1
|
Shen H, Hao M, Yu S. A new β-amylase detection strategy based on encapsulated enzyme in magnetic layered double hydroxide with high sensitivity and simplified workflow. Talanta 2025; 292:127940. [PMID: 40090254 DOI: 10.1016/j.talanta.2025.127940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/01/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
β-Amylase (BMY) is a linchpin in food production and the pharmaceutical industry because the enzyme efficiently controls the ratio of diverse saccharides in fermentation and the manufacture of high-quality maltose. However, existing BMY detection tactics suffer from inadequate selectivity/sensitivity and cumbersome operation and do not meet the needs of precise quantification. Consequently, there is an urgent need to develop an ultrasensitive sensing platform to achieve precise BMY analysis with a low detection limit and simpler workflow. In this work, we establish an encapsulated-enzyme-based BMY biosensing platform in which α-glucosidase is embedded in magnetic layered double hydroxide using a self-sacrificing template. The encapsulated enzyme has increased activity, robustness, and recyclability and was utilized for BMY detection via a cascade chromatic process. We found a detection limit for the quantification of BMY activity of 2.67 U/L with a broad range (5-400 U/L), fast response speed (10 min), and satisfactory specificity. We applied the biosensing platform to liquor starters to verify the capability of the assay in complicated fermentation samples. The proposed platform holds great promise as an efficient and simple method for enzymatic bioactivity monitoring in food manufacturing, biopharmaceutical processing, and clinical laboratory tests.
Collapse
Affiliation(s)
- Hao Shen
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, 315211, China.
| | - Mengdi Hao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, 315211, China
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Zhong L, Feng Y, Wang Z, Tian T, Bi Y, Cui J. Immobilized lipase on MIL-53(Al)-AM11 with regulatable hydrophobic surface for flavor ester synthesis. Int J Biol Macromol 2025; 305:141322. [PMID: 39984101 DOI: 10.1016/j.ijbiomac.2025.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Enzymatic synthesis of flavor esters is crucial for applications in food, beverage, and cosmetics industries. However, the poor activity and stability of free lipase hinder these reaction. Inspired by the concept of lipase interface activation, MIL-53(Al)-NH2 was modified with alkyl acid anhydrides of varying chain lengths to tailor its hydrophobicity, and Candida Rugosa lipase (CRL) was subsequently immobilized on this surface to achieve efficient interface activation. The resulting CRL@MIL-53(Al)-AM11 exhibited 3.5 times higher activity than the unmodified CRL@MIL-53(Al)-NH2. Moreover, CRL@MIL-53(Al)-AM11 enabled one-step purification of crude CRL via selective adsorption. It also showed enhanced storage and thermal stability as well as higher resistance to protease degradation and denaturants than free CRL. CRL@MIL-53(Al)-AM11 retained 75 % of its initial activity after 30 min treatment at 55 °C, whereas the free CRL retained only 41 %. After 11 days of storage, CRL@MIL-53(Al)-AM11 maintained 70 % of its initial activity, in contrast to 36 % for the free lipase. Notably, CRL@MIL-53(Al)-AM11 achieved a 97 % conversion rate in the esterification synthesis of the flavoring substance (butyl butyrate) within 24 h and retained over 40 % conversion after five consecutive cycles. Therefore, this strategy offers a feasible approach for constructing high-performance immobilized lipases for flavor ester synthesis.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Tian Tian
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Yali Bi
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| |
Collapse
|
3
|
Li N, Han Y, Huang W, Chen L, Hao M, Tu H, Shen H, Yu S, Yang F. Hierarchical encapsulation of enzymes with multishell metal-organic frameworks for sensitive detection of α-amylase activity in complex fermentation samples. Int J Biol Macromol 2025; 305:141346. [PMID: 39986530 DOI: 10.1016/j.ijbiomac.2025.141346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
In natural world, sophisticated cascade reactions occur in compartmentalized organelles. However, simulating cascade processes in living systems remains problematic, and the drawbacks of enzymes, including dissatisfactory stability, reusability, and sensitivity in extreme microenvironments, have hampered further applications. Here, we report a confined multi-enzyme system in which MnFe metal-organic framework (MFM) is applied to encapsulate enzymes through shell-by-shell epitaxial-overgrowth in diverse compartments. MFM possessed excellent peroxidase-mimicking activity and biocompatibility, enabling it to serve not only as a reliable carrier for multiple enzymes, but also as a high-performance nanozyme in cascades. Compared with free enzymes, this system exhibited significantly improved bioactivity and environmental tolerance. On this basis, the confined multi-enzyme system was applied for selective α-amylase analysis in complicated fermentation specimens with a broad linear range (5-500 U·L-1) and low detection limit (2.14 U·L-1). This work sheds new light on the construction of efficient biocatalytic cascades to accelerate applications in food manufacturing.
Collapse
Affiliation(s)
- Nana Li
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China
| | - Ying Han
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation Industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Wanqiu Huang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation Industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Liangqiang Chen
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation Industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Mengdi Hao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China
| | - Huabin Tu
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation Industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Hao Shen
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China.
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China.
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation Industry, Kweichow Moutai Group, Zunyi 564501, China.
| |
Collapse
|
4
|
Zhong N, He R, Huang W, Guo L, Tong L, Huang A, Huang S, Pawliszyn J, Chen G, Ouyang G. Crystal Phase Transition-Driven Integration of Enzymes into 2D Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25733-25741. [PMID: 40247722 DOI: 10.1021/acsami.5c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In situ encapsulation of enzymes within a metal-organic framework (MOF) represents a promising technique for engineering robust biocatalysts. However, the success of enzyme encapsulation is often constrained by intricate interfacial interactions between enzyme surfaces and MOF precursors, limiting the versatility of this MOF method. Herein, we introduce a phase transition strategy for encapsulating enzymes within a Zn-HHTP framework, demonstrating its effectiveness across a wide range of enzymes irrespective of their surface chemistry. In this approach, enzyme molecules are preloaded in a zinc oxide (ZnO) template through a simple yet efficient coprecipitation process, followed by a ZnO-to-Zn-HHTP MOF crystal phase transition in the presence of ligand precursors, resulting in the formation of a quasi-mesoporous hybrid Zn-HHTP MOF inside, for which the original enzymes are preserved. The long-range ordered quasi-mesopore channels enhance substrate accessibility to the immobilized enzymes, endowing enzyme@Zn-HHTP with higher catalytic activity compared to enzymes immobilized within the well-known MOF, ZIF-8, which has narrow apertures. Additionally, the resultant enzyme@Zn-HHTP exhibits exceptional structural stability across a broad pH range (3-14), and Zn-HHTP can provide robust protection against enzyme denaturation by heat, organic solvents, and proteases. This work offers a facile and reliable phase transition strategy for synthesizing active and robust MOF biocatalysts, advancing biocatalysis across various fields.
Collapse
Affiliation(s)
- Ningyi Zhong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongwei He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Lihong Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Anlian Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Janusz Pawliszyn
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- University of Waterloo, Department of Chemistry, Waterloo, ON N2L 3G1, Canada
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
5
|
Yang J, Zaremba O, Andreo J, Gröger H, Wuttke S. Unravelling the Potential of Crude Enzyme Extracts for Biocatalyst Entrapment in Metal-Organic Frameworks. ACS NANO 2025; 19:14817-14828. [PMID: 40215205 DOI: 10.1021/acsnano.4c18266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
To bolster the applicability of enzymes as catalysts, it is imperative not only to address their inherent fragility, particularly when used under harsh organic-synthetic reaction conditions, but also to mitigate deactivation during purification and enable applicability in a broad range of organic-synthetic transformations. Currently, the process of purification of crude enzyme extracts and subsequent heterogenization to obtain immobilized biocatalysts often leads to partial enzyme deactivation and represents, at least in part, a resource-intensive process that is driving up the overall production efforts. To tackle both the enzyme fragility and deactivation during purification and immobilization, we propose the direct use of crude enzyme extracts obtained from cell lysis instead of pure enzymes and their entrapment in metal-organic framework (MOF) structures. We focus on three enzyme types with varying sensitivities: aldoxime dehydratase, imine reductase, and lipase. We evaluate the effects of different metal sources (Al, Fe, Co, Ni, Cu, and Zn), their oxidation state and counterions, and MOF synthesis parameters on enzyme stability and activity during their entrapment in the MOF structures. Based on this, we optimize protocols for enzyme entrapment in Fe-MIL-88A, Fe-MIL-100, Zn-MOF-74, and Zn-ZIF-8 and develop a fast-aqueous room temperature synthesis of Al-MIL-53. Investigation of the biocatalytic performance of the enzyme@MOF biocomposites suggests that enzyme entrapment in MOFs using crude enzyme extracts can effectively maintain enzyme activity and stability in various catalytic reactions, offering a perspective for an efficient pathway for industrial applications.
Collapse
Affiliation(s)
- Jianing Yang
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Orysia Zaremba
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Jacopo Andreo
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Stefan Wuttke
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Academic Centre for Materials and Nanotechnology, A. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
6
|
Wei N, Wang L, Wang H, Zhang C, Chen B, Kong Y, Yang D, Nie J, Ma G. Cascade reaction hydrogel with enzyme-catalyzed endogenous glucose for diabetic wound healing. J Colloid Interface Sci 2025; 693:137616. [PMID: 40262213 DOI: 10.1016/j.jcis.2025.137616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
The complex microenvironment of diabetic wounds, combined with the emergence of antibiotic-resistant bacteria under biofilms, makes it challenging for antibiotics or single treatment strategies to effectively treat infected wounds. To sustainably improve the wound microenvironment, we developed a hydrogel (Hyd-GZA) with controlled nitric oxide (NO) release based on a cascade reaction. This hydrogel contains an acid-sensitive cascade reactor (GOx@ZIF-90-Arg) loaded with glucose oxidase (GOx) and the NO donor l-arginine (l-Arg). Under hyperglycemic environments, GOx@ZIF-90-Arg catalyzes glucose to produce gluconic acid and hydrogen peroxide (H2O2). H2O2 not only induces oxidative stress in bacteria, but also oxidizes Arg to produce NO, which disperses and removes the biofilm. Simultaneously, the accumulation of gluconic acid lowers the local pH, stimulating the acid-responsive ZIF-90 to release zinc ions (Zn2+), synergistically eradicating bacteria. In addition, a diabetic whole skin defect model demonstrated that Hyd-GZA effectively promoted macrophage shift to M2 phenotype, regulated the expression of inflammatory factors, stimulated vascular regeneration and granulation tissue formation under the synergistic effect of Zn2+ and NO. Overall, Hyd-GZA, with its powerful ability to remodel the wound microenvironment, offers a novel strategy for treating diabetic wounds infected with bacterial biofilms.
Collapse
Affiliation(s)
- Ning Wei
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Liangyu Wang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haibo Wang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chunyang Zhang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Binling Chen
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Ya Kong
- China Academy of Aerospace Science and Innovation, Beijing 100176, PR China.
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Xuzhou Medical University Xuzhou, Jiangsu 221004, PR China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
7
|
Reasoner EA, Chan HJ, Aballo TJ, Plouff KJ, Noh S, Ge Y, Jin S. In Situ Metal-Organic Framework Growth in Serum Encapsulates and Depletes Abundant Proteins for Integrated Plasma Proteomics. ACS NANO 2025; 19:13968-13981. [PMID: 40168247 PMCID: PMC12047221 DOI: 10.1021/acsnano.4c18028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Protein biomarkers in human serum provide critical insights into various physiological conditions and diseases, enabling early diagnosis, prognosis, and personalized treatment. However, detecting low-abundance protein biomarkers is challenging due to the presence of highly abundant proteins that make up ∼99% of the plasma proteome. Here, we report the use of in situ metal-organic framework (MOF) growth in serum to effectively deplete highly abundant serum proteins for integrated proteomic analysis. Through biomolecule-mediated nucleation of a zeolitic imidazolate framework (ZIF-8), abundant plasma proteins are selectively encapsulated within ZIF-8 and removed from serum via centrifugation, leaving a depleted protein fraction in the supernatant. Bottom-up proteomics analysis confirmed significant depletion of the topmost abundant proteins, many at depletion levels exceeding 95%. Such depletion enabled the identification of 277 total proteins in the supernatant (uncaptured) fraction in a single-shot analysis, including 54 proteins that were only identified after depletion, 12 drug targets, and many potential disease biomarkers. Top-down proteomics characterization of the captured and uncaptured protein fractions at the proteoform-level confirmed this method is not biased toward any specific proteoform of individual proteins. These results demonstrate that in situ MOF growth can selectively and effectively deplete high-abundance proteins from serum in a simple, low cost, one-pot synthesis to enable integrated top-down and bottom-up proteomic analysis of serum protein biomarkers.
Collapse
Affiliation(s)
- Emily A. Reasoner
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Timothy J. Aballo
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Kylie J. Plouff
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Seungwoo Noh
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
8
|
Zhang W, Qi X, Mi Z, Wang H, Lv S, Song Y, Su P, Song J, Yang Y. A New Phosphorylated Protein Analysis Strategy based on Trypsin Encapsulated in Metal-Organic Frameworks with High Efficiency and a Simplified Workflow. Anal Chem 2025; 97:7456-7466. [PMID: 40145842 DOI: 10.1021/acs.analchem.5c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Phosphoproteomics research is crucial for clinical diagnosis. However, due to the self-hydrolysis of natural proteases and the complex typical pretreatment protocol, the traditional bottom-up method is not enough to achieve rapid analysis of phosphorylated proteins. In this work, we encapsulate trypsin (Try) in the ZIF-L(Co) to develop a new strategy that simplifies the phosphorylated protein analysis process and achieves rapid analysis. Try is encapsulated in the mesoporous ZIF-L(Co) to allow the proteins to be accessible to the enzymes. The hydrophobic ZIF-L(Co) can cause the unfolding of proteins and accelerates the digestion process. The Co(II) nodes enhance the affinity toward phosphorylated proteins and capture phosphopeptides selectively. Compared to the traditional denaturation, digestion, and enrichment method, which costs 20 h at least, our strategy simplifies the pretreatment workflow and yields phosphopeptides in just 3.4 h. This strategy is further applied in the analysis of phosphorylated proteins in biosamples such as nonfat milk, egg yolk, and human serum. The results show equivalent performance with the traditional method and exhibit great potential in bioanalysis. This new phosphorylated protein analysis strategy provides a powerful tool for proteomics analysis and promotes research in the field of biomedicine.
Collapse
Affiliation(s)
- Wenkang Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xingyi Qi
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhuo Mi
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Han Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shaojuan Lv
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yongfeng Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
9
|
Fan W, Yu Z, Appadoo D, Liang K, Liang J. Enhancing Multi-Enzyme Cascade Activity in Metal-Organic Frameworks via Controlled Enzyme Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503059. [PMID: 40195929 DOI: 10.1002/smll.202503059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/31/2025] [Indexed: 04/09/2025]
Abstract
To position multi-enzymes in a core-shell structure, the conventional layer-by-layer approach is often used. However, this method is time-consuming and complex, requiring multiple steps and the isolation of intermediates at each stage. To address this challenge, a sequential strategy is introduced for the controlled encapsulation of multi-enzymes within metal-organic frameworks (MOFs), achieving a core-shell structure without the need for intermediate isolation. Synchrotron Terahertz-Far-Infrared (THz-Far-IR) spectroscopy is employed to monitor this encapsulation process. The results revealed that the first enzyme is co-precipitated within the MOFs, followed by biomineralization upon the addition of a second enzyme, achieving distinct enzyme positioning. This approach is applicable to both two-enzyme and three-enzyme cascade systems. The results demonstrate that multi-enzyme cascade activity is significantly enhanced compared to conventional one-pot and layer-by-layer approaches, owing to optimal spatial arrangement, increased surface area, and improved enzyme conformation. Furthermore, the encapsulated enzymes exhibit strong resistance to high temperatures, proteolysis, and organic solvents, along with excellent reusability, making this method highly promising for industrial biocatalytic applications.
Collapse
Affiliation(s)
- Wenqing Fan
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zefang Yu
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Kang Liang
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jieying Liang
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Luo T, Tang Y, Xie W, Ma Z, Gong J, Zhang Y, Yang T, Jia X, Zhou J, Hu Z, Han L, Wang Q, Song Z. Cerium-based nanoplatform for severe acute pancreatitis: Achieving enhanced anti-inflammatory effects through calcium homeostasis restoration and oxidative stress mitigation. Mater Today Bio 2025; 31:101489. [PMID: 39906206 PMCID: PMC11791244 DOI: 10.1016/j.mtbio.2025.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 02/06/2025] Open
Abstract
Severe acute pancreatitis (SAP), a life-threatening inflammatory disease of the pancreas, has a high mortality rate (∼40 %). Current therapeutic approaches, including antibiotics, trypsin inhibitors, fasting, rehydration, and even continuous renal replacement therapy, yield limited clinical management efficacy. Abnormally elevated calcium levels and reactive oxygen species (ROS) overproduction by damaged mitochondria are key factors in the inflammatory cascade in SAP. The combination of calcium chelators and cerium-based nanozymes loaded with catalase (MOF808@BA@CAT) was developed to bind intracellular calcium, eliminate excessive ROS, and ameliorate the resulting mitochondrial dysfunction, thereby achieving multiple anti-inflammatory effects on SAP. A single low dose of the nanoplatform (1.5 mg kg-1) significantly reduced pancreatic necrosis in SAP rats, effectively ameliorated oxidative stress in the pancreas, improved mitochondrial dysfunction, reduced the proportion of apoptotic cells, and blocked the systemic inflammatory amplification cascade, resulting in the alleviation of systemic inflammation. Moreover, the nanoplatform restored impaired autophagy and inhibited endoplasmic reticulum stress in pancreatic tissue, preserving injured acinar cells. Mechanistically, the administration of the nanoplatform reversed metabolic abnormalities in pancreatic tissue and inhibited the signaling pathways that promote inflammation progression in SAP. This nanoplatform provides a new strategy for SAP treatment, with clinical translation prospects, through ion homeostasis regulation and pancreatic oxidative stress inhibition.
Collapse
Affiliation(s)
- Tingyi Luo
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yujing Tang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wangcheng Xie
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jian Gong
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yonggui Zhang
- Department of Critical Care Medicine & Emergency, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Tingsong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xuyang Jia
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jia Zhou
- Department of General Surgery, Tongren Hospital, School of Medicine, Jiaotong University, Shanghai, 200335, China
| | - Zhengyu Hu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230000, China
| | - Lin Han
- Central Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Zhenshun Song
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| |
Collapse
|
11
|
Zhou J, Liu C, Wang Y, Guo Y, Xu X, Vuorimaa‐Laukkanen E, Koivisto O, Filppula AM, Ye J, Zhang H. Biomineralize Mitochondria in Metal-Organic Frameworks to Promote Mitochondria Transplantation From Non-Tumorigenic Cells Into Cancer Cells. SMART MEDICINE 2025; 4:e134. [PMID: 40059964 PMCID: PMC11862567 DOI: 10.1002/smmd.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/07/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria are crucial to cellular physiology, and growing evidence highlights the significant impact of mitochondrial dysfunction in diabetes, aging, neurodegenerative disorders, and cancers. Therefore, mitochondrial transplantation shows great potential for therapeutic use in treating these diseases. However, transplantation process is notably challenging due to very low efficiency and rapid loss of bioactivity post-isolation, leading to poor reproducibility and reliability. In this study, we develop a novel strategy to form a nanometer-thick protective shell around isolated mitochondria using Metal-Organic Frameworks (MOFs) through biomineralization. Our findings demonstrate that this encapsulation method effectively maintains mitochondria bioactivity for at least 4 weeks at room temperature. Furthermore, the efficiency of intracellular delivery of mitochondria is significantly enhanced through the surface functionalization of MOFs with polyethyleneimine (PEI) and the cell-penetrating peptide Tat. The successful delivery of mitochondria isolated from non-tumorigenic cells into cancer cells results in notable tumor-suppressive effects. Taken together, our technology represents a significant advancement in mitochondria research, particularly on understanding their role in cancer. It also lays the groundwork for utilizing mitochondria as therapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Jun‐Nian Zhou
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Beijing Institute of Radiation MedicineBeijingChina
| | - Chang Liu
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yonghui Wang
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yong Guo
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Department of EndocrinologyKey Laboratory of National Health & Family Planning Commission for Male Reproductive HealthNational Research Institute for Family PlanningBeijingChina
| | - Xiao‐Yu Xu
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Elina Vuorimaa‐Laukkanen
- Chemistry and Advanced MaterialsFaculty of Engineering and Natural SciencesTampere UniversityTampereFinland
| | - Oliver Koivisto
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
| | - Anne M. Filppula
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
| | - Jiangbin Ye
- Department of Radiation OncologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
12
|
Wang Y, Tong H, Ni S, Huo K, Liu W, Zan X, Yuan X, Wang S. Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411196. [PMID: 39840556 PMCID: PMC11905098 DOI: 10.1002/advs.202411196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/21/2024] [Indexed: 01/23/2025]
Abstract
Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells. The enzyme encapsulated within a core-shell particle exhibits noteworthy resilience against harsh external conditions, including heat, organic solvents, and proteinase K. Additionally, no significant alteration in the catalytic behavior of the enzyme is observed after multiple cycles of usage. This study offers a novel approach for immobilizing enzymes and rendering them resistant to harsh external conditions, with potential applications in diverse fields, including biocatalysis, bioremediation, and biomedical engineering.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of CardiologyThe First People's Hospital of WenlingWenling Hospital of Wenzhou Medical UniversityWenlingZhejiang317500China
- Wenzhou Institute, University of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
| | - Hongfei Tong
- Yongkang First People's Hospital of Wenzhou Medical UniversityJinhuaZhejiangChina
| | - Shulan Ni
- Department of CardiologyThe First People's Hospital of WenlingWenling Hospital of Wenzhou Medical UniversityWenlingZhejiang317500China
- Wenzhou Institute, University of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
| | - Kaiyuan Huo
- Department of CardiologyThe First People's Hospital of WenlingWenling Hospital of Wenzhou Medical UniversityWenlingZhejiang317500China
- Wenzhou Institute, University of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
| | - Wenjie Liu
- Wenzhou Institute, University of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
| | - Xiaodie Yuan
- Wenzhou Institute, University of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
| | - Shuangshuang Wang
- Department of CardiologyThe First People's Hospital of WenlingWenling Hospital of Wenzhou Medical UniversityWenlingZhejiang317500China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceAffiliated First Hospital of Ningbo UniversityNingboZhejiang315010China
| |
Collapse
|
13
|
Zhang X, Li Y, Bi J, Zhang J, Li B, Zhang X, Zheng J, Lin L. Immobilization of glycosyltransferase into a hydrophilic metal-organic framework for efficient biosynthesis of chondroitin sulfate. J Biotechnol 2025; 399:63-71. [PMID: 39800164 DOI: 10.1016/j.jbiotec.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/12/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Chondroitin sulfate (CS) is a structurally complex anionic polysaccharide widely used in medical, cosmetic and food applications. Enzymatic catalysis is an important strategy for synthesizing CS with uniform chain lengths and well-defined structures. However, the industrial application of glycosyltransferases is hindered by limitations such as low expression yields, poor stability, and challenges in reuse. We developed a mild and rapid one-step synthetic method for the efficient immobilization of chondroitin synthase (KfoC). The resulting KfoC@ZIF-90 composite exhibits high catalytic activity, thermal stability, and pH adaptability. Notably, KfoC@ZIF-90 exhibited 5-fold enhanced thermal stability at 40°C and retained 86 % relative activity at pH 10, while also maintaining 90 % activity in organic solvents, surpassing the performance of free KfoC. Molecular docking analysis revealed that the binding capability of encapsulated KfoC with substrate was stronger than that of free KfoC, thereby improving catalytic performance. Furthermore, KfoC@ZIF-90 can be easily separated from the reaction solution by centrifugation, simplifying product isolation and purification while enabling enzyme reuse. These attributes significantly enhance operability and reduce processing costs, making enzymatic CS synthesis more feasible for industrial applications.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yanqi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jingjing Bi
- School of Pharmacy, Xinyang Agricultural and Forestry University, Henan 464000, China
| | - Junjie Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jie Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Lei Lin
- Analysis and Testing Center, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
14
|
Christodoulou I, Gkaniatsou E, Steunou N, Kisserli A, Cohen JHM, Haouas M, Sicard C. Screening of Aluminum-Based MOFs for Effective In Situ Immobilization of Biomolecules. Inorg Chem 2025; 64:2545-2553. [PMID: 39882866 DOI: 10.1021/acs.inorgchem.4c05275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
An effective approach for the immobilization and protection of biological entities is their encapsulation via the in situ synthesis of metal-organic frameworks (MOFs). To ensure the preservation of the bioentities, mild synthetic conditions, including aqueous media and ambient conditions (temperature and pressure), are preferred. In this study, we investigated the synthesis of various aluminum polycarboxylate-based MOFs, including the fumarate, terephthalate, amino-terephthalate, and muconate forms of MIL-53(Al), as well as the MIL-110 and MIL-160 MOF types. The potential as immobilization matrices was then assessed using bovine serum albumin (BSA). Finally, MIL-53(Al)-fum was selected for the encapsulation of a mixture of polysaccharides and more structurally complex bioentities (viruses).
Collapse
Affiliation(s)
- Ioanna Christodoulou
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Effrosyni Gkaniatsou
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Nathalie Steunou
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Aymric Kisserli
- Nanosciences Research Laboratory LRN EA 4682, University of Rheims Champagne-Ardenne, 51685 Rheims, France
- Oncogeriatric Coordination Unit, Rheims University Hospital, 51100 Rheims, France
| | - Jacques H M Cohen
- Nanosciences Research Laboratory LRN EA 4682, University of Rheims Champagne-Ardenne, 51685 Rheims, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Clémence Sicard
- Institut Lavoisier de Versailles, UMR CNRS 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
15
|
Luo S, Tian D, Gao R, Cui C, Yang B, Wu Z. Immobilization of snailase and β-glucosidase on L-aspartic acid-modified magnetic amorphous ZIF for efficiently and sustainably producing ginsenoside compound K. Int J Biol Macromol 2025; 291:139230. [PMID: 39732234 DOI: 10.1016/j.ijbiomac.2024.139230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp). Thanks to Asp modification protecting the natural conformation of internal protein molecules and MNP stabilizing the conformation of active enzymes after immobilizing, Sna&β-G in the carrier had more stable conformations and higher catalytic efficiency than those in conventional ZIF-8, increasing the catalytic efficiency for converting ginsenoside Rb1 to rare ginsenoside compound K (CK) to 79.16 %. Moreover, while improving the stability of Sna&β-G, owing to the magnetism imparted by MNP, the immobilized enzyme maintained high enzyme activity and recovery after 7 cycles by rapid magnetic separation. The results provided guidance for developing immobilized Sna&β-G biocomposites with ideal catalytic efficiency and easy recovery to catalyze ginsenoside Rb1 to rare ginsenoside CK.
Collapse
Affiliation(s)
- Shuqi Luo
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Duoduo Tian
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Runzi Gao
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Chunxiao Cui
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Bolong Yang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China.
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China.
| |
Collapse
|
16
|
Wang YS, Dong C, Zou L, Zhao L, Qin JH, Mo HL. Ligand engineering boosts catalase-like activity of gold nanoclusters for cascade reactions combined with glucose oxidase in ZIF-8 matrix. Anal Chim Acta 2025; 1337:343565. [PMID: 39800517 DOI: 10.1016/j.aca.2024.343565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application. Herein, the CAT-like activity of atomically precise Au25(MPA)18 (MPA = 3-mercaptopropionic acid) nanoclusters (AuNCs) was modulated by incorporating N-acetyl-l-cysteine (NAC) in a series of ratio. RESULTS It is found that Au25(NAC)14-17(MPA)4-1 exhibited superior CAT-like activity and structural stability than Au25(MPA)18 owing to the intramolecular hydrogen bond in NAC. Moreover, the synergetic effects of glucose-depletion catalyzed by GOx, oxygen generation from the intermediate hydrogen peroxide (H2O2) facilitated by Au25(NAC)14-17(MPA)4-1, and protective function and nanoconfinement effect of zeolitic imidazolate framework-8 (ZIF-8) enabled the GOx-Au25(NAC)14-17(MPA)4-1@ZIF-8 composite to degrade more glucose. Compared to that treated with a single enzyme or free enzymes, the residual intermediate H2O2 level after treatment with GOx-Au25(NAC)14-17(MPA)4-1@ZIF-8 was about 93 % lower than that after treatment with GOx alone. This composite showed higher catalytic activity, stability, and tolerance when applied to GOx-mediated glucose depletion. SIGNIFICANCE In brief, the study provides a feasible strategy for realizing robust and efficient cascade reaction by integrating the merits of natural enzymes and atomically precise metal NCs with adjustable enzyme-like activity. This research offers essential guidance for developing a biocompatible and tailored cascade system.
Collapse
Affiliation(s)
- Yi-Shu Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Chen Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Li Zou
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Lin Zhao
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Jian-Hua Qin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, 471934, Luoyang, China.
| | - Hui-Lin Mo
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
17
|
Yang Q, Shi Q, Dong X, Yu L, Sun Y. Co 2+-boosted catalytic performance of polyhistidine-tagged organophosphate hydrolase locked in cobalt-organic framework. Int J Biol Macromol 2025; 288:138636. [PMID: 39674479 DOI: 10.1016/j.ijbiomac.2024.138636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Hydrolysis of organophosphates (OPs) with organophosphate hydrolase (OPH) provides a green approach to degrading OPs, but the success of enzymatic OPs degradation relies on the availability of high-efficiency OPH. Herein, we report a simple but effective way to constructing high-performance OPH preparations based on the in situ encapsulation of hexahistidine-tagged OPH (H6-OPH) into cobaltous zeolitic imidazolate framework (ZIF-67) via biomineralization. ZIF-8 made of the same organic ligand but a different metal ion (Zn2+) was used for comparison. It was found that the H6-tag domain did not affect the catalytic properties of OPH in the absence of Co2+, but boosted the Co2+-activation effect on the H6-OPH catalytic activity by two-fold. Furthermore, H6-OPH@ZIF-67 retained the highly boosted activity, while H6-OPH@ZIF-8 and OPH@ZIF-67/ZIF-8 lost most of the activities. Extensive analysis revealed that the H6-tag promoted the Co2+-induced OPH conformation transition and locked the activated conformation in ZIF-67. Notably, H6-OPH@ZIF-67 not only achieved an activity recovery as high as 348 % and a 321 % increased catalytic efficiency (kcat/Km) over free OPH, but also exhibited greatly improved stability and reusability. The findings underscore the high efficiency of fabricating high-performance OPH preparations via polyhistidine-tag fusion, Co2+ activation and locking by the cobalt-organic framework.
Collapse
Affiliation(s)
- Qingru Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
18
|
Wu Q, Liang J, Wang D, Wang R, Janiak C. Host molecules inside metal-organic frameworks: host@MOF and guest@host@MOF (Matrjoschka) materials. Chem Soc Rev 2025; 54:601-622. [PMID: 39589788 DOI: 10.1039/d4cs00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The controllable encapsulation of host molecules (such as porphyrin, phthalocyanine, crown ether, calixarene or cucurbituril organic macrocycles, cages, metal-organic polyhedrons and enzymes) into the pores of metal-organic frameworks (MOFs) to form host-in-host (host@MOF) materials has attracted increasing research interest in various fields. These host@MOF materials combine the merits of MOFs as a host matrix and functional host molecules to exhibit synergistic functionalities for the formation of guest@host@MOF materials in sorption and separation, ion capture, catalysis, proton/ion conduction and biosensors. (This guest@host@MOF construction is reminiscent of Russian (Matrjoschka) dolls which are nested dolls of decreasing size placed one inside another.) In this tutorial review, the advantages of MOFs as a host matrix are presented; the encapsulation approaches and general important considerations for the preparation of host@MOF materials are introduced. The state-of-the-art examples of these materials based on different host molecules are shown, and representative applications and general characterization of these materials are discussed. This review will guide researchers attempting to design functional host@MOF and guest@host@MOF materials for various applications.
Collapse
Affiliation(s)
- Qiao Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
| | - Jun Liang
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, China
| | - Dan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
| | - Ruihu Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| |
Collapse
|
19
|
Li Z, Sun J, Shi Q, Dong X, Yu L, Sun Y. Solar Energy-Promoted Bisphenol A Degradation with Immobilized Laccase in an Fe 3O 4-Embedded Metal-Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26918-26927. [PMID: 39663817 DOI: 10.1021/acs.langmuir.4c03349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Bisphenol A (BPA) is a well-recognized endocrine-disrupting chemical that poses risks to both human health and the environment. Laccase can effectively biodegrade bisphenol A, but the low environmental temperature (∼25 °C) restricts the biodegradation efficiency. In this study, the enzyme laccase and Fe3O4 with solar-thermal conversion capability were coimmobilized into zeolitic imidazolate framework-8 (Lac@ZIF-8-Fe3O4) to facilitate efficient biodegradation of bisphenol A under simulated solar irradiation. Compared to free laccase, Lac@ZIF-8-Fe3O4 exhibited high activity recovery (115.5%), an ∼39% increased catalytic constant, more effective bisphenol A biodegradation (up to 24-fold) at extensive bisphenol A concentrations (5-100 mg/L), excellent thermal stability (50 °C, 12 h), acid-tolerance (pH 3), and storage ability in 10 days. Simulated solar irradiation (1 kW/m2) increased the temperature of Lac@ZIF-8-Fe3O4 solution (10 μg laccase/mL) from 25 to 42.5 °C within 15 min, resulting in 96.4% biodegradation of bisphenol A within 60 min, nearly double the biodegradation efficiency under dark condition (55.9%). Furthermore, Lac@ZIF-8-Fe3O4 maintained 99.0% biodegradation efficiency even after 12 recycles of use under simulated solar irradiation (5 mg/L bisphenol A, 80 min/cycle). This work has thus offered efficient biocatalysis for integrating solar-energy promotion and enzymatic catalysis in treating environmental BPA pollutants. Further, the experimental findings benefited from the development of more sustainable and high-performance immobilized enzyme preparations for pollutant treatment via solar-thermal promotions.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jiacheng Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
20
|
Ayyandurai N, Venkatesan S, Raman S. Palladium Nanoparticle-Decorated Copper-Hemin Metal Organic Framework for Enzymatic Electrochemical Detection of Creatinine in Human Urine. ACS APPLIED BIO MATERIALS 2024; 7:8444-8455. [PMID: 39630977 DOI: 10.1021/acsabm.4c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Creatinine is indeed a crucial biomarker for kidney diseases. In this work, a novel electrochemical biosensor based on a copper-hemin metal organic framework [Cu-hemin metal-organic framework (MOF)] nanoflake decorated with palladium (Pd) (Pd/Cu-hemin MOF) was fabricated and incorporated with creatinine deiminase (CD) on a glassy carbon electrode (GCE) for creatinine detection. The formation of a Pd/Cu-hemin MOF composite was confirmed by X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The formation of the composite as nanoflakes is evident from the scanning electron microscopy image. The transmission electron microscopy image clarifies the decoration of palladium nanoparticles on Cu-hemin MOF surfaces. Thus, the proposed biosensor (Pd/Cu-hemin MOF/CD/GCE) electrochemical performances were studied with cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. As a result, the Pd/Cu-hemin MOF/CD/GCE-based electrochemical detection of creatinine exhibits a broad linear range from 0 to 130 μM (R2 = 0.99), a low limit of detection 0.08 μM, and an excellent sensitivity of 3.2 μA μM-1 cm-2. The biosensor also determines creatinine in samples of human urine with a good recovery from 99.4 to 100.8%. Thus, in this study, an electrochemical biosensing platform based on Pd/Cu-hemin MOF/CD/GCE has been designed practically for creatinine.
Collapse
Affiliation(s)
- Nagarajan Ayyandurai
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025 Tamil Nadu, India
| | - Sethuraman Venkatesan
- Research and Development, New Energy Technology Centre, Lithium-Ion Division, Amara Raja Advanced Cell Technology, Nanakramguda, 500032 Hyderabad, India
| | - Sasikumar Raman
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025 Tamil Nadu, India
| |
Collapse
|
21
|
Qiao M, Li Y, Li Y, Chang M, Zhang X, Yuan S. Unlocking of Hidden Mesopores for Enzyme Encapsulation by Dynamic Linkers in Stable Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202409951. [PMID: 39177482 DOI: 10.1002/anie.202409951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Mesoporous metal-organic frameworks (MOFs) are promising supports for the immobilization of enzymes, yet their applications are often limited by small pore apertures that constrain the size of encapsulated enzymes to below 5 nm. In this study, we introduced labile linkers (4,4',4''-(2,4,6-boroxintriyl)-tribenzoate, TBTB) with dynamic boroxine bonds into mesoporous PCN-333, resulting in PCN-333-TBTB with enhanced enzyme loading and protection capabilities. The selective breaking of B-O bonds creates defects in PCN-333, which effectively expands both window and cavity sizes, thereby unlocking hidden mesopores for enzyme encapsulation. Consequently, this strategy not only increases the adsorption kinetics of small enzymes (<5 nm) such as cytochrome c (Cyt C) and horseradish peroxidase (HRP), but also enables the immobilization of various large-sized enzymes (>5 nm), such as glycoenzymes. The glycoenzymes@PCN-333-TBTB platform was successfully applied to synthesize thirteen complex oligosaccharides and polysaccharides, demonstrating high activity and enhanced enzyme stability. The dynamic linker-mediated enzyme encapsulation strategy enables the immobilization of enzymes exceeding the inherent pore size of MOFs, thus broadening the scope of enzymatic catalytic reactions achievable with MOF materials.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Youcong Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanqi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Mengting Chang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
22
|
Carraro F, Aghito M, Dal Zilio S, Wolinski H, Doonan CJ, Nidetzky B, Falcaro P. Magnetically Responsive Enzyme and Hydrogen-Bonded Organic Framework Biocomposites for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407487. [PMID: 39580681 DOI: 10.1002/smll.202407487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Indexed: 11/26/2024]
Abstract
The one-pot synthesis of multicomponent hydrogen-bonded organic framework (HOF) biocomposites is reported. The co-immoblization of enzymes and magnetic nanoparticles (MNPs) into the HOF crystals yielded biocatalysts (MNPs-enzyme@BioHOF-1) with dynamic localization properties. Using a permanent magnet, it is possible to separate the MNPs-enzyme@BioHOF-1 particles from a solution. Catalase (CAT) and glucose oxidase (GOx) show increased retention of their activity when coimmobilized with MNPs. MNPs-GOx@BioHOF-1 biocomposites are used to prepare a proof-of-concept glucose microfluidic biosensor, where a magnet allow to position and keep in place the biocomposite inside a microfluidic chip. The magnetic response of these biocatalysts can pave the way for new applications for the emerging HOF biocomposites.
Collapse
Affiliation(s)
- Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Margherita Aghito
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, Graz, 8010, Austria
| | - Simone Dal Zilio
- Instituto Officina dei Materiali, CNR, Basovizza, Edificio MM-SS, Trieste, 34149, Italy
| | - Heimo Wolinski
- Institute of Molecular Biosciences, Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| | - Christian J Doonan
- Department of Chemistry and Centre for Advanced Nanosmaterials, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, Graz, 8010, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| |
Collapse
|
23
|
Rangraz Z, Amini MM, Habibi Z. Immobilization of Thermomyces lanuginosus lipase on metal-organic frameworks and investigation of their catalytic properties and stability. ENGINEERING MICROBIOLOGY 2024; 4:100176. [PMID: 39628592 PMCID: PMC11610973 DOI: 10.1016/j.engmic.2024.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024]
Abstract
Surface adsorption is a convenient and readily available method for immobilizing enzymes on metal-organic frameworks (MOFs). Metal-organic framework-5 (MOF-5), isoreticular metal-organic frameworks-3 (IRMOF-3), and multivariate analysis of MOF-5/IRMOF-3 (MMI) with a half-amino group (-NH2) were prepared in this study. Thermomyces lanuginosus lipase (TLL) was chosen as a commercially available enzyme for immobilization on the surfaces of these MOFs. Briefly, 1.5 mg of TLL was added to 10 mg of the MOFs, and after 24 h, 67, 74, and 88% of the TLL was immobilized on MOF-5, IRMOF-3, and MMI, respectively. Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, energy-dispersive X-ray analysis, and Brunauer-Emmett-Teller analysis were used to characterize the resulting biocomposites. TLL@MOF-5, TLL@IRMOF-3, and TLL@MMI exhibited activities of 55, 75, and 110 U/mg, respectively. Investigation of the activity and stability of the prepared biocatalysts showed that TLL immobilized on MMI was 2.34-fold more active than free TLL. TLL@MMI exhibited high stability and activity even under harsh conditions. After 24 h of incubation in a mixture of 50% (v/v) MeOH, TLL@MMI retained 80% of its activity, whereas TLL@MOF-5 and free TLL lost 50 and 60% of their activities, respectively. TLL@MMI was used to synthesize 2-arylidenehydrazinyl-4-arylthiozole derivatives (91-98%) in a one-pot vessel by adding benzaldehydes, phenacyl bromides, and thiosemicarbazide to water. The efficiency of the 4a derivative with free TLL was 43%, whereas that with TLL@MMI was 98%.
Collapse
Affiliation(s)
- Zeynab Rangraz
- Department of Organic Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Mostafa M. Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Zohreh Habibi
- Department of Organic Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| |
Collapse
|
24
|
Cheng C, Guo X, Feng Y, Yu J, Huang S, Zhang L, Wu Y, Shao L, Xu X, Feng L. Enhanced activity of enzymes encapsulated in spheres metal azolate framework-7 with defects. Int J Biol Macromol 2024; 283:137689. [PMID: 39561823 DOI: 10.1016/j.ijbiomac.2024.137689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Developing metal-organic frameworks (MOFs) with specific structures is critical for improving the activity of embedded enzymes, and defects may be one of the effective methods. Several methods have been demonstrated to be effective in creating defects in MOFs, including post-synthetic treatments, the use of acid as a modulator, and the use of ordinary or thermally sensitive linkers. However, these methods necessitate the utilization of additional substances. Metal azolate framework-7 (MAF-7) is a kind of MOF that was formed by the coordination of Zn2+ with 3-methyl-1,2,4-triazole (Hmtz). This paper presents a method for the preparation of defect MAF-7 by changing the sequence of reactants without the introduction of additional substances. The defects were characterized by a range of techniques, including scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, and powder X-ray diffraction. The activity of microcystinase A (MlrA) encapsulated in defective MAF-7 (CMlrA@DMAF-7) was found to be significantly increased in comparison to non-porous MAF-7 (NMAF-7), and was largely unaffected by alterations in synthesis conditions. It is also noteworthy that lysozyme (LZ) and horseradish peroxidase (HRP), which are commonly used in industry, also demonstrated enhanced activity when encapsulated in DMAF-7. It was therefore anticipated that modifying the sequence of reactant addition would be a straightforward and simple method of introducing defects into MAF-7, thereby improving enzyme utilization.
Collapse
Affiliation(s)
- Cai Cheng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoliang Guo
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, China
| | - Yu Feng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Yu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shi Huang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Liexiong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yu Wu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linna Shao
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xuehan Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, China.
| |
Collapse
|
25
|
Lu YS, Moreno ER, Huang Y, Fan R, Tucker AT, Wright LK, Evans RA, Ahern BM, Owens DE, Chappell SA, Christensen DJ, Dresios J, Sailor MJ. Engineering a Mesoporous Silicon Nanoparticle Cage to Enhance Performance of a Phosphotriesterase Enzyme for Degradation of VX Nerve Agent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409535. [PMID: 39492800 DOI: 10.1002/advs.202409535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/05/2024]
Abstract
The organophosphate (OP)-hydrolyzing enzyme phosphotriesterase (PTE, variant L7ep-3a) immobilized within a partially oxidized mesoporous silicon nanoparticle cage is synthesized and the catalytic performance of the enzyme@nanoparticle construct for hydrolysis of a simulant, dimethyl p-nitrophenyl phosphate (DMNP), and the live nerve agent VX is benchmarked against the free enzyme. In a neutral aqueous buffer, the optimized construct shows a ≈2-fold increase in the rate of DMNP turnover relative to the free enzyme. Enzyme@nanoparticles with more hydrophobic surface chemistry in the interior of the pores show lower catalytic activity, suggesting the importance of hydration of the pore interior on performance. The enzyme@nanoparticle construct is readily separated from the neutralized agent; the nanoparticle is found to retain DMNP hydrolysis activity through seven decontamination/recovery cycles. The nanoparticle cage stabilizes the enzyme against thermal denaturing and enzymatic (trypsin) degradation conditions relative to free enzyme. When incorporated into a topical gel formulation, the PTE-loaded nanoparticles show high activity toward the nerve agent VX in an ex vivo rabbit skin model. In vitro acetylcholinesterase (AChE) assays in human blood show that the enzyme@nanoparticle construct decontaminates VX, preserving the biological function of AChE when exposed to an otherwise incapacitating dose.
Collapse
Affiliation(s)
- Yi-Sheng Lu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Yubin Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ruhan Fan
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley T Tucker
- Leidos, 10260 Campus Point Drive, San Diego, CA, 92121, United States
| | - Linnzi K Wright
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8938 N Kings Creek Rd., E3150, Gunpowder, MD, 21010, USA
| | - Ronald A Evans
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8938 N Kings Creek Rd., E3150, Gunpowder, MD, 21010, USA
| | - Brooke M Ahern
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8938 N Kings Creek Rd., E3150, Gunpowder, MD, 21010, USA
| | - Donald E Owens
- TFF Pharmaceuticals, 1751 River Run, Fort Worth, TX, 76107, USA
| | | | | | - John Dresios
- Leidos, 10260 Campus Point Drive, San Diego, CA, 92121, United States
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
26
|
Feng M, Xing C, Jin Y, Feng X, Zhang Y, Wang B. Reticular Chemistry for Enhancing Bioentity Stability and Functional Performance. J Am Chem Soc 2024. [PMID: 39561393 DOI: 10.1021/jacs.4c09259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Addressing the fragility of bioentities that results in instability and compromised performance during storage and applications, reticular chemistry, specifically through metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), offers versatile platforms for stabilization and enhancement of bioentities. These highly porous frameworks facilitate efficient loading and mass transfer, offer confined environments and selective permeability for stabilization and protection, and enable finely tunable biointerfacial interactions and microenvironments for function optimization, significantly broadening the applications of various bioentities, including enzymes, nucleic acids, cells, etc. This Perspective outlines strategies for integrating bioentities with reticular frameworks, highlighting new design ideas for existing issues within these strategies. It emphasizes the crucial roles of these frameworks for bioentities in enhancing stability, boosting activity, imparting non-native functions, and synergizing bioentity systems. Concluding with a discussion of the challenges and prospects in the design, characterization, and practical applications of these biocomposites, this Perspective aims to inspire further development of high-performance biocomposites in this promising field.
Collapse
Affiliation(s)
- Mengchu Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunyan Xing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yehao Jin
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanyuan Zhang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
27
|
Polash SA, Poddar A, Ahmady F, Kannourakis G, Jayachandran A, Shukla R. Impact of Ligand Concentration on the Properties of Nucleic-Acid-Encapsulated MOFs and Inflammation Modulation in Prostate Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:7635-7645. [PMID: 39497260 DOI: 10.1021/acsabm.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The zeolitic imidazolate framework (ZIF) is one of the most explored metal-organic-framework-based systems for nucleic acid delivery to cancer cells. Current nucleic acid delivery tools exhibit several drawbacks, such as high manufacturing costs, endosomal entrapment, toxicity, and immunogenicity. However, the biomimetic mineralization of Zn-based ZIFs offers a low-cost and facile encapsulation of nucleic acids at room temperature in aqueous conditions. The efficiency of nucleic acid delivery and its subsequent impact on inflammation in cells are influenced by the physicochemical properties of the material. The imidazole content determines the formation and crystallinity of ZIF, and an optimal ratio ensures the formation of well-defined and highly crystalline structures. In this study, a series of siRNA-encapsulated ZIFs (siRNA@ZIF) were systematically prepared by varying ligand-to-metal (L/M) molar ratios. Our study demonstrates that variations in ligand concentrations influence the crystalline structures, particle size, and shape of siRNA@ZIF particles. At low L/M, two-dimensional siRNA@ZIF particles form with a size of 1 μm. As the L/M ratio increases gradually, the particle size decreases, resulting in three-dimensional particles ∼200 nm in size. We also observed better stability of siRNA@ZIF in water prepared using high L/M values and time-dependent cellular uptake by the cells. Additionally, no significant impact of the biocomposites on inflammation was found, indicating the lack of an unwanted immune response and nonimmunotoxic nature over longer periods (96 h). These findings highlight the necessity of fine-tuning ligand concentrations and synthesis chemistry in designing efficient and optimal ZIF-based systems as versatile delivery platforms for nucleic acids.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| | - Arpita Poddar
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
| | - Farah Ahmady
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
| | | | | | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
28
|
Yang F, Xie HH, Du F, Hou X, Tang SF. Insight into the efficient loading and enhanced activity of enzymes immobilized on functionalized UiO-66. Int J Biol Macromol 2024; 279:135557. [PMID: 39265898 DOI: 10.1016/j.ijbiomac.2024.135557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Enzyme immobilization is an effective strategy for achieving efficient and sustainable enzyme catalysis. As a kind of promising enzyme-loading materials, the systematic research on zirconium based metal organic frameworks (Zr-MOFs) about immobilization performance at molecular level is still in its initial stage. In this work, UiO-66 was functionalized with various groups (-H, -NH2, -COOH, -OH, -2OH) for the immobilization of cytochrome c (Cyt c) and antioxidant enzyme catalase (CAT). Then the effects of surface-functionalized UiO-66 derivatives on the loading efficiency, enzyme stability and catalysis kinetics were systematically investigated. In addition, the affinity constants of Cyt c and CAT towards UiO-66-series MOFs carriers were also compared. The results have shown that hydroxyl group functionalized UiO-66 represents the highest enzyme loading capacity, enhanced activity and improved stability for Cyt c and CAT possibly due to high surface area and suitable microenvironments as well as enhanced affinity towards the enzymes provided by the introduction of a single hydroxyl group. Our research would foresee immense potential of MOFs in engineering biocatalysts.
Collapse
Affiliation(s)
- Fan Yang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hui-Hui Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fan Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
29
|
Song X, Huang R, Zhang X, Chang Q, Kim S, Jeong D, Hou Q, Kim J, Ang EH, Su X, Feng X, Xiang H. Unveiling the Dynamic Pathways of Metal-Organic Framework Crystallization and Nanoparticle Incorporation for Li-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407984. [PMID: 39316295 DOI: 10.1002/advs.202407984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/24/2024] [Indexed: 09/25/2024]
Abstract
Metal-organic frameworks (MOFs) present diverse building blocks for high-performance materials across industries, yet their crystallization mechanisms remain incompletely understood due to gaps in nucleation and growth knowledge. In this study, MOF structural evolution is probed using in situ liquid phase transmission electron microscopy (TEM) and cryo-TEM, unveiling a blend of classical and nonclassical pathways involving liquid-liquid phase separation, particle attachment-coalescence, and surface layer deposition. Additionally, ultrafast high-temperature sintering (UHS) is employed to dope ultrasmall Cobalt nanoparticles (Co NPs) uniformly within nitrogen-doped hard carbon nanocages confirmed by 3D electron tomography. Lithium-sulfur battery tests demonstrate the nanocage-Co NP structure's exceptional capacity and cycling stability, attributed to Co NP catalytic effects due to its small size, uniform dispersion, and nanocage confinement. The findings propose a holistic framework for MOF crystallization understanding and Co NP tunability through ultrafast sintering, promising advancements in materials science and informing future MOF synthesis strategies and applications.
Collapse
Affiliation(s)
- Xiaohui Song
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
- Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xingyu Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qiang Chang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Semi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Daeun Jeong
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Qian Hou
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Xiaowei Su
- Anhui Honghai New Materials Co., Ltd, Anqing, Anhui, 246100, P. R. China
| | - Xuyong Feng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Hongfa Xiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
- Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
30
|
Prakash O, Verma D, Singh PC. Exploring enzyme-immobilized MOFs and their application potential: biosensing, biocatalysis, targeted drug delivery and cancer therapy. J Mater Chem B 2024; 12:10198-10214. [PMID: 39283204 DOI: 10.1039/d4tb01556h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Enzymes are indispensable in several applications including biosensing and degradation of pollutants and in the drug industry. However, adverse conditions restrict enzymes' utility in biocatalysis due to their inherent limitations. Metal-organic frameworks (MOFs), with their robust structure, offer an innovative avenue for enzyme immobilization, enhancing their resilience against harsh solvents and temperatures. This advancement is pivotal for application in bio-sensing, bio-catalysis, and specifically, targeted drug delivery in cancer therapy, where enzyme-MOF composites enable precise therapeutic localization, minimizing the side effects of traditional treatment. The adaptable nature of MOFs enhances drug biocompatibility and availability, significantly improving therapeutic outcomes. Moreover, the integration of enzyme-immobilized MOFs into bio-sensing represents a leap forward in the rapid and accurate identification of biomarkers, facilitating early diagnosis and disease monitoring. In bio-catalysis, this synergy promotes efficient and environmentally safe chemical synthesis, enhancing reaction rates and yields and broadening the scope of enzyme application in pharmaceutical and bio-fuel production. This review article explores the immobilization techniques and their biomedical applications, specifically focusing on drug delivery in cancer therapy and bio-sensing. Additionally, it addresses the challenges faced in this expanding field.
Collapse
Affiliation(s)
- Om Prakash
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Deepika Verma
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Poonam C Singh
- Division of Microbial Technology, CSIR-NBRI, Lucknow 226001, India
| |
Collapse
|
31
|
Zhang XC, Hou L, Cai H, Zhang JM, Chen FZ, Peng J, Zhao WW. Synergetic Enzyme-Incorporated Metal-Organic Framework and Polyoxometalate Nanozyme: Achieving Stable Tandem Catalysis for Organic Photoelectrochemical Transistor Bioanalysis. Anal Chem 2024; 96:16355-16361. [PMID: 39370725 DOI: 10.1021/acs.analchem.4c03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Organic photoelectrochemical transistor (OPECT) has emerged as a promising technique for biomolecule detection, yet its operational rationale remains limited due to its short development time. This study introduces a stable tandem catalysis protocol by synergizing the enzyme-incorporated metal-organic frameworks (E-MOFs) with polyoxometalate (POM) nanozyme for sensitive OPECT bioanalysis. The zeolitic imidazolate framework-8 (ZIF-8) acts as the skeleton to protect the encapsulated glucose oxidase (GOx), allowing the stable catalytic generation of H2O2. With peroxidase-like activity, a phosphotungstic acid hydrate (PW12) is then able to utilize the H2O2 to induce the biomimetic precipitation on the photogate, ultimately resulting in the altered device characteristics for quantitative detection. This work reveals the potential and versatility of an engineered enzymatic system as a key enabler to achieve novel OPECT bioanalysis, which is believed to offer a feasible framework to explore new operational rationale in optoelectronic and bioelectronic detection.
Collapse
Affiliation(s)
- Xiao-Cui Zhang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lu Hou
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huihui Cai
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Jin-Ming Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Feng-Zao Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Jinyun Peng
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Wu Q, Wang Y, Wang L, Su Y, He G, Chen X, Hou L, Zhang W, Wang YY. A Portable Electrochemical Biosensor Based on an Amino-Modified Ionic Metal-Organic Framework for the One-Site Detection of Multiple Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39363450 DOI: 10.1021/acsami.4c13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Constructing stable, portable sensors and revealing their mechanisms is challenging. Ion metal-organic frameworks (IMOFs) are poised to serve as highly effective electrochemical sensors for detecting organophosphorus pesticides (OPs), leveraging their unique charge properties. In this work, an amino-modified IMOF was constructed and combined with near-field communication (NFC) technology to develop a portable, touchless, and battery-free electrochemical biosensor NH2-IMOF@CS@AChE. -NH2 in NH2-IMOF gives the framework a higher electropositivity compared to IMOF, enhancing the electrostatic attraction with acetylcholinesterase (AChE), which is beneficial for immobilizing AChE. Furthermore, the uncoordinated O atoms and the (CH3)2NH2+ groups in NH2-IMOF help to form stronger bonds with AChE through hydrogen bonds. The results showed a wide linear response range of 1 × 10-15 to 1 × 10-9 M and a low detection limit of 1.24 × 10-13 M for glyphosate (Gly) in the practical detection of OPs. Additionally, electrochemical biosensor arrays were constructed to effectively identify and distinguish multiple OPs on the basis of their unique differential pulse voltammetry (DPV) electrochemical signals. This work provides a simple and effective solution for on-site OP analysis and can be widely applied in food safety and water quality monitoring.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yifei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Linxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yu Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Guorong He
- International Joint Research Centre for the Battery-Free Internet of Things, Advanced Battery-Free Sensing and Computing Technology International Science and Technology Cooperation Base, Northwest University, Xi'an 710127, PR China
| | - Xiaojiang Chen
- International Joint Research Centre for the Battery-Free Internet of Things, Advanced Battery-Free Sensing and Computing Technology International Science and Technology Cooperation Base, Northwest University, Xi'an 710127, PR China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Wenyan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| |
Collapse
|
33
|
Ye X, Liu Y, Wei L, Sun Y, Zhang X, Wang H, Guo H, Qin X, Li X, Qu D, Huo J, Chen Y. Monocyte/Macrophage-Mediated Transport of Dual-Drug ZIF Nanoplatforms Synergized with Programmed Cell Death Protein-1 Inhibitor Against Microsatellite-Stable Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405886. [PMID: 39101234 PMCID: PMC11481235 DOI: 10.1002/advs.202405886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Microsatellite-stable colorectal cancer (MSS-CRC) exhibits resistance to programmed cell death protein-1 (PD-1) therapy. Improving the infiltration and tumor recognition of cytotoxic T-lymphocytes (CTLs) is a promising strategy, but it encounters huge challenges from drug delivery and mechanisms aspects. Here, a zeolitic imidazolate framework (ZIF) coated with apoptotic body membranes derived from MSS-CRC cells is engineered for the co-delivery of ginsenoside Rg1 (Rg1) and atractylenolide-I (Att) to MSS-CRC, named as Ab@Rg1/Att-ZIF. This system is selectively engulfed by Ly-6C+ monocytes during blood circulation and utilizes a "hitchhiking" mechanism to migrate toward the core of MSS-CRC. Ab@Rg1/Att-ZIF undergoes rapid disassembly in the tumor, released Rg1 promotes the processing and transportation of tumor antigens in dendritic cells (DCs), enhancing their maturation. Meanwhile, Att enhances the activity of the 26S proteasome complex in tumor cells, leading to increased expression of major histocompatibility complex class-I (MHC-I). These coordinated actions enhance the infiltration and recognition of CTLs in the center of MSS-CRC, significantly improving the tumor inhibition of PD-1 treatment from ≈5% to ≈69%. This innovative design, involving inflammation-guided precise drug co-delivery and a rational combination, achieves synergistic engineering of the tumor microenvironment, providing a novel strategy for successful PD-1 treatment of MSS-CRC.
Collapse
Affiliation(s)
- Xietao Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese MedicineNanjing210028China
| | - Liangyin Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
| | - Yeyang Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
| | - Xiaoran Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
| | - Hong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
| | - Hong Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
| | - Xiaoying Qin
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese MedicineNanjing210028China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028China
- Multi‐component of Traditional Chinese Medicine and Microecology Research CenterJiangsu Province Academy of Traditional Chinese MedicineNanjing210028China
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese MedicineNanjing210028China
| |
Collapse
|
34
|
Wang T, Lin Z, Mazaheri O, Chen J, Xu W, Pan S, Kim CJ, Zhou J, Richardson JJ, Caruso F. Crystalline Metal-Organic Framework Coatings Engineered via Metal-Phenolic Network Interfaces. Angew Chem Int Ed Engl 2024; 63:e202410043. [PMID: 38922736 DOI: 10.1002/anie.202410043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Crystalline metal-organic frameworks (MOFs) have garnered extensive attention owing to their highly ordered porous structure and physicochemical properties. However, their practical application often requires their integration with various substrates, which is challenging because of their weakly adhesive nature and the diversity of substrates that exhibit different properties. Herein, we report the use of amorphous metal-phenolic network coatings to facilitate the growth of crystalline MOF coatings on various particle and planar substrates. Crystalline MOFs with different metal ions and morphologies were successfully deposited on substrates (13 types) of varying sizes, shapes, and surface chemistries. Furthermore, the physicochemical properties of the coated crystalline MOFs (e.g., composition, thickness) could be tuned using different synthesis conditions. The engineered MOF-coated membranes demonstrated excellent liquid and gas separation performance, exhibiting a high H2 permeance of 63200 GPU and a H2/CH4 selectivity of 10.19, likely attributable to the thin nature of the coating (~180 nm). Considering the vast array of MOFs available (>90,000) and the diversity of substrates, this work is expected to pave the way for creating a wide range of MOF composites and coatings with potential applications in diverse fields.
Collapse
Affiliation(s)
- Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Omid Mazaheri
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jiajing Zhou
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Richardson
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
35
|
Weng Y, Xu X, Yan P, You J, Chen X, Song H, Zhao CX. Enzyme encapsulation in metal-organic frameworks using spray drying for enhanced stability and controlled release: A case study of phytase. Food Chem 2024; 452:139533. [PMID: 38705119 DOI: 10.1016/j.foodchem.2024.139533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Encapsulating enzymes in metal-organic frameworks is a common practice to improve enzyme stability against harsh conditions. However, the synthesis of enzyme@MOFs has been primarily limited to small-scale laboratory settings, hampering their industrial applications. Spray drying is a scalable and cost-effective technology, which has been frequently used in industry for large-scale productions. Despite these advantages, its potential for encapsulating enzymes in MOFs remains largely unexplored, due to challenges such as nozzle clogging from MOF particle formation, utilization of toxic organic solvents, controlled release of encapsulated enzymes, and high temperatures that could compromise enzyme activity. Herein, we present a novel approach for preparing phytase@MIL-88 A using solvent-free spray drying. This involves atomizing two MOF precursor solutions separately using a three-fluid nozzle, with enzyme release controlled by manipulating defects within the MOFs. The physicochemical properties of the spray dried particles are characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Leveraging the efficiency and scalability of spray drying in industrial production, this scalable encapsulation technique holds considerable promise for broad industrial applications.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Penghui Yan
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiakang You
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
36
|
Wang F, Ren J, Peng Q, Sun H, Zeng Q, Zhang Y, Shi G, Zhang M. Janus Separation-Sensing Membrane Hosted with Enzyme@MOF Nanoreactor for Real-Time Blood Sensing. Anal Chem 2024. [PMID: 39264829 DOI: 10.1021/acs.analchem.4c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Plasma separation, rich in biomarkers crucial for diagnosis, is conventionally achieved via high-speed centrifugation, a method hindered by its blood usage, lengthy processes, and complex operations, which delays detection. We introduced a novel real-time blood sensing method based on a Janus membrane and enzymes @MOFs. Asymmetric driving of the janus membrane can realize spontaneous separation of plasma and prevent hemolysis during direct separation. Glucose oxidase (GOx), uric acid oxidase (UOx) and horseradish peroxidase (HRP) were encapsulated in a hydrophilic organometallic framework (MOFs) to construct an enzyme cascade nanoreactor. Embedding enzyme in hydrophilic MOFs not only retains the natural conformation of free enzyme but also improves the brittleness of enzyme, endows MOFs with new biological functions, and expands its sensing application. Using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogen and a custom app for color interpretation, we achieved real-time visualization of glucose (Glu) and uric acid (UA) at a 50 μM limit. The system accurately analyzed serum samples, matching commercial kits and showing promise for portable, personalized diagnostics.
Collapse
Affiliation(s)
- Fangbing Wang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jing Ren
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Qiwen Peng
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Hongyi Sun
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Qiankun Zeng
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yongheng Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
37
|
Liang W, Zheng S, Shu Y, Huang J. Machine Learning Optimizing Enzyme/ZIF Biocomposites for Enhanced Encapsulation Efficiency and Bioactivity. JACS AU 2024; 4:3170-3182. [PMID: 39211601 PMCID: PMC11350574 DOI: 10.1021/jacsau.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In this study, we present the first example of using a machine learning (ML)-assisted design strategy to optimize the synthesis formulation of enzyme/ZIFs (zeolitic imidazolate framework) for enhanced performance. Glucose oxidase (GOx) and horseradish peroxidase (HRP) were chosen as model enzymes, while Zn(eIM)2 (eIM = 2-ethylimidazolate) was selected as the model ZIF to test our ML-assisted workflow paradigm. Through an iterative ML-driven training-design-synthesis-measurement workflow, we efficiently discovered GOx/ZIF (G151) and HRP/ZIF (H150) with their overall performance index (OPI) values (OPI represents the product of encapsulation efficiency (E in %), retained enzymatic activity (A in %), and thermal stability (T in %)) at least 1.3 times higher than those in systematic seed data studies. Furthermore, advanced statistical methods derived from the trained random forest model qualitatively and quantitatively reveal the relationship among synthesis, structure, and performance in the enzyme/ZIF system, offering valuable guidance for future studies on enzyme/ZIFs. Overall, our proposed ML-assisted design strategy holds promise for accelerating the development of enzyme/ZIFs and other enzyme immobilization systems for biocatalysis applications and beyond, including drug delivery and sensing, among others.
Collapse
Affiliation(s)
- Weibin Liang
- School of Chemical and Biomolecular
Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | | | - Ying Shu
- School of Chemical and Biomolecular
Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Jun Huang
- School of Chemical and Biomolecular
Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| |
Collapse
|
38
|
Zhao Q, Wu D, Wang Y, Meng T, Sun J, Yang X. Encapsulation of Enzymes into Hydrophilic and Biocompatible Metal Azolate Framework: Improved Functions of Biocatalyst in Cascade Reactions and its Sensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307192. [PMID: 38517284 DOI: 10.1002/smll.202307192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/06/2024] [Indexed: 03/23/2024]
Abstract
Multiple enzyme-triggered cascade biocatalytic reactions are vital in vivo or vitro, considering the basic biofunction preservation in living organisms and signals transduction for biosensing platforms. Encapsulation of such enzymes into carrier endows a sheltering effect and can boost catalytic performance, although the selection and preparation of an appropriate carrier is still a concern. Herein, focusing on MAF-7, a category of metal azolate framework (MAF) with superiority against the topologically identical ZIF-8, this enzyme@MAF system can ameliorate the sustainability of encapsulating natural enzymes into carriers. The proposed biocatalyst composite AChE@ChOx@MAF-7/hemin is constructed via one-pot in situ coprecipitation method. Subsequently, MAF-7 is demonstrated to exhibit an excellent capacity of the carrier and protection against external factors in the counterpart of ZIF-8 through encapsulated and free enzymes. In addition, detections for specific substrates or inhibitors with favorable sensitivity are accomplished, indicating that the properties above expectation of different aspects of the established platform are successfully realized. This biofunctional composite based on MAF-7 can definitely provide a potential approach for optimization of cascade reaction and enzyme encapsulation.
Collapse
Affiliation(s)
- Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Donghui Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tian Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
39
|
Zhong L, Wang Z, Ye X, Cui J, Wang Z, Jia S. Molecular simulations guide immobilization of lipase on nest-like ZIFs with regulatable hydrophilic/hydrophobic surface. J Colloid Interface Sci 2024; 667:199-211. [PMID: 38636222 DOI: 10.1016/j.jcis.2024.04.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The catalytic performance of immobilized lipase is greatly influenced by functional support, which attracts growing interest for designing supports to achieve their promotive catalytic activity. Many lipases bind strongly to hydrophobic surfaces where they undergo interfacial activation. Herein, the behavioral differences of lipases with distinct lid structures on interfaces of varying hydrophobicity levels were firstly investigated by molecular simulations. It was found that a reasonable hydrophilic/hydrophobic surface could facilitate the lipase to undergo interfacial activation. Building on these findings, a novel "nest"-like superhydrophobic ZIFs (ZIFN) composed of hydrophobic ligands was prepared for the first time and used to immobilize lipase from Aspergillus oryzae (AOL@ZIFN). The AOL@ZIFN exhibited 2.0-folds higher activity than free lipase in the hydrolysis of p-Nitrophenyl palmitate (p-NPP). Especially, the modification of superhydrophobic ZIFN with an appropriate amount of hydrophilic tannic acid can significantly improve the activity of the immobilized lipase (AOL@ZIFN-TA). The AOL@ZIFN-TA exhibited 30-folds higher activity than free lipase, and still maintained 82% of its initial activity after 5 consecutive cycles, indicating good reusability. These results demonstrated that nanomaterials with rational arrangement of the hydrophilic/hydrophobic surface could facilitate the lipase to undergo interfacial activation and improve its activity, displaying the potential of the extensive application.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Zhongjie Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Xiaohong Ye
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Ziyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| |
Collapse
|
40
|
Wang B, Wang Z, Chen M, Du Y, Li N, Chai Y, Wang L, Zhang Y, Liu Z, Guo C, Jiang X, Guo X, Tian Z, Yang J, Zhu C, Li W, Ou L. Immobilized Urease Vector System Based on the Dynamic Defect Regeneration Strategy for Efficient Urea Removal. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051622 DOI: 10.1021/acsami.4c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The clearance of urea poses a formidable challenge, and its excessive accumulation can cause various renal diseases. Urease demonstrates remarkable efficacy in eliminating urea, but cannot be reused. This study aimed to develop a composite vector system comprising microcrystalline cellulose (MCC) immobilized with urease and metal-organic framework (MOF) UiO-66-NH2, denoted as MCC@UiO/U, through the dynamic defect generation strategy. By utilizing competitive coordination, effective immobilization of urease into MCC@UiO was achieved for efficient urea removal. Within 2 h, the urea removal efficiency could reach up to 1500 mg/g, surpassing an 80% clearance rate. Furthermore, an 80% clearance rate can also be attained in peritoneal dialyzate from patients. MCC@UiO/U also exhibits an exceptional bioactivity even after undergoing 5 cycles of perfusion, demonstrating remarkable stability and biocompatibility. This innovative approach and methodology provide a novel avenue and a wide range of immobilized enzyme vectors for clinical urea removal and treatment of kidney diseases, presenting immense potential for future clinical applications.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zimeng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Li
- Changping Laboratory, Beijing 102200, China
| | - Yamin Chai
- General Hospital Tianjin Medical University, Tianjin 300052, China
| | - Lichun Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziying Tian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingxuan Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunling Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Yao Y, Liu W, Guan J, Cheng Y, Wu Z, Liu Q, Chen X. Synergy of Target-Induced Magnetic Network and Single-Drop Chromogenic System for Ultrasensitive "All-in-Tube" Detection of miRNA in Whole Blood. Anal Chem 2024; 96:12012-12021. [PMID: 38975991 DOI: 10.1021/acs.analchem.4c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The development of liquid biopsy methods for the accurate and reliable detection of miRNAs in whole blood is critical for the early diagnosis and monitoring of diseases. However, accurate quantification of miRNA expression levels remains challenging due to the complex matrix and low abundance of miRNAs in blood samples. Herein, we report a contactless signal output strategy with low background interference that ensures "zero-contact" between the reaction system and the colorimetry system. The designed target-induced magnetic ZnS/ZIF-90/ZnS network can serve as a unique signal amplifier and transducer. It releases hydrogen sulfide (H2S) gas in an acidic solution which can be concentrated in a droplet of only a few microliters in volume, etching the silver layer of Au@Ag nanostars (NSTs) in the droplet. This will lead to changes in the localized surface plasmon resonance signals of the NSTs. Finally, quantitative detection of let-7a is realized by measuring the offset value of the UV-vis absorption peak. Therefore, by virtue of the synergistic action of quadruple signal amplification methods, including catalytic hairpin assembly, ZnS/ZIF-90/ZnS, magnetic separation, and microextraction, the "All-in-Tube" ultrasensitive detection of low-abundance let-7a in whole blood is achieved with a detection limit as low as the aM level. In addition, the "zero-contact" signal output mode effectively solves the problem of complex matrix interference, demonstrating the great potential of this method for miRNA quantification in complex samples, such as whole blood.
Collapse
Affiliation(s)
- Yao Yao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wei Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yujun Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhiliang Wu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Xiangjiang Laboratory, Changsha, Hunan 410083, China
| |
Collapse
|
42
|
Navarro-Alapont J, Negro C, Navalón S, Dhakshinamoorthy A, Armentano D, Ferrando-Soria J, Pardo E. Design of Multivariate Biological Metal-Organic Frameworks: Toward Mimicking Active Sites of Enzymes. Inorg Chem 2024; 63:13681-13688. [PMID: 38982342 PMCID: PMC11271005 DOI: 10.1021/acs.inorgchem.4c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Mimicking enzymatic processes carried out by natural enzymes, which are highly efficient biocatalysts with key roles in living organisms, attracts much interest but constitutes a synthetic challenge. Biological metal-organic frameworks (bioMOFs) are potential candidates to be enzyme catalysis mimics, as they offer the possibility to combine biometals and biomolecules into open-framework porous structures capable of simulating the catalytic pockets of enzymes. In this work, we first study the catalase activity of a previously reported bioMOF, derived from the amino acid L-serine, with formula {CaIICuII6[(S,S)-serimox]3(OH)2(H2O)} · 39H2O (1) (serimox = bis[(S)-serine]oxalyl diamide), which is indeed capable to mimic catalase enzymes, in charge of preventing cell oxidative damage by decomposing, efficiently, hydrogen peroxide to water and oxygen (2H2O2 → 2 H2O + O2). With these results in hand, we then prepared a new multivariate bioMOF (MTV-bioMOF) that combines two different types of bioligands derived from L-serine and L-histidine amino acids with formula CaIICuII6[(S,S)-serimox]2[(S,S)-hismox]1(OH)2(H2O)}·27H2O (2) (hismox = bis[(S)-histidine]oxalyl diamide ligand). MTV-bioMOF 2 outperforms 1 degrading hydrogen peroxide, confirming the importance of the amino acid residue from the histidine amino acid acting as a nucleophile in the catalase degradation mechanism. Despite displaying a more modest catalytic behavior than other reported MOF composites, in which the catalase enzyme is immobilized inside the MOF, this work represents the first example of a MOF in which an attempt is made to replicate the active center of the catalase enzyme with its constituent elements and is capable of moderate catalytic activity.
Collapse
Affiliation(s)
- Javier Navarro-Alapont
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Cristina Negro
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia 46022, Spain
| | | | - Donatella Armentano
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036 Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, 46980 Paterna, Valencia, Spain
| | - Emilio Pardo
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia 46022, Spain
| |
Collapse
|
43
|
Wu Y, Sun Y. A Hydrophilic Metal Azolate Coordination Polymer for In Situ Encapsulation of Haloalkane Dehalogenase with Enhanced Enzymatic Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35566-35575. [PMID: 38922631 DOI: 10.1021/acsami.4c06357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Encapsulating enzymes within metal-organic frameworks such as zeolitic imidazolate framework-8 (ZIF-8) has been demonstrated to enhance enzymatic performance under harsh conditions. However, by computer-aided analysis, we revealed that highly hydrophobic organic ligands and unfavorable metal ions could greatly impair the activity of haloalkane dehalogenase DhaA by directly interacting with the catalytic sites, causing an extremely low activity of DhaA after encapsulating within ZIF-8. We also found that the presence of a protecting polymer could protect DhaA from the damage of organic ligands and metal ions and that a positively charged amino acid could increase the DhaA activity. Based on the simulations and experimental observations, we have designed to coencapsulate DhaA with poly(vinylpyrrolidone) (PVP) and lysine (Lys) within the amorphous Co-based metal azolate coordination polymer (CoCP). The as-prepared immobilized enzyme (DhaA/PVP/Lys@CoCP) exhibited significantly increased activity (91.5 times higher than that of DhaA@ZIF-8), dramatically enhanced thermostability at 50-70 °C, greatly improved catalytic performance in several organic solvent solutions, and good recyclability (over 75% of the initial activity after 10 cycles). The superiority of the immobilized enzyme was also demonstrated with a substrate frequently detected in the real world. In addition to the protective effect of PVP and positive effect of Lys, experimental and computational investigations unveiled other two favorable aspects that contributed to the enhanced enzymatic performance: (1) high hydrophilicity of the immobilization material and (2) the use of Co2+ with a minimal negative effect on DhaA. The research has thus provided a promising immobilized DhaA with favorable catalytic performance and great potential in industrial applications.
Collapse
Affiliation(s)
- Yin Wu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
44
|
Shi J, Barman SC, Cheng S, Zeng Y. Metal-organic framework-interfaced ELISA probe enables ultrasensitive detection of extracellular vesicle biomarkers. J Mater Chem B 2024; 12:6342-6350. [PMID: 38856318 PMCID: PMC11222032 DOI: 10.1039/d4tb00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The enzyme-linked immunosorbent assay (ELISA) remains the prevailing method for quantifying protein biomarkers. Enzymatic signal generation and amplification are key mechanisms that govern its analytical performance. This study reports the synthesis and application of microscale metal-organic framework (MOF)/enzyme composite particles as a novel detection probe to substantially enhance the sensitivity of ELISA. An optimal one-pot approach was established to incorporate a substantial amount of streptavidin-horseradish peroxidase (SA-HRP) either within or on the surface of the metal-azolate framework (MAF-7) microparticles. This approach enables the labeling of a single sandwich antibody-antigen complex with numerous enzymes, which markedly amplifies the enzymatic colorimetric signal generation. Moreover, MAF-7 caging was found to enhance the reactivity of the caged HRP enzyme, further promoting the overall detection sensitivity of ELISA. Compared to other developments that are often associated with more complicated detection modalities, our method is compatible with standard immunoassays and commonly used photometrical signal detection. The implementation of this strategy in the detection of CD147 results in a remarkably low limit of detection of 2.8 fg mL-1, representing a 105-fold improvement compared to that obtained with the standard ELISA. Moreover, the heightened sensitivity of this technique renders it particularly suitable for diagnosing breast cancer, thus presenting a promising tool for the early detection of the disease in clinical settings.
Collapse
Affiliation(s)
- Jingzhu Shi
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Sharat Chandra Barman
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
- Currently working at King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- University of Florida Health Cancer Center, Gainesville, FL 32611, USA
| |
Collapse
|
45
|
Xing X, Cheng W, Zhou S, Liu H, Wu Z. Recent advances in small-angle scattering techniques for MOF colloidal materials. Adv Colloid Interface Sci 2024; 329:103162. [PMID: 38761601 DOI: 10.1016/j.cis.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/21/2024] [Accepted: 04/20/2024] [Indexed: 05/20/2024]
Abstract
This paper reviews the recent progress of small angle scattering (SAS) techniques, mainly including X-ray small angle scattering technique (SAXS) and neutron small angle scattering (SANS) technique, in the study of metal-organic framework (MOF) colloidal materials (CMOFs). First, we introduce the application research of SAXS technique in pristine MOFs materials, and review the studies on synthesis mechanism of MOF materials, the pore structures and fractal characteristics, as well as the spatial distribution and morphological evolution of foreign molecules in MOF composites and MOF-derived materials. Then, the applications of SANS technique in MOFs are summarized, with emphasis on SANS data processing method, structure modeling and quantitative structural information extraction. Finally, the characteristics and developments of SAS techniques are commented and prospected. It can be found that most studies on MOF materials with SAS techniques focus mainly on nanoporous structure characterization and the evolution of pore structures, or the spatial distribution of other foreign molecules loaded in MOFs. Indeed, SAS techniques take an irreplaceable role in revealing the structure and evolution of nanopores in CMOFs. We expect that this paper will help to understand the research status of SAS techniques on MOF materials and better to apply SAS techniques to conduct further research on MOF and related materials.
Collapse
Affiliation(s)
- Xueqing Xing
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weidong Cheng
- College of Materials Science and Engineering, New Energy Storage Devices Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Shuming Zhou
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanyan Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; College of Materials Science and Engineering, New Energy Storage Devices Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Zhonghua Wu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
46
|
Taketomi H, Hosono N, Uemura T. Selective Removal of Denatured Proteins Using MOF Nanopores. J Am Chem Soc 2024. [PMID: 38842912 DOI: 10.1021/jacs.4c03886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Here we present, for the first time, the selective adsorption of denatured proteins using a metal-organic framework (MOF), demonstrating promising potential for protein purification. Typical proteins, such as lysozyme and carbonic anhydrase B, enter the pores of MIL-101 through their narrow apertures when they are denatured to an unfolded state. Selective adsorption is achieved by finely tuning two key features: the sizes of the aperture and cage of the MOF nanopores, which are responsible for sorting unfolded polypeptide chains and inhibiting the translocation of the native form into the pores, respectively. By leveraging this selective adsorption, we successfully purified a mixture of native and denatured proteins by adding MOF to the mixture, achieving a native purity of over 99%.
Collapse
Affiliation(s)
- Hirotaka Taketomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| |
Collapse
|
47
|
Wang X, Singh SP, Zhang T, Andrews R, Lizio MG, Whitehead GFS, Riddell IA. Amino Functionality Enables Aqueous Synthesis of Carboxylic Acid-Based MOFs at Room Temperature by Biomimetic Crystallization. Inorg Chem 2024; 63:9801-9808. [PMID: 38743640 PMCID: PMC11134488 DOI: 10.1021/acs.inorgchem.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Enzyme immobilization within metal-organic frameworks (MOFs) is a promising solution to avoid denaturation and thereby utilize the desirable properties of enzymes outside of their native environments. The biomimetic mineralization strategy employs biomacromolecules as nucleation agents to promote the crystallization of MOFs in water at room temperature, thus overcoming pore size limitations presented by traditional postassembly encapsulation. Most biomimetic crystallization studies reported to date have employed zeolitic imidazole frameworks (ZIFs). Herein, we expand the library of MOFs suitable for biomimetic mineralization to include zinc(II) MOFs incorporating functionalized terephthalic acid linkers and study the catalytic performance of the enzyme@MOFs. Amine functionalization of terephthalic acids is shown to accelerate the formation of crystalline MOFs enabling new enzyme@MOFs to be synthesized. The structure and morphology of the enzyme@MOFs were characterized by PXRD, FTIR, and SEM-EDX, and the catalytic potential was evaluated. Increasing the linker length while retaining the amino moiety gave rise to a family of linkers; however, MOFs generated with the 2,2'-aminoterephthalic acid linker displayed the best catalytic performance. Our data also illustrate that the pH of the reaction mixture affects the crystal structure of the MOF and that this structural transformation impacts the catalytic performance of the enzyme@MOF.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Samarth Pratap Singh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Tongtong Zhang
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Rebecca Andrews
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Maria Giovanna Lizio
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - George F. S. Whitehead
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Imogen A. Riddell
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
48
|
Song H, Zhang W, Zhang S, Liu Y, Su P, Song J, Yang Y. Trypsin Encapsulation in the Zeolitic Imidazolate Framework for Low-Molecular Weight Protein Analysis with High Selectivity and Efficiency. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24398-24409. [PMID: 38712727 DOI: 10.1021/acsami.4c04507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Low-molecular weight proteins (LWPs) are important sources of biological information in biomarkers, signaling molecules, and pathology. However, the separation and analysis of LWPs in complex biological samples are challenging, mainly due to their low abundance and the complex sample pretreatment procedure. Herein, trypsin modified by poly(acrylic acid) (PAA) was encapsulated by a zeolitic imidazolate framework (ZIF-L). Mesopores were formed on the ZIF-L with the introduction of PAA. An alternative strategy for separation and pretreatment of LWPs was developed based on the prepared ZIF-L-encapsulated trypsin with adjustable pore size. The mesoporous structure of the prepared materials selectively excluded high-molecular weight proteins from the reaction system, allowing LWPs to enter the pores and react with the internal trypsin, resulting in an improved separation efficiency. The hydrophobicity of the ZIF-L simplified the digestion process by inducing significant structural changes in substrate proteins. In addition, the enzymatic activity was significantly enhanced by the developed encapsulation method that maintained the enzyme conformation, allowed low mass transfer resistance, and possessed a high enzyme-to-substrate ratio. As a result, the ZIF-L-encapsulated trypsin can achieve highly selective separation, valid denaturation, and efficient digestion of LWPs in a short time by simply mixing with substrate proteins, greatly simplifying the separation and pretreatment process of the traditional hydrolysis method. The prepared materials and the developed strategy demonstrated an excellent size-selective assay performance in model protein mixtures, showing great potential in the application of proteomics analysis.
Collapse
Affiliation(s)
- Hanyue Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenkang Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuyi Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
49
|
Jia B, Xia T, Wang X, Xu Y, Li B. Investigation of biosensing properties in magnetron sputtered metallized UV-curable polymer microneedle electrodes. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1008-1030. [PMID: 38386313 DOI: 10.1080/09205063.2024.2314360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024]
Abstract
Direct management and assessment of metal film properties applied to polymer microneedle (MN) biosensors remains difficult due to constraints inherent to their morphology. By simplifying the three-dimensional structure of MNs and adjusting the deposition time, different thicknesses of Au films were deposited on the UV-cured polymer planar and MN substrates. Several properties relevant to the biosensing of the Au films grown on the polymer surfaces were investigated. The results demonstrate the successful deposition of pure and stable Au nanoparticles onto the surface of UV-curable polymer materials. Initially, Au islands formed within the first minute of deposition; however, as the sputtering time extended, these islands transformed into Au nanoparticle films and disappeared. The hydrophilicity of the surface remains unchanged, while the surface resistance of the thin film decreases with increasing thickness, and the adhesion to the substrate decreases as the thickness increases. In short, a sputtering time of 5-6 min results in Au films with a thickness of 100-200 nm, which exhibit exceptional comprehensive biosensing performance. Additionally, MNs made of Au/UV-curable polymers and produced using magnetron sputtering maintain their original shape, enhance their mechanical characteristics, and gain new functionalities. The Au/UV-curable polymer MNs exhibited remarkable electrode performance despite being soaked in a 37 °C PBS solution for 14 days. These discoveries have important implications in terms of decreasing the dependence on valuable metals in MN biosensors, lowering production expenses, and providing guidance for the choice and design of materials for UV-curable polymer MN metallization films.
Collapse
Affiliation(s)
- Baoling Jia
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal under the Province and the Ministry of Education, Lanzhou University of Technology, Lanzhou, China
| | - Tiandong Xia
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal under the Province and the Ministry of Education, Lanzhou University of Technology, Lanzhou, China
| | - Xiaohui Wang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Yangtao Xu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal under the Province and the Ministry of Education, Lanzhou University of Technology, Lanzhou, China
| | - Bei Li
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
50
|
Liu X, Wang Y, Wang L, Chen W, Ma X. Enzymatic Nanomotors Surviving Harsh Conditions Enabled by Metal Organic Frameworks Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305800. [PMID: 37991255 DOI: 10.1002/smll.202305800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Enzyme-driven micro/nanomotors (MNMs) have demonstrated potentials in the biomedical field because of their excellent biocompatibility, versatility, and fuel bioavailability. However, the fragility of enzymes limits their practical application, because of their susceptibility to denaturation and degradation in realistic scenarios. Herein, a simple yet versatile and effective approach is reported to preserve the enzymatic activity and propulsion capability of enzymatic MNMs under various harsh conditions using metal organic frameworks (MOFs) as a protective shell. Urease can be encapsulated within the exoskeleton of zeolitic imidazolate framework-8 (ZIF-8) via biomimetic mineralization to form ZIF-8@urease (ZU-I) nanomotors that exhibit self-propulsion in the presence of urea. When exposed to harsh conditions, including high temperature, presence of proteases, and organic solvents, the ZU-I nanomotors still maintained their activity and mobility, whereas ZIF-8 with externally modified urease (ZU-O) nanomotors with externally modified urease as a control rapidly lost their motion capabilities owing to the inactivation of urease. Furthermore, ZU-I nanomotors exhibit effectively enhanced diffusion within the small intestine fluid, achieving a fourfold higher mucus penetration than the ZU-O nanomotors. The results highlight the effectiveness of using MOFs as protective shells for enzyme nano-engines, which can greatly advance the practical applications of enzymatic MNMs under realistic conditions, especially for biomedical purpose.
Collapse
Affiliation(s)
- Xiaoxia Liu
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Yong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liying Wang
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Wenjun Chen
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|