1
|
Zhao XG, Zhao YX, He SG. Reactivity of Atomic Oxygen Radical Anions in Metal Oxide Clusters. Chempluschem 2024; 89:e202400085. [PMID: 39161047 DOI: 10.1002/cplu.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Atomic oxygen radical anion (O⋅-) represents an important type of reactive centre that exists in both chemical and biological systems. Gas-phase atomic clusters can be studied under isolated and well controlled conditions. Studies of O⋅--containing clusters in the gas-phase provide a unique strategy to interpret the chemistry of O⋅- radicals at a strictly molecular level. This review summarizes the research progresses made since 2013 for the reactivity of O⋅- radicals in the atomically precise metal oxide clusters including negatively charged, nanosized, and neutral heteronuclear metal clusters benefitting from the development of advanced experimental techniques. New electronic and geometric factors to control the reactivity and product selectivity of O⋅- radicals under dark and photo-irradiation conditions have been revealed. The detailed mechanisms of O⋅- generation have been discussed for the reaction systems of nanosized and heteroatom-doped metal oxide clusters. The catalytic reactions mediated by the O⋅- radicals in metal clusters have also been successfully established and the microscopic mechanisms about the dynamic generation and depletion of O⋅- radicals have been clearly understood. The studies of O⋅- containing metal oxide clusters in the gas-phase provided new insights into the chemistry of reactive oxygen species in related condensed-phase systems.
Collapse
Affiliation(s)
- Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Radina AD, Baidyshev VS, Chepkasov IV, Matsokin NA, Altalhi T, Yakobson BI, Kvashnin AG. Theoretical study of adsorption properties and CO oxidation reaction on surfaces of higher tungsten boride. Sci Rep 2024; 14:12788. [PMID: 38834596 DOI: 10.1038/s41598-024-63676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024] Open
Abstract
Most modern catalysts are based on precious metals and rear-earth elements, making some of organic synthesis reactions economically insolvent. Density functional theory calculations are used here to describe several differently oriented surfaces of the higher tungsten boride WB5-x, together with their catalytic activity for the CO oxidation reaction. Based on our findings, WB5-x appears to be an efficient alternative catalyst for CO oxidation. Calculated surface energies allow the use of the Wulff construction to determine the equilibrium shape of WB5-x particles. It is found that the (010) and (101) facets terminated by boron and tungsten, respectively, are the most exposed surfaces for which the adsorption of different gaseous agents (CO, CO2, H2, N2, O2, NO, NO2, H2O, NH3, SO2) is evaluated to reveal promising prospects for applications. CO oxidation on B-rich (010) and W-rich (101) surfaces is further investigated by analyzing the charge redistribution during the adsorption of CO and O2 molecules. It is found that CO oxidation has relatively low energy barriers. The implications of the present results, the effects of WB5-x on CO oxidation and potential application in the automotive, chemical, and mining industries are discussed.
Collapse
Affiliation(s)
- Aleksandra D Radina
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Viktor S Baidyshev
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Ilya V Chepkasov
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Nikita A Matsokin
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Tariq Altalhi
- Chemistry Department, Taif University, Al Hawiyah, 26571, Taif, Saudi Arabia
| | - Boris I Yakobson
- Chemistry Department, Taif University, Al Hawiyah, 26571, Taif, Saudi Arabia
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Alexander G Kvashnin
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.
| |
Collapse
|
3
|
Chepkasov IV, Radina AD, Kvashnin AG. Structure-driven tuning of catalytic properties of core-shell nanostructures. NANOSCALE 2024; 16:5870-5892. [PMID: 38450538 DOI: 10.1039/d3nr06194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The annual increase in demand for renewable energy is driving the development of catalysis-based technologies that generate, store and convert clean energy by splitting and forming chemical bonds. Thanks to efforts over the last two decades, great progress has been made in the use of core-shell nanostructures to improve the performance of metallic catalysts. The successful preparation and application of a large number of bimetallic core-shell nanocrystals demonstrates the wide range of possibilities they offer and suggests further advances in this field. Here, we have reviewed recent advances in the synthesis and study of core-shell nanostructures that are promising for catalysis. Particular attention has been paid to the structural tuning of the catalytic properties of core-shell nanostructures and to theoretical methods capable of describing their catalytic properties in order to efficiently search for new catalysts with desired properties. We have also identified the most promising areas of research in this field, in terms of experimental and theoretical studies, and in terms of promising materials to be studied.
Collapse
Affiliation(s)
- Ilya V Chepkasov
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| | - Aleksandra D Radina
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| | - Alexander G Kvashnin
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| |
Collapse
|
4
|
Wang SD, Ma TM, Li XN, He SG. CO Oxidation Promoted by NO Adsorption on RhMn 2O 3- Cluster Anions. J Phys Chem A 2024; 128:738-746. [PMID: 38236743 DOI: 10.1021/acs.jpca.3c06445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
CO oxidation represents an important model reaction in the gas phase to provide a clear structure-reactivity relationship in related heterogeneous catalysis. Herein, in combination with mass spectrometry experiments and quantum-chemical calculations, we identified that the RhMn2O3- cluster cannot oxidize CO into gas-phase CO2 at room temperature, while the NO preadsorbed products RhMn2O3-[(NO)1,2] are highly reactive in CO oxidation. This discovery is helpful to get a fundamental understanding on the reaction behavior in real-world three-way catalytic conditions where different kinds of reactants coexist. Theoretical calculations were performed to rationalize the crucial roles of preadsorbed NO where the strongly attached NO on the Rh atom can greatly stabilize the products RhMn2O2-[(NO)1,2] during CO oxidation and at the same time works together with the Rh atom to store electrons that stay originally in the attached CO2- unit. The leading result is that the desorption of CO2, which is the rate-determining step of CO oxidation by RhMn2O3-, can be greatly facilitated on the reactions of RhMn2O3-[(NO)1,2] with CO.
Collapse
Affiliation(s)
- Si-Dun Wang
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Xiao-Na Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Chepkasov IV, Zamulin IS, Baidyshev VS, Kvashnin AG. Tuning the surface properties of AuPd nanoparticles for adsorption of O and CO. Phys Chem Chem Phys 2023. [PMID: 38037396 DOI: 10.1039/d3cp03213b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Bimetallic nanoparticles are attracting increasing attention as effective catalysts because they can exhibit higher efficiencies than their monometallic counterparts. Recent studies show that PdAu nanoparticles can exhibit truly impressive catalytic activity, due to the synergistic effect of their properties. However, fine-tuning the catalytic activity requires an understanding of the full picture of the processes taking place in bimetallic particles of different compositions and structures. Here we study the influence of the structure and composition of PdAu nanoparticles on their electronic properties, charge distribution and adsorption properties (CO and O) using ab initio calculations. Two types of nanoparticles were considered: core-shell (Pd@Au and Au@Pd) and bimetallic alloy (Au-Pd) with an average diameter of 2 nm (321 atoms), having either fcc, icosahedral or amorphous structures. The results obtained on surface charges show the possibility of fine-tuning the surface properties of nanoparticles by modifying their atomic structure and composition. In addition, the adsorption of O and CO on the surface of PdAu nanoparticles with fcc structure has been studied. The obtained adsorption data correlate with the surface charge redistribution and the d-band center. The results of this study thus open up great prospects for tuning the catalytic properties of nanocatalysts by modifying their local atomic environment.
Collapse
Affiliation(s)
- Ilya V Chepkasov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russian Federation.
- Katanov Khakas State University, 90 Lenin pr., 655017, Abakan, Russian Federation
| | - Ivan S Zamulin
- Katanov Khakas State University, 90 Lenin pr., 655017, Abakan, Russian Federation
| | - Viktor S Baidyshev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russian Federation.
| | - Alexander G Kvashnin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russian Federation.
| |
Collapse
|
6
|
Ding YQ, Chen ZY, Zhang FX, Ma JB. Coupling of N 2 and O 2 in the Gas Phase to Synthesize Nitric Oxide at Room Temperature: A Zeldovich-Like Strategy. J Phys Chem Lett 2023; 14:7597-7602. [PMID: 37603698 DOI: 10.1021/acs.jpclett.3c01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Dinitrogen (N2) activation and its chemical transformations are some of the most challenging topics in chemistry. Herein, we report that heteronuclear metal anions AuNbBO- can mediate the direct coupling of N2 and O2 to generate NO molecules. N2 first forms the nondissociative adsorption product AuNbBON2- on AuNbBO-. In the following reactions with two O2 molecules, two NO molecules are gradually released, with the formation of AuNbBO2N- and AuNbBO3-. In the reaction with the first O2, the generated nitrene radical (N••-) originating from the dissociated N2, induces the activation of O2. Subsequently, the second O2 is anchored and forms a superoxide radical (O2•-); this radical attacks the other N atom to form an N-O bond, releasing the second NO. The N••- and O2•- radicals play key roles in the reactions. The mechanism adopted in this direct oxidation of N2 by O2 to NO can be labeled as a Zeldovich-like mechanism.
Collapse
Affiliation(s)
- Yong-Qi Ding
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zhi-Ying Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Feng-Xiang Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jia-Bi Ma
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
7
|
He XY, Liu YZ, Chen JJ, Lan X, Li XN, He SG. Size-Dependent Reactivity of Co n- ( n = 5-25) Cluster Anions toward Carbon Dioxide. J Phys Chem Lett 2023; 14:6948-6955. [PMID: 37498356 DOI: 10.1021/acs.jpclett.3c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A fundamental understanding of the reactivity evolution of nanosized clusters at an atomically precise level is pivotal to assemble desired materials with promising candidates. Benefiting from the tandem mass spectrometer coupled with a high-temperature ion-trap reactor, the reactions of mass-selected Con- (n = 5-25) clusters with CO2 were investigated and the increased reactivity of Co20-25- was newly discovered herein. This finding marks an important step to understand property evolution of subnanometer metal clusters (Co25-, ∼0.8 nm) atom-by-atom. The reasons behind the increased reactivity of Co20-25- were proposed by analyzing the reactions of smaller Co6-8- clusters that exhibit significantly different reactivity toward CO2, in which a lower electron affinity of Con contributes to the capture of CO2 while the flexibility of Con- could play vital roles to stabilize reaction intermediates and suppress the barriers of O-CO rupture and CO desorption.
Collapse
Affiliation(s)
- Xing-Yue He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Chen JJ, Liu QY, Wang SD, Li XN, He SG. Catalytic NO Reduction by NO Pre-Adsorbed RhCeO 2 NO - Clusters. Chemphyschem 2023; 24:e202200743. [PMID: 36308426 DOI: 10.1002/cphc.202200743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/11/2022]
Abstract
A fundamental understanding on the dynamically structural evolution of catalysts induced by reactant gases under working conditions is challenging but pivotal in catalyst design. Herein, in combination with state-of-the-art mass spectrometry for cluster reactions, cryogenic photoelectron imaging spectroscopy, and quantum-chemical calculations, we identified that NO adsorption on rhodium-cerium bimetallic oxide cluster RhCeO2 - can create a Ce3+ ion in product RhCeO2 NO- that serves as the starting point to trigger the catalysis of NO reduction by CO. Theoretical calculations substantiated that the reduction of another two NO molecules into N2 O takes place exclusively on the Ce3+ ion while Rh behaves like a promoter to buffer electrons and cooperates with Ce3+ to drive NO reduction. Our finding demonstrates the importance of NO in regulating the catalytic behavior of Rh under reaction conditions and provides much-needed insights into the essence of NO reduction over Rh/CeO2 , one of the most efficient components in three-way catalysts for NOx removal.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, South China University of Technology Tianhe District, Guangzhou, 510641, China.,Beijing, 100049, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
9
|
Li XN, He SG. Gas-phase reactions driven by polarized metal-metal bonding in atomic clusters. Phys Chem Chem Phys 2023; 25:4444-4459. [PMID: 36723009 DOI: 10.1039/d2cp05148f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multimetallic catalysts exhibit great potential in the activation and catalytic transformation of small molecules. The polarized metal-metal bonds have been gradually recognized to account for the reactivity of multimetallic catalysts due to the synergistic effect of different metal centers. Gas-phase reactions on atomic clusters that compositionally resemble the active sites on related condensed-phase catalysts provide a widely accepted strategy to clarify the nature of polarized metal-metal bonds and the mechanistic details of elementary steps involved in the catalysis driven by this unique chemical bonding. This perspective review concerns the progress in the fundamental understanding of industrially and environmentally important reactions that are closely related to the polarized metal-metal bonds in clusters at a strictly molecular level. The following topics have been summarized and discussed: (1) catalytic CO oxidation with O2, H2O, and NO as oxidants (2) and the activation of other inert molecules (e.g., CH4, CO2, and N2) mediated with clusters featuring polarized metal-metal bonding. It turns out that the findings in the gas phase parallel the catalytic behaviors of condensed-phase catalysts and the knowledge can prove to be essential in inspiring future design of promising catalysts.
Collapse
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Ye YL, Wang WL, Sun WM, Yang J. Polymeric tungsten carbide nanoclusters as potential non-noble metal catalysts for CO oxidation. NANOSCALE 2022; 14:18231-18240. [PMID: 36468662 DOI: 10.1039/d2nr06097c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The discovery of tungsten carbide (WC) as an analog of the noble metal Pt atom is of great significance toward designing novel highly-active catalysts from the viewpoint of the superatom concept. The potential of such a superatom to serve as building blocks of replacement catalysts for Pt has been evaluated in this work. The electronic properties, adsorption behaviors, and catalytic mechanisms towards the CO oxidation of (WC)n and Ptn (n = 1, 2, 4, and 6) were compared. Counterintuitively, these studied (WC)n clusters exhibit quite different electronic properties and adsorption behaviours from the corresponding Ptn species. For instance, (WC)n preferentially adsorbs O2, whereas Ptn tends to first combine with CO. Even so, it is interesting to find that the catalytic performances of (WC)n are always superior to the corresponding Ptn, and especially, the largest (WC)6 cluster exhibits the best catalytic ability towards CO oxidation. Therefore, assembling superatomic WC clusters into larger polymeric clusters can be regarded as a novel strategy to develop efficient superatom-assembled catalysts for CO oxidation. It is highly expected to see the realization of non-noble metal catalysts for various reactions in the near future experiments by using superatoms as building blocks.
Collapse
Affiliation(s)
- Ya-Ling Ye
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.
| | - Wen-Lu Wang
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.
| | - Wei-Ming Sun
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Jinlong Yang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
11
|
Wang SD, Chen JJ, Liu YZ, Ma TM, Li XN, He SG. Facile CO bond cleavage on polynuclear vanadium nitride clusters V 4N 5. Phys Chem Chem Phys 2022; 24:29765-29771. [PMID: 36458914 DOI: 10.1039/d2cp04304a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying the structural configurations of precursors for CO dissociation is fundamentally interesting and industrially important in the fields of, e.g., Fischer-Tropsch synthesis. Herein, we demonstrated that CO could be dissociated on polynuclear vanadium nitride V4N5- clusters at room temperature, and a key intermediate, with CO in a N-assisted tilted bridge coordination where the C-O bond ruptures easily, was discovered. The reaction was characterized by mass spectrometry, photoelectron spectroscopy, and quantum-chemistry calculations, and the nature of the adsorbed CO on product V4N5CO- was further characterized by a collision-induced dissociation experiment. Theoretical analysis evidences that CO dissociation is predominantly governed by the low-coordinated V and N atoms on the (V3N4)VN- cluster and the V3N4 moiety resembles a support. This finding strongly suggests that a novel mode for facile CO dissociation was identified in a gas-phase cluster study.
Collapse
Affiliation(s)
- Si-Dun Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China. .,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
12
|
Huang L, Liu W, Hu J, Xing X. Adsorption and Activation of O 2 on Small Gold Oxide Clusters: the Reactivity Dominated by Site-Specific Factors. J Phys Chem A 2022; 126:5594-5603. [PMID: 35952385 DOI: 10.1021/acs.jpca.2c04438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We experimentally explored adsorption and activation of O2 on small anionic clusters AuxOy- containing one to five gold atoms and between one and three oxygen atoms using an instrument including a magnetron sputtering cluster source, a micro flow reactor running at low temperature, and a time-of-flight mass spectrometer. Some species, including AuO-, one isomer of Au2O2-, Au3O-, one isomer of Au3O3-, and Au5O2-, can adsorb an O2 molecule. We theoretically explored the structures of these active species and the inert ones appearing in the experiment by combining a structure search strategy based on the genetic algorithm and the density functional theory (DFT) calculations. Impressively, all active species observed in the experiment have a -O-Au site, in which the gold atom is a dangling or a vertex atom. Each -O-Au site can strongly adsorb one O2 with its Au atom to form a straight-line structure -O-Au-O-, and the adsorbed O2 is significantly activated by accepting one electron with one of its π2p* orbitals. With no exception, all oxygen sites and the -O-Au-Au sites in AuxOy- are inert. Analyses on the density of states (DOS) of representative species well interpret the physical origins of the activity of -O-Au and the inertness of -O-Au-Au. The observations that site-specific factors dominate the reactivity of gold oxide clusters with O2 are in contrast to what happens in the reactions of Aun- with O2, where clusters' reactivity is completely determined by their global spins and electron detachment energies. The new conclusions in this work offer a reference to understand the crucial O2 activation processes in gold-based catalysts, since various gold oxide structures are commonly observed in these systems.
Collapse
Affiliation(s)
- Lulu Huang
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Wen Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Jin Hu
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xiaopeng Xing
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
13
|
Huang B, Tang J, Zhao X, Ma Z, Pei Y. Theoretical Study of CO Oxidation over Au1/MgO(100) with Different Vacancies. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Chen LS, Chen JJ, Ma TM, Li XN, He SG. CO self-promoted oxidation by gas-phase cluster anions IrVO4−. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Tian FX, Zhu M, Liu X, Tu W, Han YF. Dynamic structure of highly disordered manganese oxide catalysts for low-temperature CO oxidation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Zhao YX, Zhao XG, Yang Y, Ruan M, He SG. Rhodium chemistry: A gas phase cluster study. J Chem Phys 2021; 154:180901. [PMID: 34241019 DOI: 10.1063/5.0046529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the extraordinary catalytic activity in redox reactions, the noble metal, rhodium, has substantial industrial and laboratory applications in the production of value-added chemicals, synthesis of biomedicine, removal of automotive exhaust gas, and so on. The main drawback of rhodium catalysts is its high-cost, so it is of great importance to maximize the atomic efficiency of the precious metal by recognizing the structure-activity relationship of catalytically active sites and clarifying the root cause of the exceptional performance. This Perspective concerns the significant progress on the fundamental understanding of rhodium chemistry at a strictly molecular level by the joint experimental and computational study of the reactivity of isolated Rh-based gas phase clusters that can serve as ideal models for the active sites of condensed-phase catalysts. The substrates cover the important organic and inorganic molecules including CH4, CO, NO, N2, and H2. The electronic origin for the reactivity evolution of bare Rhx q clusters as a function of size is revealed. The doping effect and support effect as well as the synergistic effect among heteroatoms on the reactivity and product selectivity of Rh-containing species are discussed. The ingenious employment of diverse experimental techniques to assist the Rh1- and Rh2-doped clusters in catalyzing the challenging endothermic reactions is also emphasized. It turns out that the chemical behavior of Rh identified from the gas phase cluster study parallels the performance of condensed-phase rhodium catalysts. The mechanistic aspects derived from Rh-based cluster systems may provide new clues for the design of better performing rhodium catalysts including the single Rh atom catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
17
|
|
18
|
Sampathkumar S, Paranthaman S. Neutral noble-metal-free VCoO 2 and CrCoO 2 cluster catalysts for CO oxidation by O 2. NEW J CHEM 2021. [DOI: 10.1039/d0nj05199c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutral noble-metal-free metal oxide cluster catalysts (VCoO2 and CrCoO2) were developed for multiple CO oxidation reactions by O2.
Collapse
Affiliation(s)
- Suresh Sampathkumar
- Department of Physics and International Research Centre
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil 626 126
- India
| | - Selvarengan Paranthaman
- Department of Physics and International Research Centre
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil 626 126
- India
| |
Collapse
|
19
|
Wang S, Chen J, Li X, Ma T, He S. Catalytic CO Oxidation by O
2
Mediated with Single Gold Atom Doped Titanium Oxide Cluster Anions AuTi
2
O
4–6
−. Chemphyschem 2020; 21:2550-2556. [DOI: 10.1002/cphc.202000755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/16/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Si‐Dun Wang
- School of Chemistry and Chemical Engineering South China University of Technology 381 Wushan Road Tianhe District Guangzhou 510641 China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jiao‐Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| | - Xiao‐Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| | - Tong‐Mei Ma
- School of Chemistry and Chemical Engineering South China University of Technology 381 Wushan Road Tianhe District Guangzhou 510641 China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| |
Collapse
|
20
|
Qin R, Liu K, Wu Q, Zheng N. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chem Rev 2020; 120:11810-11899. [DOI: 10.1021/acs.chemrev.0c00094] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Wang S, Li J, Li Q, Bai X, Wang J. Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation. NANOSCALE 2020; 12:364-371. [PMID: 31825440 DOI: 10.1039/c9nr07726j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Single-atom catalysts (SACs) often present outstanding activity due to their high ratio of low-coordinated metal atoms and can be applied to the activation of strong chemical bonds such as C[triple bond, length as m-dash]O. Herein, we investigate the potential usage of a single-atom catalyst, in which isolated cobalt atoms are supported on porous graphitic carbon nitride (Co/g-C3N4), for CO oxidation. Based on the adsorption/co-adsorption energies of O2, CO, 2O2, CO + O2 and 2CO, the screening criteria and the reaction mechanisms of CO oxidation, including the Eley-Rideal, New Eley-Rideal, Langmuir-Hinshelwood, and termolecular Eley-Rideal mechanisms, are established and compared. In particular, the energy barriers of the rate-limiting steps for the CO oxidation process by all possible reaction pathways are in a range from 0.21 to 0.59 eV, suggesting that the Co/g-C3N4 catalyst can boost CO oxidation at low temperature. Moreover, the preparation of the SAC (Co/g-C3N4) by using CoCl2 as an appropriate metal precursor and the stability (up to 600 K) are evaluated by ab initio molecular dynamics simulations. The high stability and excellent activity of the Co/g-C3N4 SAC for CO oxidation offer a high possibility of clean energy production.
Collapse
Affiliation(s)
- Shiyan Wang
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Jiaqi Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Li
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Xiaowan Bai
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
22
|
Li XN, Jiang LX, Wang LN, Ou SH, Zhang MQ, Yang Y, Ma TM, He SG. An Eight-Atom Iridium-Aluminum Oxide Cluster IrAlO 6+ Catalytically Oxidizes Six CO Molecules. J Phys Chem Lett 2019; 10:7850-7855. [PMID: 31790248 DOI: 10.1021/acs.jpclett.9b03056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fundamental understanding regarding oxygen storage capacity involving how and why an active site can buffer a large number of oxygen atoms in redox processes is vital to the design of advanced oxygen storage materials, while it is challenging because of the complexity of heterogeneous catalysis. Herein, we identified that an eight-atom iridium-aluminum oxide cluster IrAlO6+ can transfer all the oxygen atoms to catalytically oxidize six CO molecules. This finding represents a breakthrough in cluster catalysis where at most three oxygen atoms from a heteronuclear metal oxide cluster can be catalytically involved in CO oxidation. We found that oxygen prefers to be stored on aluminum to form an O3-• radical in the energetically unfavorable IrAlO6+ isomer and generate the low-coordinated iridium that is pivotal to capturing CO and triggering the catalysis. The powerful electron cycling capability of iridium and the cooperative iridium-aluminum interplay are emphasized to drive the oxygen atom-transfer behavior.
Collapse
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Li Na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Shu-Hua Ou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- School of Chemistry and Chemical Engineering , South China University of Technology , 381 Wushan Road, Tianhe District , Guangzhou 510641 , China
| | - Mei-Qi Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering , South China University of Technology , 381 Wushan Road, Tianhe District , Guangzhou 510641 , China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| |
Collapse
|
23
|
Kang X, Yao L, Jiao Z, Zhao B. Two Stable Heterometal‐MOFs as Highly Efficient and Recyclable Catalysts in the CO
2
Coupling Reaction with Aziridines. Chem Asian J 2019; 14:3668-3674. [DOI: 10.1002/asia.201900712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/27/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Xiao‐Min Kang
- College of Chemistry and Key Laboratory of Advanced Energy Material ChemistryNankai University Tianjin 300071 China
| | - Lin‐Hong Yao
- College of Chemistry and Key Laboratory of Advanced Energy Material ChemistryNankai University Tianjin 300071 China
| | - Zhuo‐Hao Jiao
- College of Chemistry and Key Laboratory of Advanced Energy Material ChemistryNankai University Tianjin 300071 China
| | - Bin Zhao
- College of Chemistry and Key Laboratory of Advanced Energy Material ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
24
|
Li XN, Wang LN, Mou LH, He SG. Catalytic CO Oxidation by Gas-Phase Metal Oxide Clusters. J Phys Chem A 2019; 123:9257-9267. [DOI: 10.1021/acs.jpca.9b05185] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-Na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
25
|
Ou SH, Chen JJ, Li XN, Wang LN, Ma TM, He SG. CO oxidation by neutral gold-vanadium oxide clusters. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1812300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shu-hua Ou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiao-jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Tong-mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Sheng-gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
26
|
Wang LN, Li XN, He SG. Catalytic CO Oxidation by Noble-Metal-Free Ni 2VO 4,5- Clusters: A CO Self-Promoted Mechanism. J Phys Chem Lett 2019; 10:1133-1138. [PMID: 30802062 DOI: 10.1021/acs.jpclett.9b00047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catalytic CO oxidation is an important model reaction in gas-phase studies to provide a clear structure-reactivity understanding in related heterogeneous catalysis, whereas CO oxidation catalyzed by noble-metal (NM) free species has been scarcely reported, and the fundamental aspects are elusive. Herein a CO self-promoted mechanism of catalytic CO oxidation by O2 mediated with the Ni2VO4,5- clusters was experimentally identified and theoretically rationalized. The catalysis was characterized by mass spectrometry and quantum chemistry calculations. Ni2VO5- can oxidize CO to generate an oxygen-deficient product Ni2VO4-, which can only adsorb CO to give rise to Ni2VO4CO-, and the oxidative reactivity of Ni2VO4- can be boosted by the adsorbed CO. This finding reinforces the significance that the attached CO can modify the electronic structure of the Ni2 unit in Ni2VO4CO- and make the Ni2 unit behave like NM atoms to store the released electrons in an oxygen atom transfer process.
Collapse
Affiliation(s)
- Li-Na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center for Excellence in Molecular Sciences , Beijing 100190 , P. R. China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center for Excellence in Molecular Sciences , Beijing 100190 , P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center for Excellence in Molecular Sciences , Beijing 100190 , P. R. China
| |
Collapse
|