1
|
Tong S, Pu J, Qi Y, Li SW. Chiral Phosphoric Acid-Catalyzed Asymmetric Synthesis of Axially Chiral Arylpyrazole. Org Lett 2025; 27:932-936. [PMID: 39846447 DOI: 10.1021/acs.orglett.4c03996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A chiral phosphoric acid-catalyzed efficient, operationally simple, general method for straightforward syntheses of axially chiral arylpyrazole employing N-alkyl of 3-aryl-5-aminopyrazoles reacting with azonaphthalenes was achieved. A wide variety of axially chiral heterobiaryl diamines in generally good yields with excellent enantioselectivities were obtained under mild conditions. In addition, a scaled-up experiment and postmodification of the chiral product further highlighted the synthetic utility.
Collapse
Affiliation(s)
- Shujun Tong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jiaqi Pu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yu Qi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shi-Wu Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
2
|
Zhao SN, Li Q, Qiao XX, He Y, Li G, Zhao XJ. Asymmetric Synthesis of Axially Chiral N, N-1,2-Pentatomic Heterobiaryl Diamines by an Organocatalytic Arylation Reaction. Chemistry 2024; 30:e202402843. [PMID: 39304988 DOI: 10.1002/chem.202402843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Indexed: 11/09/2024]
Abstract
The utilization of axially chiral biaryl diamines has been widely acknowledged as highly advantageous structures for the advancement of chiral catalysts and ligands. This highlights their extensive range of applications in asymmetric catalysis and synthesis. Herein, we devised a direct arylation reactions of 5-aminopyrazoles with azonaphthalenes, utilizing chiral phosphoric acid as the catalyst. This method delivers structurally novel atroposelective N, N-1,2-azole heteroaryl diamines with high yields (up to >98 %) and good to excellent enantiomeric ratios while exhibiting a wide range of substrate compatibility.
Collapse
Affiliation(s)
- Shi-Na Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Qian Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
3
|
Mallick S, Mandal T, Kumari N, Roy L, De Sarkar S. Divergent Electrochemical Synthesis of Indoles through pK a Regulation of Amides: Synthetic and Mechanistic Insights. Chemistry 2024; 30:e202304002. [PMID: 38290995 DOI: 10.1002/chem.202304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
A divergent synthetic approach to access highly substituted indole scaffolds is illustrated. By virtue of a tunable electrochemical strategy, distinct control over the C-3 substitution pattern was achieved by employing two analogous 2-styrylaniline precursors. The chemoselectivity is governed by the fine-tuning of the acidity of the amide proton, relying on the appropriate selection of N-protecting groups, and assisted by the reactivity of the electrogenerated intermediates. Detailed mechanistic investigations based on cyclic voltametric experiments and computational studies revealed the crucial role of water additive, which assists the proton-coupled electron transfer event for highly acidic amide precursors, followed by an energetically favorable intramolecular C-N coupling, causing exclusive fabrication of the C-3 unsubstituted indoles. Alternatively, the implementation of an electrogenerated cationic olefin activator delivers the C-3 substituted indoles through the preferential nucleophilic nature of the N-acyl amides. This electrochemical approach of judicious selection of N-protecting groups to regulate pKa/E° provides an expansion in the domain of switchable generation of heterocyclic derivatives in a sustainable fashion, with high regio- and chemoselectivity.
Collapse
Affiliation(s)
- Samrat Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Nidhi Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus, Bhubaneswar, Bhubaneswar, 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
4
|
Luo W, Guo H, Qiu X, Ming M, Zhang L, Zhu H, Zhou J. Organocatalytic Atroposelective Construction of Pentatomic Heterobiaryl Diamines through Arylation of 5-Aminoisoxazoles with Azonaphthalenes. Org Lett 2024; 26:2564-2568. [PMID: 38514236 DOI: 10.1021/acs.orglett.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
An efficient catalytic asymmetric Michael-type reaction of azonaphthalenes with 5-aminoisoxazoles has been developed. The reaction was based on the utilization of a chiral phosphoric acid as the catalyst, delivering a large panel of axially chiral heterobiaryl diamines in generally good yields with excellent enantioselectivities. The gram-scale reaction and postmodification of the chiral product demonstrated their potentials in the synthesis of chiral catalysts and ligands. This approach not only provides a useful method for the construction of pentatomic heterobiaryl scaffolds but also offers new members to the axially chiral diamine family with promising applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Weiwei Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Huanhuan Guo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xueying Qiu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Meijun Ming
- Sichuan Police College, Luzhou 646000, China
| | - Lin Zhang
- Sichuan Police College, Luzhou 646000, China
| | - Hao Zhu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jun Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
5
|
Guo SM, Huh S, Coehlo M, Shen L, Pieters G, Baudoin O. A C-H activation-based enantioselective synthesis of lower carbo[n]helicenes. Nat Chem 2023; 15:872-880. [PMID: 37024717 PMCID: PMC10239729 DOI: 10.1038/s41557-023-01174-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023]
Abstract
The three-dimensional structure of carbohelicenes has fascinated generations of molecular chemists and has been exploited in a wide range of applications. Their strong circularly polarized luminescence has attracted considerable attention in recent years due to promising applications in new optical materials. Although the enantioselective synthesis of fused carbo- and heterohelicenes has been achieved, a direct catalytic enantioselective method allowing the synthesis of lower, non-fused carbo[n]helicenes (n = 4-6) is still lacking. We report here that Pd-catalysed enantioselective C-H arylation in the presence of a unique bifunctional phosphine-carboxylate ligand provides a simple and general access to these lower carbo[n]helicenes. Computational mechanistic studies indicate that both the C-H activation and reductive elimination steps contribute to the overall enantioselectivity. The observed enantio-induction seems to arise from a combination of non-covalent interactions and steric repulsion between the substrate and ligand during the two key reductive elimination steps. The photophysical and chiroptical properties of the synthesized scalemic [n]helicenes have been systematically studied.
Collapse
Affiliation(s)
- Shu-Min Guo
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Soohee Huh
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Max Coehlo
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Li Shen
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Grégory Pieters
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Olivier Baudoin
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Ghosh S, Changotra A, Petrone DA, Isomura M, Carreira EM, Sunoj RB. Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. J Am Chem Soc 2023; 145:2884-2900. [PMID: 36695526 DOI: 10.1021/jacs.2c10975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.
Collapse
Affiliation(s)
- Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A Petrone
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Mayuko Isomura
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Athira C, Sreenithya A, Hadad CM, Sunoj RB. Cooperative Asymmetric Dual Catalysis Involving a Chiral N-Heterocyclic Carbene Organocatalyst and Palladium in an Annulation Reaction: Mechanism and Origin of Stereoselectivity. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- C. Athira
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - A. Sreenithya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Xiang X, He Z, Dong X. Recent Advances of Efficient Synthesis of Chiral Molecules Promoted by Pd/Chiral Phosphoric Acid Synergistic Catalysis. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
9
|
Miller E, Mai BK, Read JA, Bell WC, Derrick JS, Liu P, Toste FD. A Combined DFT, Energy Decomposition, and Data Analysis Approach to Investigate the Relationship Between Noncovalent Interactions and Selectivity in a Flexible DABCOnium/Chiral Anion Catalyst System. ACS Catal 2022; 12:12369-12385. [PMID: 37215160 PMCID: PMC10195112 DOI: 10.1021/acscatal.2c03077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing strategies to study reactivity and selectivity in flexible catalyst systems has become an important topic of research. Herein, we report a combined experimental and computational study aimed at understanding the mechanistic role of an achiral DABCOnium cofactor in a regio- and enantiodivergent bromocyclization reaction. It was found that electron-deficient aryl substituents enable rigidified transition states via an anion-π interaction with the catalyst, which drives the selectivity of the reaction. In contrast, electron-rich aryl groups on the DABCOnium result in significantly more flexible transition states, where interactions between the catalyst and substrate are more important. An analysis of not only the lowest-energy transition state structures but also an ensemble of low-energy transition state conformers via energy decomposition analysis and machine learning was crucial to revealing the dominant noncovalent interactions responsible for observed changes in selectivity in this flexible system.
Collapse
Affiliation(s)
- Edward Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jacquelyne A Read
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - William C Bell
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jeffrey S Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Zhu L, Wang D. Deciphering the cooperative effect of base and N-substituents on the origin of enantioselectivity switching for Mannich reactions of glycinate by carbonyl catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
12
|
Herrera CL, Santiago JV, Pastre JC, Correia CRD. In Tandem Auto‐Sustainable Enantioselective Heck‐Matsuda Reactions Directly from Anilines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - João Victor Santiago
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 São Paulo Brazil
| | - Julio Cezar Pastre
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 São Paulo Brazil
| | | |
Collapse
|
13
|
Maley SM, Steagall R, Lief GR, Buck RM, Yang Q, Sydora OL, Bischof SM, Ess DH. Computational Evaluation and Design of Polyethylene Zirconocene Catalysts with Noncovalent Dispersion Interactions. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Steven M. Maley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Robert Steagall
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Graham R. Lief
- Research and Technology, Chevron Phillips Chemical Company LP, Highways 60 & 123, Bartlesville, Oklahoma 74003, United States
| | - Richard M. Buck
- Research and Technology, Chevron Phillips Chemical Company LP, Highways 60 & 123, Bartlesville, Oklahoma 74003, United States
| | - Qing Yang
- Research and Technology, Chevron Phillips Chemical Company LP, Highways 60 & 123, Bartlesville, Oklahoma 74003, United States
| | - Orson L. Sydora
- Research and Technology, Chevron Phillips Chemical Company LP, 1862, Kingwood Drive, Kingwood, Texas 77339, United States
| | - Steven M. Bischof
- Research and Technology, Chevron Phillips Chemical Company LP, 1862, Kingwood Drive, Kingwood, Texas 77339, United States
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
14
|
Ojha S, Panda N. Pd-Catalyzed desulfitative arylation of olefins by N-methoxysulfonamide. Org Biomol Chem 2022; 20:1292-1298. [PMID: 35073396 DOI: 10.1039/d1ob02360h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Pd-catalyzed protocol for the desulfitative Heck-type reaction of N-methoxy aryl sulfonamides with alkenes was reported. The cross-coupling reaction was performed successfully with a variety of olefins to obtain aryl alkenes. Different substituents on the aromatic ring of N-methoxysulfonamides were also found to be compatible with the reaction conditions. Expectedly, the reaction proceeds through CuCl2-promoted generation of the nitrogen radical and subsequent desulfonylation under thermal conditions to afford the aryl radical for the Pd-catalyzed coupling reaction. N-Methoxysulfonamide was further exploited for the synthesis of symmetrical biaryls in the presence of CuCl2.
Collapse
Affiliation(s)
- Subhadra Ojha
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| | - Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| |
Collapse
|
15
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Reddi Y, Cramer CJ. Mechanism and Design Principles for Controlling Stereoselectivity in the Copolymerization of CO 2/Cyclohexene Oxide by Indium(III) Phosphasalen Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yernaidu Reddi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Sunoj RB. Coming of Age of Computational Chemistry from a Resilient Past to a Promising Future. Isr J Chem 2021. [DOI: 10.1002/ijch.202100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raghavan B. Sunoj
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| |
Collapse
|
18
|
Unnikrishnan A, Sunoj RB. Iridium-Catalyzed Regioselective Borylation through C-H Activation and the Origin of Ligand-Dependent Regioselectivity Switching. J Org Chem 2021; 86:15618-15630. [PMID: 34598435 DOI: 10.1021/acs.joc.1c02126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research efforts in catalytic regioselective borylation using C-H bond activation of arenes have gained considerable recent attention. The ligand-enabled regiocontrol, such as in the borylation of benzaldehyde, the selectivity could be switched from the ortho to meta position, under identical conditions, by just changing the external ligand (L) from 8-aminoquinoline (8-AQ) to tetramethylphenanthroline (TMP). The DFT(B3LYP-D3) computations helped us learn that the energetically preferred catalytic pathway includes the formation of an Ir-π-complex between the active catalyst [Ir(L)(Bpin)3] and benzaldimine, a C-H bond oxidative addition (OA) to form an Ir(V)aryl-hydride intermediate, and a reductive elimination to furnish the borylated benzaldehyde as the final product. The lowest energetic span (δEortho = 26 kcal/mol with 8-AQ) is noted in the ortho borylation pathway, with the OA transition state (TS) as the turnover-determining TS. The change in regiochemical preference to the meta borylation (δEmeta = 26) with TMP is identified. A hemilabile mode of 8-AQ participation is found to exhibit a δEortho of 24 kcal/mol for the ortho borylation, relative to that in the chelate mode (δEortho = 26 kcal/mol). The predicted regioselectivity switching is in good agreement with the earlier experimental observations.
Collapse
Affiliation(s)
- Anju Unnikrishnan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
19
|
Xu JC, Yin YZ, Han ZY. Asymmetric Counteranion Directed Catalytic Heck/Tsuji-Trost Annulation of Aryl Iodides and 1,3-Dienes. Org Lett 2021; 23:3834-3838. [PMID: 33961444 DOI: 10.1021/acs.orglett.1c00910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A chiral anion-mediated asymmetric Heck/Tsuji-Trost reaction of aryl iodides and 1,3-dienes is presented. Chiral indoline derivatives could be afforded with remarkably higher yields and enantioselectivities than our previous chiral ligand-based method. Silver carbonate is employed as both base and halide scavenger to ensure fast and recyclable exchange of the catalytic amount of chiral anions. Fast salt metathesis, as well as the acceleration effect of the chiral anion, could both benefit the stereocontrol of the reaction.
Collapse
Affiliation(s)
- Jia-Cheng Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Zhuo Yin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Carmona JA, Rodríguez-Franco C, López-Serrano J, Ros A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. Atroposelective Transfer Hydrogenation of Biaryl Aminals via Dynamic Kinetic Resolution. Synthesis of Axially Chiral Diamines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- José A. Carmona
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Carlos Rodríguez-Franco
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Joaquín López-Serrano
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento de Química Inorgánica, Universidad de Sevilla and Centro de Innovación Química Avanzada (ORFEO-CINQA). Avda. Américo Vespucio, 49,41092 Sevilla, Spain
| | - Abel Ros
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
21
|
Xie J, Liang R, Jia Y. Recent Advances of Catalytic Enantioselective Heck Reactions and
Reductive‐Heck
Reactions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000464] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jia‐Qi Xie
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Ren‐Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yi‐Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
22
|
Zhang T, Li WA, Shen HC, Chen SS, Han ZY. Chiral-Anion-Mediated Asymmetric Heck–Matsuda Reaction of Acyclic Alkenyl Alcohols. Org Lett 2021; 23:1473-1477. [DOI: 10.1021/acs.orglett.1c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | | | | | | | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Li BW, Wang MY, Liu JY. DFT study on the mechanism of palladium(0)-catalyzed reaction of o-iodoanilines, CO2, and CO. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Zheng Y, Qin T, Zi W. Enantioselective Inverse Electron Demand (3 + 2) Cycloaddition of Palladium-Oxyallyl Enabled by a Hydrogen-Bond-Donating Ligand. J Am Chem Soc 2021; 143:1038-1045. [DOI: 10.1021/jacs.0c11504] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yin Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianzhu Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Zhu LH, Yuan HY, Zhang JP. Enantioselective synthesis of chiral tetrasubstituted allenes: harnessing electrostatic and noncovalent interactions in a bifunctional activation model for N-triflylphosphoramide catalysis. Org Chem Front 2021. [DOI: 10.1039/d0qo01250e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DFT calculation reveals that the oxygen activation model is preferred than the nitrogen activation model due to the preferred chiral electrostatic environment.
Collapse
Affiliation(s)
- Li-Han Zhu
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Hai-Yan Yuan
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Jing-Ping Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
26
|
Deng Z, Feng J, Zhou F, Ouyang Y, Ma H, Zhou W, Zhang X, Cai Q. Copper( i)–catalyzed intramolecular asymmetric C-arylation of acyclic β-ester amides: enantioselective formation of chiral oxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00568e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A highly efficient intramolecular asymmetric C-arylation of acyclic β-ester amides is demonstrated.
Collapse
Affiliation(s)
- Zhuoji Deng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Jiajie Feng
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Yifan Ouyang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Haowen Ma
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Wei Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design
- State Key Laboratory of Chemical Oncogenomics
- Peking University Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| |
Collapse
|
27
|
Trouvé J, Gramage-Doria R. Beyond hydrogen bonding: recent trends of outer sphere interactions in transition metal catalysis. Chem Soc Rev 2021; 50:3565-3584. [DOI: 10.1039/d0cs01339k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The implementation of interactions beyond hydrogen bonding in the 2nd coordination sphere of transition metal catalysts is rare. However, it has already shown great promise in last 5 years, providing new tools to control the activity and selectivity as here reviewed.
Collapse
|
28
|
Dangat Y, Popli S, Sunoj RB. Unraveling the Importance of Noncovalent Interactions in Asymmetric Hydroformylation Reactions. J Am Chem Soc 2020; 142:17079-17092. [DOI: 10.1021/jacs.0c06942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuvraj Dangat
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sahil Popli
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
29
|
Tsai CC, Sandford C, Wu T, Chen B, Sigman MS, Toste FD. Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. Angew Chem Int Ed Engl 2020; 59:14647-14655. [PMID: 32453890 PMCID: PMC7686151 DOI: 10.1002/anie.202006237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Indexed: 11/05/2022]
Abstract
The mode of asymmetric induction in an enantioselective intramolecular allylic substitution reaction catalyzed by a combination of palladium and a chiral phosphoric acid was investigated by a combined experimental and statistical modeling approach. Experiments to probe nonlinear effects, the reactivity of deuterium-labeled substrates, and control experiments revealed that nucleophilic attack to the π-allylpalladium intermediate is the enantio-determining step, in which the chiral phosphate anion is involved in stereoinduction. Using multivariable linear regression analysis, we determined that multiple noncovalent interactions with the chiral environment of the phosphate anion are integral to enantiocontrol in the transition state. The synthetic protocol to form chiral pyrrolidines was further applied to the asymmetric construction of C-O bonds at fully substituted carbon centers in the synthesis of chiral 2,2-disubstituted benzomorpholines.
Collapse
Affiliation(s)
- Cheng-Che Tsai
- Department of Chemistry, University of California, Berkeley Berkeley, CA 94720 (USA)
| | - Christopher Sandford
- Department of Chemistry, University of Utah 315 South 1400 East, Salt Lake City, UT 84112 (USA)
| | - Tao Wu
- Department of Chemistry, University of California, Berkeley Berkeley, CA 94720 (USA)
| | - Buyun Chen
- Department of Chemistry, University of California, Berkeley Berkeley, CA 94720 (USA)
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah 315 South 1400 East, Salt Lake City, UT 84112 (USA)
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley Berkeley, CA 94720 (USA)
| |
Collapse
|
30
|
Shao H, Reddi Y, Cramer CJ. Modeling the Mechanism of CO 2/Cyclohexene Oxide Copolymerization Catalyzed by Chiral Zinc β-Diiminates: Factors Affecting Reactivity and Isotacticity. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huiling Shao
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yernaidu Reddi
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Oliveira VC, Oliveira JM, Menezes da Silva VH, Khan IU, Correia CRD. Enantioselective Heck‐Matsuda Reactions of Spirocyclopentenyl Hydantoins Directed by Non‐Covalent Interactions: Total Synthesis of the (
S
,
S
)‐VPC01091. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Valdeir C. Oliveira
- Departamento de Química OrgânicaInstituto de QuímicaUniversidade Estadual de Campinas CP 6154 13083-970 Campinas-SP Brazil
| | - Juliana M. Oliveira
- Departamento de Química OrgânicaInstituto de QuímicaUniversidade Estadual de Campinas CP 6154 13083-970 Campinas-SP Brazil
| | - Vitor H. Menezes da Silva
- Departamento de Química OrgânicaInstituto de QuímicaUniversidade Estadual de Campinas CP 6154 13083-970 Campinas-SP Brazil
| | - Ismat U. Khan
- Institute of Chemical Sciences (ICS)Gomal University Dera Ismail Khan 29220 Pakistan
| | - Carlos Roque D. Correia
- Departamento de Química OrgânicaInstituto de QuímicaUniversidade Estadual de Campinas CP 6154 13083-970 Campinas-SP Brazil
| |
Collapse
|
32
|
Tsai C, Sandford C, Wu T, Chen B, Sigman MS, Toste FD. Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cheng‐Che Tsai
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Present address: Department of Chemistry Tunghai University Taichung City 40704 Taiwan
| | - Christopher Sandford
- Department of Chemistry University of Utah 315 South 1400 East Salt Lake City UT 84112 USA
| | - Tao Wu
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Buyun Chen
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Matthew S. Sigman
- Department of Chemistry University of Utah 315 South 1400 East Salt Lake City UT 84112 USA
| | - F. Dean Toste
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
33
|
Li X, Xu J, Li SJ, Qu LB, Li Z, Chi YR, Wei D, Lan Y. Prediction of NHC-catalyzed chemoselective functionalizations of carbonyl compounds: a general mechanistic map. Chem Sci 2020; 11:7214-7225. [PMID: 34123007 PMCID: PMC8159411 DOI: 10.1039/d0sc01793k] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Generally, N-heterocyclic carbene (NHC) complexed with carbonyl compounds would transform into several important active intermediates, i.e., enolates, Breslow intermediates, or acylazolium intermediates, which act as either a nucleophile (Nu) or an electrophile (E) to react with the other E/Nu partner. Hence, the key to predicting the origin of chemoselectivity is to compute the activity (i.e., electrophilic index ω for E and nucleophilic index N for Nu) and stability of the intermediates and products, which are suggested in a general mechanistic map of these reactions. To support this point, we selected and studied different cases of the NHC-catalyzed reactions of carbonyl compounds in the presence of a base and/or an oxidant, in which multiple possible pathways involving acylazolium, enolate, Breslow, and α,β-unsaturated acylazolium intermediates were proposed and a novel index ω + N of the E and Nu partners was employed to exactly predict the energy barrier of the chemoselective step in theory. This work provides a guide for determining the general principle behind organocatalytic reactions with various chemoselectivities, and suggests a general application of the reaction index in predicting the chemoselectivity of the nucleophilic and electrophilic reactions. A novel index ω + N can be used to predict the chemoselectivity according to the general NHC-catalyzed reaction mechanism.![]()
Collapse
Affiliation(s)
- Xue Li
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 China
| | - Jun Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang China
| | - Shi-Jun Li
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 China
| | - Ling-Bo Qu
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 China
| | - Zhongjun Li
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Donghui Wei
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 China
| | - Yu Lan
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 China .,College of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 China
| |
Collapse
|
34
|
Changotra A, Bhaskararao B, Hadad CM, Sunoj RB. Insights on Absolute and Relative Stereocontrol in Stereodivergent Cooperative Catalysis. J Am Chem Soc 2020; 142:9612-9624. [DOI: 10.1021/jacs.9b13962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bangaru Bhaskararao
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
35
|
Nagae H, Xia J, Kirillov E, Higashida K, Shoji K, Boiteau V, Zhang W, Carpentier JF, Mashima K. Asymmetric Allylic Alkylation of β-Ketoesters via C–N Bond Cleavage of N-Allyl-N-methylaniline Derivatives Catalyzed by a Nickel–Diphosphine System. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haruki Nagae
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Jingzhao Xia
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Evgueni Kirillov
- Institut des Sciences Chimiques de Rennes, Université Rennes, CNRS, ISCR, Université de Rennes 1, Rennes Cedex F-35042, France
| | - Kosuke Higashida
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Koya Shoji
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Valentin Boiteau
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jean-François Carpentier
- Institut des Sciences Chimiques de Rennes, Université Rennes, CNRS, ISCR, Université de Rennes 1, Rennes Cedex F-35042, France
| | - Kazushi Mashima
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
36
|
Deng Y, Liu X, Zhao Y, Xue J, Zheng X. Resonance Raman spectroscopic and density functional theoretical study on microsolvated 2-Thiocytosine clusters with polar solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118043. [PMID: 31951865 DOI: 10.1016/j.saa.2020.118043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Microsolvation effects on the excited state deactivation dynamics of 2-thiocytosine (2tC) were studied in hydrogen-bonded 2tC clusters with protic solvents using resonance Raman, FT-IR, FT-Raman, UV-vis spectroscopy combining with density functional theoretical calculation. Two protic solvents, water (H2O) and methanol (MeOH), and one aprotic solvent, acetonitrile (MeCN), were used to investigate the 2tC(H2O)1-5, 2tC(MeOH)1-5, and 2tC(MeCN)1-3 microsolvated clusters. In CH3OH and H2O solvents, most of the Raman shifts were due to the vibration modes of 2tC(solvent)n (solvent = H2O, CH3OH; n = 1-4) clusters via intermolecular NH⋯O hydrogen bonds (HB). The intermolecular >NH⋯O hydrogen bond interactions, which are the key constituents of stable thione structure of 2tC, revealed the spectra difference of 2tC in CH3CN, CH3OH and H2O. With the aid of electronic structural and vibration frequency calculations, the observed Raman spectra were assigned to the low energy isomers of 2tC(solvent)2 (solvent = H2O, CH3OH) clusters in water and methanol and 2tC(CH3CN) in acetonitrile solvents. 2tC(solvent)2 clusters in water and methanol may prohibit or promote excited state proton transfer reaction from sulfur atom to neighbor nitrogen atom due to the hydrogen bonding chain between 2tC and protic solvent molecules. Our experimental and theoretical studies confirmed that the hydrogen bond sites were located on the specified functional group SCNH of 2tC with solvent molecules.
Collapse
Affiliation(s)
- Yaoliang Deng
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Liu
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanying Zhao
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jiadan Xue
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xuming Zheng
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
37
|
Heck arylation of acyclic olefins employing arenediazonium salts and chiral N,N ligands: new mechanistic insights from quantum-chemical calculations. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02588-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Chen J, Gridnev ID. Size is Important: Artificial Catalyst Mimics Behavior of Natural Enzymes. iScience 2020; 23:100960. [PMID: 32193144 PMCID: PMC7076558 DOI: 10.1016/j.isci.2020.100960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 02/28/2020] [Indexed: 01/18/2023] Open
Abstract
Heavily substituted (R)-DTBM-SegPHOS is active in the asymmetric Pd(II)-catalyzed hydrogenation or C−O bond cleavage of α-pivaloyloxy-1-(2-furyl)ethanone, whereas (R)-SegPHOS fails to catalyze either of these transformations. An extensive network of C−H ··· H−C interactions provided by the heavily substituted phenyl rings of (R)-DTBM-SegPHOS leads to increased stabilities of all intermediates and transition states in the corresponding catalytic cycles compared with the unsubstituted analogues. Moreover, formation of the encounter complex and its rearrangement into the reactive species proceeds in a fashion similar to that seen in natural enzymatic reactions. Computations demonstrate that this feature is the origin of enantioselection in asymmetric hydrogenation, since the stable precursor is formed only when the catalyst is approached by one prochiral plane of the substrate. Non-covalent interactions substrate-DTBM-SegPHOS Pd are essential for reactivity Stereoselectivity is induced during approach of a substrate to the reactive site This mechanism of enantioselection mimics enzymatic transformations Performance of a catalyst can be improved via increasing the size of its ligand
Collapse
Affiliation(s)
- Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ilya D Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki 3-6. Aoba-ku, Sendai 8578, Japan.
| |
Collapse
|
39
|
Paterson AJ, Dunås P, Rahm M, Norrby PO, Kociok-Köhn G, Lewis SE, Kann N. Palladium Catalyzed Stereoselective Arylation of Biocatalytically Derived Cyclic 1,3-Dienes: Chirality Transfer via a Heck-Type Mechanism. Org Lett 2020; 22:2464-2469. [PMID: 32150420 DOI: 10.1021/acs.orglett.0c00708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbial arene oxidation of benzoic acid with Ralstonia eutropha B9 provides a chiral highly functionalized cyclohexadiene, suitable for further structural diversification. Subjecting this scaffold to a Pd-catalyzed Heck reaction effects a regio- and stereoselective arylation of the cyclohexadiene ring, with 1,3-chirality transfer of stereogenic information installed in the microbial arene oxidation. Quantum chemical calculations explain the selectivity both by a kinetic preference for the observed arylation position and by reversible carbopalladation in competing positions. Further product transformation allowed the formation of a tricyclic ketone possessing four stereogenic centers. This demonstrates the capability of the method to introduce stereochemical complexity from planar nonchiral benzoic acid in just a few steps.
Collapse
Affiliation(s)
- Andrew J Paterson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Petter Dunås
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Martin Rahm
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Per-Ola Norrby
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, SE-43183 Mölndal, Sweden
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility, Convocation Avenue, University of Bath, Bath, BA2 7AY, U.K
| | - Simon E Lewis
- Centre for Sustainable Chemical Technologies, University of Bath, Bath, BA2 7AY, U.K.,Department of Chemistry, Convocation Avenue, University of Bath, Bath, BA2 7AY, U.K
| | - Nina Kann
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
40
|
Pareek M, Sunoj RB. Energetics of Dynamic Kinetic Asymmetric Transformation in Suzuki–Miyaura Coupling. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Monika Pareek
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
41
|
The effect of CF3 functional group substituent on bifunctional activation model and enantioselectivity for BINOL N-triflylphosphoramides catalyzed rearrangement reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Yang P, Xu R, Zheng C, You S. Pd‐Catalyzed Dearomatization of Indole Derivatives
via
Intermolecular Heck Reactions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900509] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ping Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Ren‐Qi Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
43
|
Tran VT, Nimmagadda SK, Liu M, Engle KM. Recent applications of chiral phosphoric acids in palladium catalysis. Org Biomol Chem 2020; 18:618-637. [PMID: 31907504 DOI: 10.1039/c9ob02205h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through the combined action of palladium catalysts and chiral phosphoric acids (CPAs) a variety of catalytic asymmetric reactions have been realized during the past decade, including allylation, alkene functionalization, and C-H activation. This review surveys key examples across these various reaction types and examines the different mechanisms by which CPAs can affect stereoinduction in these reaction systems.
Collapse
Affiliation(s)
- Van T Tran
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, BCC-169, La Jolla, CA 92037, USA.
| | - Sri Krishna Nimmagadda
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, BCC-169, La Jolla, CA 92037, USA.
| | - Mingyu Liu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, BCC-169, La Jolla, CA 92037, USA.
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, BCC-169, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Polo EC, Wang MF, Angnes RA, Braga AAC, Correia CRD. Enantioselective Heck Arylation of Acyclic Alkenol Aryl Ethers: Synthetic Applications and DFT Investigation of the Stereoselectivity. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ellen Christine Polo
- Departamento de Química Orgânica, Instituto de QuímicaUniversidade Estadual de Campinas Rua Josué de Castro, s/n 13083-970, Campinas São Paulo Brazil
| | - Martí Fernández Wang
- Departamento de Química Orgânica, Instituto de QuímicaUniversidade Estadual de Campinas Rua Josué de Castro, s/n 13083-970, Campinas São Paulo Brazil
| | - Ricardo Almir Angnes
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Avenida Lineu Prestes, 748 05508-000, São Paulo São Paulo Brazil
| | - Ataualpa A. C. Braga
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Avenida Lineu Prestes, 748 05508-000, São Paulo São Paulo Brazil
| | - Carlos Roque Duarte Correia
- Departamento de Química Orgânica, Instituto de QuímicaUniversidade Estadual de Campinas Rua Josué de Castro, s/n 13083-970, Campinas São Paulo Brazil
| |
Collapse
|
45
|
Chen G, Cao J, Wang Q, Zhu J. Desymmetrization of Prochiral Cyclopentenes Enabled by Enantioselective Palladium-Catalyzed Oxidative Heck Reaction. Org Lett 2019; 22:322-325. [PMID: 31846341 DOI: 10.1021/acs.orglett.9b04357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the presence of a catalytic amount of Pd(TFA)2 and a chiral Pyox ligand under oxygen atmosphere, oxidative Heck reaction between arylboronic acids and 4-substituted or 4,4-disubstituted cyclopent-1-enes afforded the chiral arylated products with concurrent creation of two stereocenters in good yields with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Guihua Chen
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne , EPFL-SB-ISIC-LSPN, BCH 5304 , 1015 Lausanne , Switzerland.,Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Jian Cao
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne , EPFL-SB-ISIC-LSPN, BCH 5304 , 1015 Lausanne , Switzerland.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education , Hangzhou Normal University , Hangzhou 311121 , P.R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne , EPFL-SB-ISIC-LSPN, BCH 5304 , 1015 Lausanne , Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne , EPFL-SB-ISIC-LSPN, BCH 5304 , 1015 Lausanne , Switzerland
| |
Collapse
|
46
|
Affiliation(s)
- Baihang Ju
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Shigui Chen
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
47
|
Zhu L, Yuan H, Zhang J. Chiral Phosphoric Acid-Catalyzed Enantioselective Direct Arylation of Iminoquinones: A Case Study of the Model Selectivity. J Org Chem 2019; 84:13473-13482. [PMID: 31536352 DOI: 10.1021/acs.joc.9b01714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral phosphoric acid (CPA)-catalyzed enantioselective arylation reactions have attracted immense attention recently. However, the preferential activation model in the stereodetermining step is controversial, and hence, the origin of enantioselectivity is still far from being understood. Two stereochemical models are provided on the basis of the asymmetric arylations of iminoquinones with naphthylamines (reaction 1) or naphthols (reaction 2) catalyzed by (R/S)-TRIP to explain the high enantioselectivity and the effect of CPAs scaffolds. Unexpectedly, our calculations reveal that substrate naphthylamines or naphthols prefer enantioselective aminal formation model II or 1,4-addition model I, respectively, which is the reverse of Tan's and Xu's model. The different noncovalent and steric interactions between catalysts and substrates are responsible for the observed model preference. Moreover, the enantioselectivity arises from distortion (reaction 1) and noncovalent interactions (reaction 2) that discriminate between the diastereomeric transition states. We further investigated the effect of SPINOL-based CPAs on the enantioselectivity and found that the more rigid skeleton and a smaller binding pocket lead to lower enantioselectivity as compared with that of BINOL-based CPA. The new insights into the reaction activation model rationalize the stereoselectivity outcome of direct asymmetric arylation reactions, and our general model can be extended to related transformations.
Collapse
Affiliation(s)
- Lihan Zhu
- Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Haiyan Yuan
- Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Jingping Zhang
- Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| |
Collapse
|
48
|
Zhang P, Xing M, Guan Q, Zhang J, Zhao Q, Zhang C. Pd-Catalyzed Stereoselective 1,2-Aryboration of Alkenylarenes. Org Lett 2019; 21:8106-8109. [DOI: 10.1021/acs.orglett.9b03114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Penglin Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Mimi Xing
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Qitao Guan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Jinguo Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Qian Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Chun Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Liu Y, Shen W, Cui H. Combined Transition-Metal/Enzyme Dual Catalytic System for Highly Intensive Glow-Type Chemiluminescence-Functionalized CaCO3 Microspheres. Anal Chem 2019; 91:10614-10621. [DOI: 10.1021/acs.analchem.9b01774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yating Liu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wen Shen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
50
|
Singh S, Sunoj RB. Mechanism and Origin of Enantioselectivity in Nickel-Catalyzed Alkyl–Alkyl Suzuki Coupling Reaction. J Phys Chem A 2019; 123:6701-6710. [DOI: 10.1021/acs.jpca.9b04284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sukriti Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|