2AlSO4F3, Li4NH4Al(SO4)2F4, and Li6K3Al(SO4)4F4, with novel [AlSO4F3] layers or isolated [AlS2O8F4] trimers were designed and synthesized by the rational assembly of [AlO2F4] and [SO4] groups through a hydrothermal method. Experiments and theoretical calculations imply that these three possess short cutoff edges (λ < 200 nm) and small birefringence (0.0014-0.0076 @ 1064 nm), which fulfils the prerequisite for potential DUV zero-order waveplate materials. This work extends the exploration of DUV zero-order waveplate materials to the aluminum sulfate fluoride systems.
Collapse
Affiliation(s)
- Zhencheng Wu
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China
| | - Huimin Li
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China
| | - Zhiyuan Zhang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China
| | - Xin Su
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China
| | - Hongsheng Shi
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics& Chemistry, CAS, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Neng Huang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China
| |
Collapse
|
42
|
Huang Y, Chu D, Hou X, Li G, Zhang Y. Na 6Mg 3P 4S 16 and RbMg 2PS 4Cl 2: two Mg-based thiophosphates with ultrawide bandgaps resulting from [MgS 6] and [MgS xCl 6-x] octahedra. Dalton Trans 2024; 53:866-871. [PMID: 38099922 DOI: 10.1039/d3dt03637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Designing wide-bandgap chalcogenides is one of the most important ways of obtaining high-performance infrared (IR) functional materials. In this work, two Mg-based metal thiophosphates, namely Na6Mg3P4S16 (NMPS) and RbMg2PS4Cl2 (RMPSC), were successfully obtained by introducing [MgS6] and [MgSxCl6-x] octahedra into thiophosphates. In addition, their crystal structures were determined, a first for Mg-containing [PS4]-based thiophosphates to the best of our knowledge. Their bandgaps were investigated in theoretical ways and verified by taking experimental measurements, and determined to be 3.80 eV for NMPS and 3.93 eV for RMPSC, values greater than those of the other investigated thiophosphate halides. The wide bandgaps of NMPS and RMPSC were attributed, based on theoretical calculations, to the [MgSxCl6-x] (x = 0-6) octahedron.
Collapse
Affiliation(s)
- Yi Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Dongdong Chu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueling Hou
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangmao Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
43
|
Su H, Jiao J, Wang S, An D, Zhang M. Rb 3MgB 5O 10 and LiBaAl(BO 3) 2: covalent tetrahedra MO 4-containing borates with deep-ultraviolet cutoff edges. Dalton Trans 2024; 53:932-937. [PMID: 38108406 DOI: 10.1039/d3dt03288d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Borates are favored by materials scientists and chemists because of the significant electronegativity difference between B and O atoms and their flexible assembly modes resulting in abundant structures and excellent properties. For the design of deep-ultraviolet (DUV) optical crystals with excellent macroscopic performance, it is crucial to choose appropriate cations and anionic groups and microscopically reasonable assembly patterns. Herein, by introducing covalent tetrahedra ([MO4], M = Mg, Al), two new mixed alkali metal and alkaline earth metal borates, Rb3MgB5O10 and LiBaAl(BO3)2, were synthesized using the melt method and high-temperature solution method. They contain M-B-O two-dimensional (2D) layers (2∞[MgB5O10] and 2∞[Al(BO3)2], respectively) composed of isolated B-O groups ([B5O10]5- and [BO3]3-, respectively) and metal-centered tetrahedral connectors ([MgO4]6- and [AlO4]5-, respectively). Combining experiments and theoretical calculations shows that the two compounds have short cutoff edges (<200 nm) and moderate birefringences. Further analysis manifests that the isolated [MO4] covalent tetrahedra can optimize the arrangement of anion groups, guarantee the balanced optical properties of materials, and point out the direction for further exploration of novel borate structures.
Collapse
Affiliation(s)
- Hongkang Su
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Jiao
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shibin Wang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Donghai An
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Min Zhang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Xu G, Li H, Han J, Hou X, Yang Z, Pan S. Cd 8(BO 3) 4SiO 4: Metal Cation Inducing the Formation of Isolated [BO 3] and [SiO 4] Units in Borate Silicate. Inorg Chem 2024; 63:852-859. [PMID: 38112263 DOI: 10.1021/acs.inorgchem.3c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The first compound of cadmium-borate silicate Cd8(BO3)4SiO4, crystallizing in space group P42/n (no. 86), has been successfully synthesized by the conventional high-temperature solution method and melts congruently. The zero-dimensional anionic groups of Cd8(BO3)4SiO4 are isolated [BO3] triangles and isolated [SiO4] tetrahedra which are filled in the framework formed by [CdO6] polyhedra. It has a moderate birefringence (Δn = 0.053 at 546 nm), which is measured by experiment and evaluated by first-principles calculations; meanwhile, the source of birefringence is revealed through the response electronic distribution anisotropy method. The UV-vis-NIR diffuse reflectance spectrum indicates that Cd8(BO3)4SiO4 possesses a wide optical transparency range, with a UV cutoff edge at about 254 nm. This work enriches the structure chemistry of borate silicates, and we discussed the possible methods for the exploration and synthesis of novel optical crystals possessing zero-dimensional anionic groups in the borate silicate system.
Collapse
Affiliation(s)
- Guangsheng Xu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Li
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
| | - Jian Han
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueling Hou
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Zuo J, Feng Q, Du H. K 2RbB 8PO 16: A Borophosphate with Moderate Birefringence and Deep-Ultraviolet Transmission. Inorg Chem 2024; 63:272-279. [PMID: 38099743 DOI: 10.1021/acs.inorgchem.3c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A new borophosphate, K2RbB8PO16 (KRBPO) was synthesized. It exhibits a bilayer structure consisting of two B-O layers with an 18-membered ring (18-MR) joined by [PO4], which is composed of the π-conjugated group [BO3] and non-π-conjugated groups [BO4] and [PO4]. The UV-vis-NIR diffuse reflectance spectroscopy shows that the cutoff edge is less than 200 nm. The calculation indicates that KRBPO exhibits moderate birefringence of 0.057@1064 nm, and the source of birefringence is mainly from the [BO3] groups.
Collapse
Affiliation(s)
- Jianyi Zuo
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Qiuyuan Feng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Hong Du
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, China
| |
Collapse
|
46
|
Zhang R, Tudi A, Yang X, Wang X, Yang Z, Han S, Pan S. PbTeB 4O 9: a lead tellurium borate with unprecedented fundamental building block [B 4O 10] and large birefringence. Chem Commun (Camb) 2024; 60:340-343. [PMID: 38078370 DOI: 10.1039/d3cc05382b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Herein, the first lead tellurium borate, PbTeB4O9, with an unprecedented fundamental building block [B4O10] was successfully synthesized. The near-parallel alignment of [B4O10] groups and [TeO3] polyhedra resulted in a high birefringence (0.099@1064 nm). The structure-property relationship was discussed by using the first-principles calculations.
Collapse
Affiliation(s)
- Ruonan Zhang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abudukadi Tudi
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Yang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuping Wang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Zhihua Yang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Shujuan Han
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Shilie Pan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
| |
Collapse
|
47
|
Jung A, Li Y, Ok KM. Chiral amino acid-templated tin fluorides tailoring nonlinear optical properties, birefringence, and photoluminescence. Dalton Trans 2023; 53:105-114. [PMID: 38047538 DOI: 10.1039/d3dt03257d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In this study, we successfully synthesized two types of new chiral amino acid-templated tin fluoride crystals: (R)-[(C8H10NO3)2]Sn(IV)F6, (S)-[(C8H10NO3)2]Sn(IV)F6, (R)-[C8H10NO3]Sn(II)F3, and (S)-[C8H10NO3]Sn(II)F3, employing a slow evaporation method. The crystal structures of Sn(IV)-compounds were determined to belong to the noncentrosymmetric (NCS) nonpolar space group, P21212. Conversely, the structures of Sn(II)-compounds were found to crystallize in the NCS polar space group, P21, as revealed by single-crystal X-ray diffraction analysis. Remarkably, Sn(IV)-compounds exhibited a larger birefringence (0.328@546.1 nm), attributed to the well-stacked arrangement of planar π-conjugated benzene rings along the b-axis. The ability of tin(IV) fluorides to form more hydrogen bonds with ligands increased the probability of π-π interactions between benzene rings, enabling the growth of centimeter-sized crystals in Sn(IV)-compounds. In contrast, Sn(II)-compounds displayed a stronger second-harmonic generation (SHG) response (0.85 × KDP) than Sn(IV)-compounds (0.46 × KDP). This enhanced SHG response in Sn(II)-compounds was attributed to the increased dipole moments resulting from the presence of lone pairs. Additionally, Sn(II)-compounds exhibited photoluminescent properties due to the transition from the metal-to-ligand charge transfer state, facilitated by the presence of the lone pairs.
Collapse
Affiliation(s)
- Ahyung Jung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Yang Li
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
48
|
Yun Y, Hou X, Yang Z, Li G, Pan S. [RbSr 3X][(BS 3) 2] (X = Cl, Br): two salt-inclusion thioborates with large birefringence and structure transformation from centrosymmetric to asymmetric. Chem Commun (Camb) 2023; 60:118-121. [PMID: 38037841 DOI: 10.1039/d3cc05205b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
[RbSr3X][(BS3)2] (X = Cl, Br), two salt-inclusion chalcogenides with planar [BS3] as anionic units, were obtained. Structure analysis indicates that the size effect of halogens may adjust the arrangement between the [BS3] units and further lead to the CS-to-NCS structure transformation. Experimental characterizations reveal that they have wide bandgaps (3.64-3.70 eV), large birefringence (0.136-0.144) and high LIDT (12-14 × AgGaS2). This work indicates that the thioborate family is a rich source to explore structure chemistry and promising infrared functional materials.
Collapse
Affiliation(s)
- Yihan Yun
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueling Hou
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangmao Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Zhang Q, Wang F, Long X, Yang Y. Mg assists in modulating the dimensionalities of the anionic frameworks of borates. Dalton Trans 2023; 52:18027-18034. [PMID: 37987555 DOI: 10.1039/d3dt03173j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Three Mg-containing borates were obtained by high-temperature spontaneous crystallization. In the (A2O)- or (A2O-MO)-MgO-B2O3 system (A is alkali metal and M is alkaline-earth metal) reported in the ICSD, Li4Mg3SrB12O24 is the first compound that contains one-dimensional infinite anionic chains, and the two examples of the isostructural A2Mg3B16O28 (A = Rb, Cs) exhibit a two-dimensional infinite bilayer structure for the first time, which contributes to the enrichment of the structural chemistry of Mg-containing borates. Besides, the results of comparison and analysis in this system clearly show that Mg not only affects the anionic frameworks of borates to produce low-dimensional structures but, together with the ratio of Ncation/NB, is responsible for the dimensionalities of the anionic frameworks in borates. The optical properties of the three compounds also show that they all have short cutoff edges, and Cs2Mg3B16O28, in particular, could reach the deep-ultraviolet region (<200 nm).
Collapse
Affiliation(s)
- Qianzhen Zhang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feixiang Wang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xifa Long
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Cheng J, Xu D, Lu J, Zhang F, Hou X. Vanadate Crystals with an Enhanced Birefringence and a Broadened Transparency Spectrum through Controlled [VO 3] ∞ Chain Arrangements and Alkali Metal Cation Introduction. Inorg Chem 2023. [PMID: 37997389 DOI: 10.1021/acs.inorgchem.3c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The vanadate (VO) polyhedron offers a compelling avenue for exploring birefringent materials within the infrared frequency range. Among many potential building blocks, the implementation of [VO3]∞ chains demonstrated great potential as effective birefringent functional units. In this article, we successfully synthesized the Li0.8Na0.2CsV2O6·H2O compound, which exhibits a remarkable birefringence of 0.134 at 546.1 nm, as confirmed by the experiment. Notably, the introduction of alkali metals in this compound led to a significantly shorter cutoff edge at 340 nm. Through a comprehensive investigation, Li0.8Na0.2CsV2O6·H2O has the shortest UV cutoff edge among all vanadates, whose birefringences are larger than 0.1, to the best of our best knowledge. This finding underscores the application potential of this novel material as a birefringent crystal.
Collapse
Affiliation(s)
- Jinlei Cheng
- College of Physical Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi 830017, China
| | - Die Xu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Juanjuan Lu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Feng Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Xueling Hou
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| |
Collapse
|