1
|
Singh A, Torres-Huerta A, Meyer F, Valkenier H. Anion transporters based on halogen, chalcogen, and pnictogen bonds: towards biological applications. Chem Sci 2024:d4sc04644g. [PMID: 39268212 PMCID: PMC11385378 DOI: 10.1039/d4sc04644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Motivated by their potential biological applications, anion receptors are increasingly explored as transmembrane transporters for anions. The vast majority of the reported anion transporters rely on hydrogen bonding to interact with the anions. However, in recent decades, halogen, chalcogen, and pnictogen bonding, collectively referred to as sigma-hole interactions, have received increasing attention. Most research efforts on these interactions have focused on crystal engineering, anion sensing, and organocatalysis. In recent years, however, these sigma-hole interactions have also been explored more widely in synthetic anion transporters. This perspective shows why synthetic transporters are promising candidates for biological applications. We provide a comprehensive review of the compounds used to transport anions across membranes, with a particular focus on how the binding atoms and molecular design affect the anion transport activity and selectivity. Few cell studies have been reported for these transporters based on sigma-hole interactions and we highlight the critical need for further biological studies on the toxicity, stability, and deliverability of these compounds to explore their full potential in biological applications, such as the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Anurag Singh
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| | - Franck Meyer
- Université libre de Bruxelles (ULB), Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy Boulevard du Triomphe 1050 Brussels Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| |
Collapse
|
2
|
Deng S, Li Z, Yuan L, Shen J, Zeng H. Light-Powered Propeller-like Transporter for Boosted Transmembrane Ion Transport. NANO LETTERS 2024; 24:10750-10758. [PMID: 39177063 DOI: 10.1021/acs.nanolett.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Membrane-active molecular machines represent a recently emerging, yet important line of expansion in the field of artificial transmembrane transporters. Their hitherto demonstrated limited types (molecular swing, ion fishers, shuttlers, rotors, etc.) certainly call for new inspiring developments. Here, we report a very first motorized ion-transporting carrier-type transporter, i.e., a modularly tunable, light-powered propeller-like transporter derived from Feringa's molecular motor for consistently boosting transmembrane ion transport under continuous UV light irradiation. Based on the EC50 values, the molecular propeller-mediated ion transport activities under UV light irradiation for 300 s are 2.31, 1.74, 2.29, 2.80, and 2.92 times those values obtained without irradiation for Li+, Na+, K+, Rb+, and Cs+ ions, respectively, with EC50 value as low as 0.71 mol % for K+ ion under light irradiation.
Collapse
Affiliation(s)
- Shaowen Deng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lin Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
3
|
Hunter NH, Gabbaï FP. Bismuthenium Cations for the Transport of Chloride Anions via Pnictogen Bonding. Angew Chem Int Ed Engl 2024:e202414699. [PMID: 39179513 DOI: 10.1002/anie.202414699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Our interest in the design of heavy pnictogen-based Lewis acids for anion trafficking across biological membrane mimics has led us to investigate trivalent bismuthenium cations as chloride anion transporters. Here, we describe two chlorodiarylbismuthines, elaborated on a peri-substituted naphthalene backbone and stabilized by an adjacent thio- or seleno-ether functionality that engages the bismuth center in a Ch→Bi interaction (Ch=chalcogen). These new derivatives are stable in aqueous environment and readiliy transport chloride anions across the membrane of phospholipid-based vesicles loaded with KCl. In addition to establishing the use of such motifs in anion transport, this investigation shows that the Lewis acidity, lipophilicity, and thus chloride transport properties depend on the nature of the chalcogen.
Collapse
Affiliation(s)
- Nathanael H Hunter
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA)n
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA)n
| |
Collapse
|
4
|
Culvyhouse J, Unruh DK, Lischka H, Aquino AJA, Krempner C. Facile Access to Organostibines via Selective Organic Superbase Catalyzed Antimony-Carbon Protonolysis. Angew Chem Int Ed Engl 2024; 63:e202407822. [PMID: 38763897 DOI: 10.1002/anie.202407822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The selective formation of antimony-carbon bonds via organic superbase catalysis under metal- and salt-free conditions is reported. This novel approach utilizes electron-deficient stibine, Sb(C6F5)3, to give upon base-catalyzed reactions with weakly acidic aromatic and heteroaromatic hydrocarbons access to a range of new aromatic and heteroaromatic stibines, respectively, with loss of C6HF5. Also, the significantly less electron-deficient stibines, Ph2SbC6F5 and PhSb(C6F5)2 smoothly underwent base-catalyzed exchange reactions with a range of terminal alkynes to generate the stibines of formulae PhSb(C≡CPh)2, and Ph2SbC≡CR [R=C6H5, C6H4-NO2, COOEt, CH2Cl, CH2NEt2, CH2OSiMe3, Sb(C6H5)2], respectively. These formal substitution reactions proceed with high selectivity as only the C6F5 groups serve as a leaving group to be liberated as C6HF5 upon formal proton transfer from the alkyne. Kinetic studies of the base-catalyzed reaction of Ph2SbC6F5 with phenyl acetylene to form Ph2SbC≡CPh and C6HF5 suggested the empirical rate law to exhibit a first-order dependence with respect to the base catalyst, alkyne and stibine. DFT calculations support a pathway proceeding via a concerted σ-bond metathesis transition state, where the base catalyst activates the Sb-C6F5 bond sequence through secondary bond interactions.
Collapse
Affiliation(s)
- Jacob Culvyhouse
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Daniel K Unruh
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Hans Lischka
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, 79409-1021, United States
| | - Clemens Krempner
- Department of Chemistry & Biochemistry, Texas Tech University, Memorial Dr. & Boston, Lubbock, Texas, 79409, United States
| |
Collapse
|
5
|
Beckmann JL, Tiessen N, Neumann B, Stammler HG, Hoge B, Mitzel NW. Polydentate chalcogen bonding: anion trapping with a water-stable host compound carrying Se-CF 3 functions. Dalton Trans 2024; 53:12234-12239. [PMID: 38979556 DOI: 10.1039/d4dt01730g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bidentate and tetradentate chalcogen bonding host systems with SeCF3 functions as σ-hole donors in close proximity at the alkyne functions of 1,8-diethynylanthracene and its syn-dimer were prepared in quantitative yield by tin-selenium exchange reactions of the corresponding trimethylstannyl precursors with ClSeCF3. The bidentate system shows chalcogen bonding interactions with THF, but does not bind halide ions. The tetradentate system cooperatively chelates chloride, bromide and iodide ions with its four CC-SeCF3 units by rotating the four σ-holes towards the halide ion. The structures of these halide ion adducts were determined by X-ray diffraction. The hydrobromide and -iodide salts of the ethyl derivative of Schwesinger's phosphazene superbase served as halide salts with very weakly coordinating cations.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Natalia Tiessen
- Inorganic Chemistry ACII, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Berthold Hoge
- Inorganic Chemistry ACII, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
6
|
Krieft J, Neumann B, Stammler HG, Mitzel NW. Oxidation-dependent Lewis acidity in chalcogen adducts of Sb/P frustrated Lewis pairs. Dalton Trans 2024; 53:11762-11768. [PMID: 38938114 DOI: 10.1039/d4dt01591f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The reactions of the frustrated Lewis pair (F5C2)2SbCH2P(tBu)2 with oxygen, sulphur, selenium and tellurium led to the mono-oxidation products (F5C2)2SbCH2P(E)(tBu)2 (E = O, S, Se, Te). Further oxidation of these chalcogen adducts with tetrachloro-ortho-benzoquinone (o-chloranil) gave (F5C2)2Sb(CH2)(μ-E)P(tBu)2·CatCl (CatCl = o-O2C6Cl4) with a central four-membered ring heterocycle for E = O, S, and Se. For E = Te the elimination of elemental tellurium led to an oxidation product with two equivalents of o-chloranil, (F5C2)2SbCH2P(tBu)2·2CatCl, which is also accessible by reaction of (F5C2)2SbCH2P(tBu)2 with o-chloranil. The synthesised compounds were characterised by NMR spectroscopy and X-ray structure analyses, and the structural properties were analysed in the light of the altered Lewis acidity due to the oxidation of the antimony atoms.
Collapse
Affiliation(s)
- Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
| |
Collapse
|
7
|
Akbaba S, Steinke T, Vogel L, Engelage E, Erdelyi M, Huber SM. Elucidating the Binding Mode of Sulfur- and Selenium-Based Cationic Chalcogen-Bond Donors. Chemistry 2024; 30:e202400608. [PMID: 38604947 DOI: 10.1002/chem.202400608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
For a comparison of the interaction modes of various chalcogen-bond donors, 2-chalcogeno-imidazolium salts have been designed, synthesized, and studied by single crystal X-ray diffraction, solution NMR and DFT as well as for their ability to act as activators in an SN1-type substitution reaction. Their interaction modes in solution were elucidated based on NMR diffusion and chemical shift perturbation experiments, which were supported by DFT-calculations. Our finding is that going from lighter to the heavier chalcogens, hydrogen bonding plays a less, while chalcogen bonding an increasingly important role for the coordination of anions. Anion-π interactions also show importance, especially for the sulfur and selenium derivatives.
Collapse
Affiliation(s)
- Sercan Akbaba
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tim Steinke
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Lukas Vogel
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Elric Engelage
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, SE-752 37, Uppsala, Sweden
| | - Stefan M Huber
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
8
|
Sharma R, Sarkar S, Chattopadhayay S, Mondal J, Talukdar P. A Halogen-Bond-Driven Artificial Chloride-Selective Channel Constructed from 5-Iodoisophthalamide-based Molecules. Angew Chem Int Ed Engl 2024; 63:e202319919. [PMID: 38299773 DOI: 10.1002/anie.202319919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Despite considerable emphasis on advancing artificial ion channels, progress is constrained by the limited availability of small molecules with the necessary attributes of self-assembly and ion selectivity. In this study, a library of small molecules based on 5-haloisophthalamide and a non-halogenated isophthalamide were examined for their ion transport properties across the lipid bilayer membranes, and the finding demonstrates that the di-hexyl-substituted 5-iodoisophthalamide derivative exhibits the highest level of activity. Furthermore, it was established that the highest active compound facilitates the selective chloride transport that occurs via an antiport-mediated mechanism. The crystal structure of the compound unveils a distinctive self-assembly of molecules, forming a zig-zag channel pore that is well-suited for the permeation of anions. Planar bilayer conductance measurements proved the formation of chloride selective channels. A molecular dynamics simulation study, relying on the self-assembled component derived from the crystal structure, affirmed the paramount significance of intermolecular hydrogen bonding in the formation of supramolecular barrel-rosette structures that span the bilayer. Furthermore, it was demonstrated that the transport of chloride across the lipid bilayer membrane is facilitated by the synergistic effects of halogen bonding and hydrogen bonding within the channel.
Collapse
Affiliation(s)
- Rashmi Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500046 Telangana, India
| | - Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 500046 Telangana, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
9
|
Huang WL, Wang XD, Ao YF, Wang QQ, Wang DX. Mimicking the Shape and Function of the ClC Chloride Channel Selective Pore by Combining a Molecular Hourglass Shape with Anion-π Interactions. Chemistry 2024; 30:e202304222. [PMID: 38270386 DOI: 10.1002/chem.202304222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
ClC is the main family of natural chloride channel proteins that transport Cl- across the cell membrane with high selectivity. The chloride transport and selectivity are determined by the hourglass-shaped pore and the filter located in the central and narrow region of the pore. Artificial unimolecular channel that mimics both the shape and function of the ClC selective pore is attractive, because it could provide simple molecular model to probe the intriguing mechanism and structure-function relevance of ClC. Here we elaborated upon the concept of molecular hourglass plus anion-π interactions for this purpose. The concept was validated by experimental results of molecular hourglasses using shape-persistent 1,3-alternate tetraoxacalix[2]arene[2]triazine as the central macrocyclic skeleton to control the conductance and selectivity, and anion-π interactions as the driving force to facilitate the chloride dehydration and movement along the channel.
Collapse
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
10
|
Murphy B, Gabbaï FP. Tunable Pnictogen Bonding at the Service of Hydroxide Transport across Phospholipid Bilayers. J Am Chem Soc 2024; 146:7146-7151. [PMID: 38466939 PMCID: PMC10958499 DOI: 10.1021/jacs.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Our growing interest in the design of pnictogen-based strategies for anion transport has prompted an investigation into the properties of three simple triarylcatecholatostiboranes (1-3) of the general formula (o-C6Cl4O2)SbAr3 with Ar = Ph (1), o-tolyl (2), and o-xylyl (3) for the complexation and transport of hydroxide across phospholipid bilayers. A modified hydroxypyrene-1,3,6-trisulfonic acid (HPTS) assay carried out in artificial liposomes shows that 1 and 2 are potent hydroxide transporters while 3 is inactive. These results indicate that the steric hindrance imposed by the three o-xylyl groups prevents access by the hydroxide anion to the antimony center. Supporting this interpretation, 1 and 2 quickly react with TBAOH·30 H2O ([TBA]+ = [nBu4N]+) to form the corresponding hydroxoantimonate salts [nBu4N][1-OH] and [nBu4N][2-OH], whereas 3 resists hydroxide coordination and remains unperturbed. Moreover, the hydroxide transport activities of 1 and 2 are correlated to the +V oxidation state of the antimony atom as the parent trivalent stibines show no hydroxide transport activity.
Collapse
Affiliation(s)
- Brendan
L. Murphy
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| | - François P. Gabbaï
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| |
Collapse
|
11
|
Islam AS, Pramanik S, Mondal S, Ghosh R, Ghosh P. Selective recognition and extraction of iodide from pure water by a tripodal selenoimidazol(ium)-based chalcogen bonding receptor. iScience 2024; 27:108917. [PMID: 38327780 PMCID: PMC10847689 DOI: 10.1016/j.isci.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
A selenium-based tripodal chalcogen bond (ChB) donor TPI-3Se is demonstrated for the recognition and extraction of I- from 100% water medium. NMR and ITC studies with the halides reveal that the ChB donor selectively binds with the large, weakly hydrated I-. Interestingly, I- crystallizes out selectively in the presence of other halides supporting the superiority of the selective recognition of I-. The X-ray structure of the ChB-iodide complex manifests both the μ1 and μ2 coordinated interactions, which is rare in the C-Se···I chalcogen bonding. Furthermore, to validate the selective I- binding potency of TPI-3Se in pure water, comparisons are made with its hydrogen and halogen bond donor analogs. The computational analysis also provides the mode of I- recognition by TPI-3Se. Importantly, this receptor is capable of extracting I- from pure water through selenium sigma-hole and I- interaction with a high degree of efficiency (∼70%).
Collapse
Affiliation(s)
- Abu S.M. Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sourav Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Rajib Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Jain S, Satpute SS, Jha RK, Patel MS, Kumar S. Bidentate Ligand Driven Intramolecularly Te…O Bonded Organotellurium Cations from Synthesis, Stability to Catalysis. Chemistry 2024; 30:e202303089. [PMID: 37966430 DOI: 10.1002/chem.202303089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
A new series of unsymmetrical phenyl tellurides derived from 2-N-(quinolin-8-yl) benzamide ligand has been synthesized in a practical manner by the copper-catalyzed method by using diaryl ditelluride and Mg as a reductant at room temperature. In order to augment the Lewis acidity of these newly formed unsymmetrical monotellurides, these have been transformed into corresponding unsymmetrical 2-N-(quinolin-8-yl)benzamide tellurium cations. Subsequently, these Lewis acidic tellurium cations were used as chalcogen bonding catalysts, enabling the synthesis of various substituted 1,2-dihydroquinolines by activating ketones with anilines under mild conditions. Moreover, the synthesized 2-N-(quinolin-8-yl)benzamide phenyl tellurium cation has also catalyzed the formation of β-amino alcohols in high regioselectivity by effectively activating epoxides at room temperature. Mechanistic insight by 1 H and 19 F NMR study, electrostatic surface potential (ESP map), control reaction in which tellurium cation reacted explosively with epoxide, suggested that the enhanced Lewis acidity of tellurium center seems responsible for efficient catalytic activities under mild conditions enabling β-amino alcohols with excellent regioselectivity and 1,2-dihydroquinolines with trifluoromethyl, nitro, and pyridylsubstitution, which were difficult to access.
Collapse
Affiliation(s)
- Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Saurabh Sandip Satpute
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Mili Sanjeev Patel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
13
|
Wang J, Ho PC, Craig MGJ, Cevallos A, Britten JF, Vargas-Baca I. An Unusual Macrocyclic Hexamer of an Iso-Tellurazole N-Oxide Featuring CTe … O Chalcogen Bonds is Formed by κ 6 -O Complexation to Fe(II) and Ni(II). Chemistry 2024; 30:e202302538. [PMID: 37793025 DOI: 10.1002/chem.202302538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Studies of the supramolecular chemistry of iso-tellurazole N-oxides have been confined to non-polar media until now. To overcome that limitation, an iso-tellurazole N-oxide was derivatized with a primary alcohol group; the compound is soluble in polar solvents and stable in acidic to neutral aqueous media. Nickel (II) and iron (II) form macrocyclic complexes with six molecules of that iso-tellurazole N-oxide in a hitherto not-observed macrocyclic arrangement defined by CTe⋅⋅⋅O chalcogen bonds and κ6 -O bound to the metal ion. This behaviour is in sharp contrast with the κn -Te (n=1,2,4) complexes formed by soft metal ions.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Peter C Ho
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Matthew G J Craig
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Alberto Cevallos
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - James F Britten
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Ignacio Vargas-Baca
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
14
|
Beckmann JL, Krieft J, Vishnevskiy YV, Neumann B, Stammler HG, Mitzel NW. Poly-pnictogen bonding: trapping halide ions by a tetradentate antimony(iii) Lewis acid. Chem Sci 2023; 14:13551-13559. [PMID: 38033898 PMCID: PMC10685332 DOI: 10.1039/d3sc04594c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
A highly halide affine, tetradentate pnictogen-bonding host-system based on the syn-photodimer of 1,8-diethynylanthracene was synthesized by a selective tin-antimony exchange reaction. The host carries four C[triple bond, length as m-dash]C-Sb(C2F5)2 units and has been investigated regarding its ability to act as a Lewis acidic host component for the cooperative trapping of halide ions (F-, Cl-, Br-, I-). The chelating effect makes this host-system superior to its bidentate derivative in competition experiments. It represents a charge-reversed crown-4 and has the ability to dissolve otherwise poorly soluble salts like tetra-methyl-ammonium chloride. Its NMR-spectroscopic properties make it a potential probe for halide ions in solution. Insights into the structural properties of the halide adducts by X-ray diffraction and computational methods (DFT, QTAIM, IQA) reveal a complex interplay of attractive pnictogen bonding interactions and Coulomb repulsion.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Yury V Vishnevskiy
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University Universitätsstrasse 25 Bielefeld 33615 Germany
| |
Collapse
|
15
|
Narsimhulu G, Samuel C, Palani S, Dasari SHK, Krishnamoorthy K, Baskar V. Electrocatalytic hydrogen evolution mediated by an organotelluroxane macrocycle stabilized through secondary interactions. Dalton Trans 2023; 52:17242-17248. [PMID: 37966305 DOI: 10.1039/d3dt02746e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A discrete liphophilic organotelluroxane macrocycle has been found to catalyse the hydrogen evolution reaction (HER) by proton reduction efficiently. The macrocycle is synthesized via chloride abstraction from bis(p-methoxyphenyl) tellurium dichloride (p-MeOC6H5)2TeCl2 (1) by silver salts AgMX4 (MX4 = BF4-, and ClO4-) resulting in in situ generated di-cationic tetraorganoditelluroxane units; two such units are held together by two weak anions μ2-MX4, bridging to form 12-membered di-cationic macrocycles [((p-MeO-C6H4)2Te)2(μ-O)(μ2-F2BF2)2]2+ (2) and [((p-MeO-C6H4)2Te)2(μ-O)(μ2-O2ClO2)2]2+ (3) stabilized via Te-(μ2-BF4/ClO4), with secondary interactions. The charge is balanced by the presence of two more anions, one above and another below the plane of the macrocycle. Similar reaction at higher temperatures leads to the formation of telluronium salts R3TeX [X = BF4- (4), ClO4- (5)] as a major product. The BF4- anion containing macrocycle and telluronium salt were monitored using 19F NMR. HRMS confirmed the structural stability of all the compounds in the solution state. The organotelluroxane macrocycle 2 has been found to act as an efficient electrocatalyst for proton reduction in an organic medium in the presence of p-toluene sulfonic acid as a protic source.
Collapse
Affiliation(s)
- Gujju Narsimhulu
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Calvin Samuel
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Sathishkumar Palani
- Polymer Science and Engineering Division, CSIR-National Laboratory, Dr Homi Bhabha Road, Pune - 411008, India
| | | | - Kothandam Krishnamoorthy
- Polymer Science and Engineering Division, CSIR-National Laboratory, Dr Homi Bhabha Road, Pune - 411008, India
| | - Viswanathan Baskar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
16
|
Xia Y, Hao A, Xing P. Chalcogen and Pnictogen Bonding-Modulated Multiple-Constituent Chiral Self-Assemblies. ACS NANO 2023; 17:21993-22003. [PMID: 37905541 DOI: 10.1021/acsnano.3c08590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Chalcogen and pnictogen-based σ-hole interactions have shown limited applications in controlling supramolecular chirality. In this work, we employed chalcogen and pnictogen bonding to control supramolecular chirality in a multiple-constituent system with modulate chiral optics. Phenyl phosphonium-selenium conjugates with electrophilic σ-hole regions were allowed to coassemble with the π-conjugated deprotonated amino acids. Control experimental and computational results evidenced that the chalcogen and pnictogen bonding formed with carboxylates induced morphological transformation from achiral membranes to chiral helical nanotubes with emerging supramolecular chirality. Also, the chiral helical architectures accomplished inverted handedness and chiroptical activities, including circular dichroism and circularly polarized luminescence. Finally, synergistic chalcogen and pnictogen bonding was employed to stabilize the charge-transfer complexation to afford ternary chiral co-assemblies with evolved chiral optics and luminescence. This work, showing the role of chalcogen and pnictogen bonding in manipulating supramolecular chirality and optics, will expand the toolbox in the fabrication and property-tuning of chiral materials containing elements of Group VA and VIA.
Collapse
Affiliation(s)
- Yiran Xia
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
17
|
Beckmann JL, Krieft J, Vishnevskiy YV, Neumann B, Stammler HG, Mitzel NW. A Bidentate Antimony Pnictogen Bonding Host System. Angew Chem Int Ed Engl 2023; 62:e202310439. [PMID: 37773008 DOI: 10.1002/anie.202310439] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
A bidentate pnictogen bonding host-system based on 1,8-diethynylanthracene was synthesized by a selective tin-antimony exchange reaction and investigated regarding its ability to act as a Lewis acidic host component for the complexation of Lewis basic or anionic guests. In this work, the novel C≡C-Sb(C2 F5 )2 unit was established to study the potential of antimony(III) sites as representatives for the scarcely explored pnictogen bonding donors. The capability of this partly fluorinated host system was investigated towards halide anions (Cl- , Br- , I- ), dimethyl chalcogenides Me2 Y (Y=O, S, Se, Te), and nitrogen heterocycles (pyridine, pyrimidine). Insights into the adduct formation behavior as well as the bonding situation of such E⋅⋅⋅Sb-CF moieties were obtained in solution by means of NMR spectroscopy, in the solid state by X-ray diffraction, by elemental analyses, and by computational methods (DFT, QTAIM, IQA), respectively.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
18
|
Murphy B, Gabbaï FP. Binding, Sensing, And Transporting Anions with Pnictogen Bonds: The Case of Organoantimony Lewis Acids. J Am Chem Soc 2023; 145:19458-19477. [PMID: 37647531 PMCID: PMC10863067 DOI: 10.1021/jacs.3c06991] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Indexed: 09/01/2023]
Abstract
Motivated by the discovery of main group Lewis acids that could compete or possibly outperform the ubiquitous organoboranes, several groups, including ours, have engaged in the chemistry of Lewis acidic organoantimony compounds as new platforms for anion capture, sensing, and transport. Principal to this approach are the intrinsically elevated Lewis acidic properties of antimony, which greatly favor the addition of halide anions to this group 15 element. The introduction of organic substituents to the antimony center and its oxidation from the + III to the + V state provide for tunable Lewis acidity and a breadth of applications in supramolecular chemistry and catalysis. The performances of these antimony-based Lewis acids in the domain of anion sensing in aqueous media illustrate the favorable attributes of antimony as a central element. At the same time, recent advances in anion binding catalysis and anion transport across phospholipid membranes speak to the numerous opportunities that lie ahead in the chemistry of these unique main group compounds.
Collapse
Affiliation(s)
- Brendan
L. Murphy
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| | - François P. Gabbaï
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| |
Collapse
|
19
|
Qiu J, Bateman CN, Lu S, George GC, Li X, Gorden JD, Vasylevskyi S, Cozzolino AF. Solution Studies of a Water-Stable, Trivalent Antimony Pnictogen Bonding Anion Receptor with High Binding Affinities for CN -, OCN -, and OAc . Inorg Chem 2023. [PMID: 37499143 DOI: 10.1021/acs.inorgchem.3c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The solution phase anion binding behavior of a water-stable bidentate pnictogen bond donor was studied. A modest change in the visible absorption spectrum allowed for the determination of the binding constants. High binding constants were observed with cyanide, cyanate, and acetate, and these were corroborated with density functional theory (DFT) calculations. The receptor could be recovered free from the anion following treatment with methyl triflate, confirming that it remains intact. The tight binding of cyanide and water stability were exploited to use this system as a supramolecular catalyst in a phase-transfer Strecker reaction, further demonstrating the utility of pnictogen bonding as a tool in noncovalent catalysis.
Collapse
Affiliation(s)
- Jinchun Qiu
- Department of Chemistry and Biochemistry, Texas Tech University, Box 1061, Lubbock, Texas 79409-1061, United States
| | - Curt N Bateman
- Department of Chemistry and Biochemistry, Texas Tech University, Box 1061, Lubbock, Texas 79409-1061, United States
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Gary C George
- Department of Chemistry and Biochemistry, Texas Tech University, Box 1061, Lubbock, Texas 79409-1061, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - John D Gorden
- Department of Chemistry and Biochemistry, Texas Tech University, Box 1061, Lubbock, Texas 79409-1061, United States
| | - Serhii Vasylevskyi
- Department of Chemistry and Biochemistry, Texas Tech University, Box 1061, Lubbock, Texas 79409-1061, United States
| | - Anthony F Cozzolino
- Department of Chemistry and Biochemistry, Texas Tech University, Box 1061, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
20
|
Johnson TG, Docker A, Sadeghi-Kelishadi A, Langton MJ. Halogen bonding relay and mobile anion transporters with kinetically controlled chloride selectivity. Chem Sci 2023; 14:5006-5013. [PMID: 37206385 PMCID: PMC10189858 DOI: 10.1039/d3sc01170d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Selective transmembrane transport of chloride over competing proton or hydroxide transport is key for the therapeutic application of anionophores, but remains a significant challenge. Current approaches rely on enhancing chloride anion encapsulation within synthetic anionophores. Here we report the first example of a halogen bonding ion relay in which transport is facilitated by the exchange of ions between lipid-anchored receptors on opposite sides of the membrane. The system exhibits non-protonophoric chloride selectivity, uniquely arising from the lower kinetic barrier to chloride exchange between transporters within the membrane, compared to hydroxide, with selectivity maintained across membranes with different hydrophobic thicknesses. In contrast, we demonstrate that for a range of mobile carriers with known high chloride over hydroxide/proton selectivity, the discrimination is strongly dependent on membrane thickness. These results demonstrate that the selectivity of non-protonophoric mobile carriers does not arise from ion binding discrimination at the interface, but rather through a kinetic bias in transport rates, arising from differing membrane translocation rates of the anion-transporter complexes.
Collapse
Affiliation(s)
- Toby G Johnson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Amir Sadeghi-Kelishadi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
21
|
Groslambert L, Padilla-Hernandez A, Weiss R, Pale P, Mamane V. Chalcogen-Bond Catalysis: Telluronium-Catalyzed [4+2]-Cyclocondensation of (in situ Generated) Aryl Imines with Alkenes. Chemistry 2023; 29:e202203372. [PMID: 36524743 DOI: 10.1002/chem.202203372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In the chalcogen series, tellurium species exhibit the strongest chalcogen bonding (ChB) interaction with electron-rich atom. This property explains the renewed interested toward tellurium-based derivatives and their use in different applications, such as organocatalysis. In this context, the catalytic activity of telluronium salts in the Povarov reaction is presented herein. Different dienophiles, as well as imines of variable electronic nature, efficiently react in the presence of catalytic amount of either diarylmethyltelluronium or triaryltelluronium salts. Both catalysts could also readily perform the three-component Povarov reaction starting from aldehyde, aniline and dihydrofuran. The reactivity of telluroniums towards imines and aldehydes was confirmed in the solid state by the ability of Te atom to interact through ChB with the oxygen carbonyl of acetone, and in solution with significant shift variations of the imine proton and of the tellurium atom in 1 H and 125 Te NMR spectroscopy. For the most active telluronium catalysts bearing CF3 groups, association constants (K) with N-phenyl phenylmethanimine in the range 22-38 M-1 were measured in dichloromethane.
Collapse
Affiliation(s)
- Loic Groslambert
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Andres Padilla-Hernandez
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Robin Weiss
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
22
|
Docker A, Johnson TG, Kuhn H, Zhang Z, Langton MJ. Multistate Redox-Switchable Ion Transport Using Chalcogen-Bonding Anionophores. J Am Chem Soc 2023; 145:2661-2668. [PMID: 36652378 PMCID: PMC9896566 DOI: 10.1021/jacs.2c12892] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Indexed: 01/19/2023]
Abstract
Synthetic supramolecular transmembrane anionophores have emerged as promising anticancer chemotherapeutics. However, key to their targeted application is achieving spatiotemporally controlled activity. Herein, we report a series of chalcogen-bonding diaryl tellurium-based transporters in which their anion binding potency and anionophoric activity are controlled through reversible redox cycling between Te oxidation states. This unprecedented in situ reversible multistate switching allows for switching between ON and OFF anion transport and is crucially achieved with biomimetic chemical redox couples.
Collapse
Affiliation(s)
- Andrew Docker
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Toby G. Johnson
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Heike Kuhn
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Zongyao Zhang
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew J. Langton
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
23
|
Lee HG, Dhamija A, Das CK, Park KM, Chang YT, Schäfer LV, Kim K. Synthetic Monosaccharide Channels: Size-Selective Transmembrane Transport of Glucose and Fructose Mediated by Porphyrin Boxes. Angew Chem Int Ed Engl 2023; 62:e202214326. [PMID: 36382990 DOI: 10.1002/anie.202214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Here we report synthetic monosaccharide channels built with shape-persistent organic cages, porphyrin boxes (PBs), that allow facile transmembrane transport of glucose and fructose through their windows. PBs show a much higher transport rate for glucose and fructose over disaccharides such as sucrose, as evidenced by intravesicular enzyme assays and molecular dynamics simulations. The transport rate can be modulated by changing the length of the alkyl chains decorating the cage windows. Insertion of a linear pillar ligand into the cavity of PBs blocks the monosaccharide transport. In vitro cell experiment shows that PBs transport glucose across the living-cell membrane and enhance cell viability when the natural glucose transporter GLUT1 is blocked. Time-dependent live-cell imaging and MTT assays confirm the cyto-compatibility of PBs. The monosaccharide-selective transport ability of PBs is reminiscent of natural glucose transporters (GLUTs), which are crucial for numerous biological functions.
Collapse
Affiliation(s)
- Hong-Guen Lee
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Avinash Dhamija
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Chandan K Das
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Daegu, 42472, Republic of Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
24
|
Scheiner S, Michalczyk M, Zierkiewicz W. Involvement of Arsenic Atom of AsF 3 in Five Pnicogen Bonds: Differences between X-ray Structure and Theoretical Models. Molecules 2022; 27:6486. [PMID: 36235021 PMCID: PMC9572024 DOI: 10.3390/molecules27196486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Bonding within the AsF3 crystal is analyzed via quantum chemical methods so as to identify and quantify the pnicogen bonds that are present. The structure of a finite crystal segment containing nine molecules is compared with that of a fully optimized cluster of the same size. The geometries are qualitatively different, with a much larger binding energy within the optimized nonamer. Although the total interaction energy of a central unit with the remaining peripheral molecules is comparable for the two structures, the binding of the peripherals with one another is far larger in the optimized cluster. This distinction of much stronger total binding within the optimized cluster is not limited to the nonamer but repeats itself for smaller aggregates as well. The average binding energy of the cluster rises quickly with size, asymptotically approaching a value nearly triple that of the dimer.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
25
|
Sharma D, Benny A, Gupta R, Jemmis ED, Venugopal A. Crystallographic evidence for a continuum and reversal of roles in primary-secondary interactions in antimony Lewis acids: applications in carbonyl activation. Chem Commun (Camb) 2022; 58:11009-11012. [PMID: 36097954 DOI: 10.1039/d2cc04027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Primary and secondary interactions form the basis of substrate activation in Lewis-acid mediated catalysis, with most substrate activations occurring at the secondary binding site. We explore two series of antimony cations, [(NMe2CH2C6H4)(mesityl)Sb]+ (A) and [(NMe2C6H4)(mesityl)Sb]+ (B), by coordinating ligands with varying nucleophilicity at the position trans to the N-donor. The decreased nucleophilicity of the incoming ligands leads to reversal from a primary bond to a secondary interaction in A, whereas a constrained N-coordination in B diminishes the border between primary and secondary bonding. Investigations on carbonyl olefin metathesis reactions and carbonyl reduction demonstrate increased reactivity of a Lewis acid when the substrate activation occurs at the primary binding site.
Collapse
Affiliation(s)
- Deepti Sharma
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| | - Annabel Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| | - Radhika Gupta
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Eluvathingal D Jemmis
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Ajay Venugopal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| |
Collapse
|
26
|
Definition of the Pnictogen Bond: A Perspective. INORGANICS 2022. [DOI: 10.3390/inorganics10100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This article proposes a definition for the term “pnictogen bond” and lists its donors, acceptors, and characteristic features. These may be invoked to identify this specific subset of the inter- and intramolecular interactions formed by elements of Group 15 which possess an electrophilic site in a molecular entity.
Collapse
|
27
|
Romito D, Fresta E, Cavinato LM, Kählig H, Amenitsch H, Caputo L, Chen Y, Samorì P, Charlier J, Costa RD, Bonifazi D. Supramolecular Chalcogen-Bonded Semiconducting Nanoribbons at Work in Lighting Devices. Angew Chem Int Ed Engl 2022; 61:e202202137. [PMID: 35274798 PMCID: PMC9544418 DOI: 10.1002/anie.202202137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/24/2022]
Abstract
This work describes the design and synthesis of a π-conjugated telluro[3,2-β][1]-tellurophene-based synthon that, embodying pyridyl and haloaryl chalcogen-bonding acceptors, self-assembles into nanoribbons through chalcogen bonds. The ribbons π-stack in a multi-layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen-bonded material showed the presence of a local charge density between Te and N atoms. OTFT-based charge transport measurements showed hole-transport properties for this material. Its integration as a p-type semiconductor in multi-layered CuI -based light-emitting electrochemical cells (LECs) led to a 10-fold increase in stability (38 h vs. 3 h) compared to single-layered devices. Finally, using the reference tellurotellurophene congener bearing a C-H group instead of the pyridyl N atom, a herringbone solid-state assembly is formed without charge transport features, resulting in LECs with poor stabilities (<1 h).
Collapse
Affiliation(s)
- Deborah Romito
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Elisa Fresta
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Luca M. Cavinato
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Hanspeter Kählig
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Heinz Amenitsch
- Graz University of TechnologyInstitute for Inorganic ChemistryStremayergasse 9/V8010GrazAustria
| | - Laura Caputo
- Institute of Condensed Matter and NanosciencesUniversité catholique de Louvain (UCLouvain)Chemin des étoiles 81348Louvain-la-NeuveBelgium
| | - Yusheng Chen
- Université de Strasbourg, CNRS, ISIS8 allée Gaspard Monge67000StrasbourgFrance
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS8 allée Gaspard Monge67000StrasbourgFrance
| | - Jean‐Christophe Charlier
- Institute of Condensed Matter and NanosciencesUniversité catholique de Louvain (UCLouvain)Chemin des étoiles 81348Louvain-la-NeuveBelgium
| | - Rubén D. Costa
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Davide Bonifazi
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| |
Collapse
|
28
|
Alfuth J, Jeannin O, Fourmigué M. Topochemical, Single-Crystal-to-Single-Crystal [2+2] Photocycloadditions Driven by Chalcogen-Bonding Interactions. Angew Chem Int Ed Engl 2022; 61:e202206249. [PMID: 35797220 PMCID: PMC9546344 DOI: 10.1002/anie.202206249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/04/2022]
Abstract
The face-to-face association of (E)-1,2-di(4-pyridyl)ethylene (bpen) molecules into rectangular motifs stabilized for the first time by chalcogen bonding (ChB) interactions is shown to provide photoreactive systems leading to cyclobutane formation through single-crystal-to-single-crystal [2+2] photodimerizations. The chelating chalcogen bond donors are based on original aromatic, ortho-substituted bis(selenocyanato)benzene derivatives 1-3, prepared from ortho-diboronic acid bis(pinacol) ester precursors and SeO2 and malononitrile in 75-90 % yield. The very short intramolecular Se⋅⋅⋅Se distance in 1-3 (3.22-3.24 Å), a consequence of a strong intramolecular ChB interaction, expands to 3.52-3.54 Å in the chalcogen-bonded adducts with bpen, a distance (<4 Å) well adapted to the face-to-face association of the bpen molecules into the reactive position toward photochemical dimerization.
Collapse
Affiliation(s)
- Jan Alfuth
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), 35000, Rennes, France
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Olivier Jeannin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), 35000, Rennes, France
| | - Marc Fourmigué
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), 35000, Rennes, France
| |
Collapse
|
29
|
Steinke T, Wonner P, Gauld RM, Heinrich S, Huber SM. Catalytic Activation of Imines by Chalcogen Bond Donors in a Povarov [4+2] Cycloaddition Reaction. Chemistry 2022; 28:e202200917. [PMID: 35704037 PMCID: PMC9545453 DOI: 10.1002/chem.202200917] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Recently, chalcogen bonding has been investigated in more detail in organocatalysis and the scope of activated functionalities continues to increase. Herein, the activation of imines in a Povarov [4+2] cycloaddition reaction with bidentate cationic chalcogen bond donors is presented. Tellurium-based Lewis acids show superior properties compared to selenium-based catalysts and inactive sulfur-based analogues. The catalytic activity of the chalcogen bonding donors increases with weaker binding anions. Triflate, however, is not suitable due to its participation in the catalytic pathway. A solvent screening revealed a more efficient activation in less polar solvents and a pronounced effect of solvent (and catalyst) on endo : exo diastereomeric ratio. Finally, new chiral chalcogen bonding catalysts were applied but provided only racemic mixtures of the product.
Collapse
Affiliation(s)
- Tim Steinke
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Patrick Wonner
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Richard M. Gauld
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Sascha Heinrich
- Fakultät für Biologie und BiotechnologieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Stefan M. Huber
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
30
|
Docker A, Marques I, Kuhn H, Zhang Z, Félix V, Beer PD. Selective Potassium Chloride Recognition, Sensing, Extraction, and Transport Using a Chalcogen-Bonding Heteroditopic Receptor. J Am Chem Soc 2022; 144:14778-14789. [PMID: 35930460 PMCID: PMC9394446 DOI: 10.1021/jacs.2c05333] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Chalcogen bonding (ChB) is rapidly rising to prominence
in supramolecular
chemistry as a powerful sigma (σ)-hole-based noncovalent interaction,
especially for applications in the field of molecular recognition.
Recent studies have demonstrated ChB donor strength and potency to
be remarkably sensitive to local electronic environments, including
redox-switchable on/off anion binding and sensing capability. Influencing
the unique electronic and geometric environment sensitivity of ChB
interactions through simultaneous cobound metal cation recognition,
herein, we present the first potassium chloride-selective heteroditopic
ion-pair receptor. The direct conjugation of benzo-15-crown-5 ether
(B15C5) appendages to Te centers in a bis-tellurotriazole framework
facilitates alkali metal halide (MX) ion-pair binding through the
formation of a cofacial intramolecular bis-B15C5 M+ (M+ = K+, Rb+, Cs+) sandwich
complex and bidentate ChB···X– formation.
Extensive quantitative 1H NMR ion-pair affinity titration
experiments, solid–liquid and liquid–liquid extraction,
and U-tube transport studies all demonstrate unprecedented KCl selectivity
over all other group 1 metal chlorides. It is demonstrated that the
origin of the receptor’s ion-pair binding cooperativity and
KCl selectivity arises from an electronic polarization of the ChB
donors induced by the cobound alkali metal cation. Importantly, the
magnitude of this switch on Te-centered electrophilicity, and therefore
anion-binding affinity, is shown to correlate with the inherent Lewis
acidity of the alkali metal cation. Extensive computational DFT investigations
corroborated the experimental alkali metal cation–anion ion-pair
binding observations for halides and oxoanions.
Collapse
Affiliation(s)
- Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Igor Marques
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Heike Kuhn
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Zongyao Zhang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Vítor Félix
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| |
Collapse
|
31
|
|
32
|
Alfuth J, Jeannin O, Fourmigue M. Topochemical, Single‐Crystal‐to‐Single‐Crystal [2+2] Photocycloadditions Driven by Chalcogen‐Bonding Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Alfuth
- Gdańsk University of Technology: Politechnika Gdanska Organic chemistry Gdansk POLAND
| | | | - Marc Fourmigue
- UMR 6226 CNRS-Universite Rennes1 Institut des Sciences Chimiques de Rennes Campus de BeaulieuBatiment 10C 35042 Rennes FRANCE
| |
Collapse
|
33
|
Zhu H, Zhou PP, Wang Y. Cooperative chalcogen bonding interactions in confined sites activate aziridines. Nat Commun 2022; 13:3563. [PMID: 35732663 PMCID: PMC9217929 DOI: 10.1038/s41467-022-31293-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
The activation of aziridines typically involves the use of strong Lewis acids or transition metals, and methods relying on weak interactions are rare. Herein, we report that cooperative chalcogen bonding interactions in confined sites can activate sulfonyl-protected aziridines. Among the several possible distinct bonding modes, our experiments and computational studies suggest that an activation mode involving the cooperative Se···O and Se···N interactions is in operation. The catalytic reactions between weakly bonded supramolecular species and nonactivated alkenes are considered as unfavorable approaches. However, here we show that the activation of aziridines by cooperative Se···O and Se···N interactions enables the cycloaddition of weakly bonded aziridine-selenide complex with nonactivated alkenes in a catalytic manner. Thus, weak interactions can indeed enable these transformations and are an alternative to methods relying on strong Lewis acids. The activation of aziridines is typically achieved via reaction with strong Lewis acids or transition metals. Here, the authors report that cooperative Se ∙ ∙∙O and Se ∙ ∙∙N noncovalent interactions can activate sulfonyl-protected aziridines, which enables their use in cycloaddition reactions with nonactivated alkenes.
Collapse
Affiliation(s)
- Haofu Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Pan-Pan Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China.
| |
Collapse
|
34
|
Hein R, Beer PD. Halogen bonding and chalcogen bonding mediated sensing. Chem Sci 2022; 13:7098-7125. [PMID: 35799814 PMCID: PMC9214886 DOI: 10.1039/d2sc01800d] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Sigma-hole interactions, in particular halogen bonding (XB) and chalcogen bonding (ChB), have become indispensable tools in supramolecular chemistry, with wide-ranging applications in crystal engineering, catalysis and materials chemistry as well as anion recognition, transport and sensing. The latter has very rapidly developed in recent years and is becoming a mature research area in its own right. This can be attributed to the numerous advantages sigma-hole interactions imbue in sensor design, in particular high degrees of selectivity, sensitivity and the capability for sensing in aqueous media. Herein, we provide the first detailed overview of all developments in the field of XB and ChB mediated sensing, in particular the detection of anions but also neutral (gaseous) Lewis bases. This includes a wide range of optical colorimetric and luminescent sensors as well as an array of electrochemical sensors, most notably redox-active host systems. In addition, we discuss a range of other sensor designs, including capacitive sensors and chemiresistors, and provide a detailed overview and outlook for future fundamental developments in the field. Importantly the sensing concepts and methodologies described herein for the XB and ChB mediated sensing of anions, are generically applicable for the development of supramolecular receptors and sensors in general, including those for cations and neutral molecules employing a wide array of non-covalent interactions. As such we believe this review to be a useful guide to both the supramolecular and general chemistry community with interests in the fields of host-guest recognition and small molecule sensing. Moreover, we also highlight the need for a broader integration of supramolecular chemistry, analytical chemistry, synthetic chemistry and materials science in the development of the next generation of potent sensors.
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
35
|
Yu X, Gong Y, Ji H, Cheng C, Lv C, Zhang Y, Zang L, Zhao J, Che Y. Rapid Assessment of Meat Freshness by the Differential Sensing of Organic Sulfides Emitted during Spoilage. ACS Sens 2022; 7:1395-1402. [PMID: 35420787 DOI: 10.1021/acssensors.2c00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work, we report the fabrication of a two-member fluorescence sensor array that enables the assessment of three stages (fresh, slightly spoiled, and moderately or severely spoiled) of meat spoilage. The first member of the array, which has strong chalcogen bonding and sulfur-π interactions with organic sulfides, exhibits very high sensitivity, while the second member of the array, which has weak chalcogen bonding and sulfur-π interactions with organic sulfides, exhibits lower sensitivity. On the basis of the combined fluorescence responses of the two members, three stages of meat spoilage, including fresh, slightly spoiled, and moderately or severely spoiled, can be monitored. Notably, using the volatiles collected from 5 g of meat products over a short period of time (1 min), this two-member sensor array achieves sensitive responses to the organic sulfides emitted from the meats. The capacity of this method to rapidly assess meat freshness facilitates its practical application, as illustrated by the monitoring of the freshness of chicken and pork products in the real world.
Collapse
Affiliation(s)
- Xinting Yu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanqin Cheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiao Lv
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zang
- Department of Material Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113421. [PMID: 35684359 PMCID: PMC9181914 DOI: 10.3390/molecules27113421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
In chemical systems, the arsenic-centered pnictogen bond, or simply the arsenic bond, occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound arsenic atom in a molecular entity and a nucleophile in another or the same molecular entity. It is the third member of the family of pnictogen bonds formed by the third atom of the pnictogen family, Group 15 of the periodic table, and is an inter- or intramolecular noncovalent interaction. In this overview, we present several illustrative crystal structures deposited into the Cambridge Structure Database (CSD) and the Inorganic Chemistry Structural Database (ICSD) during the last and current centuries to demonstrate that the arsenic atom in molecular entities has a significant ability to act as an electrophilic agent to make an attractive engagement with nucleophiles when in close vicinity, thereby forming σ-hole or π-hole interactions, and hence driving (in part, at least) the overall stability of the system’s crystalline phase. This overview does not include results from theoretical simulations reported by others as none of them address the signatory details of As-centered pnictogen bonds. Rather, we aimed at highlighting the interaction modes of arsenic-centered σ- and π-holes in the rationale design of crystal lattices to demonstrate that such interactions are abundant in crystalline materials, but care has to be taken to identify them as is usually done with the much more widely known noncovalent interactions in chemical systems, halogen bonding and hydrogen bonding. We also demonstrate that As-centered pnictogen bonds are usually accompanied by other primary and secondary interactions, which reinforce their occurrence and strength in most of the crystal structures illustrated. A statistical analysis of structures deposited into the CSD was performed for each interaction type As···D (D = N, O, S, Se, Te, F, Cl, Br, I, arene’s π system), thus providing insight into the typical nature of As···D interaction distances and ∠R–As···D bond angles of these interactions in crystals, where R is the remainder of the molecular entity.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
- Correspondence: (A.V.); (P.R.V.)
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
- Correspondence: (A.V.); (P.R.V.)
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
| |
Collapse
|
37
|
Singh A, Torres-Huerta A, Vanderlinden T, Renier N, Martínez-Crespo L, Tumanov N, Wouters J, Bartik K, Jabin I, Valkenier H. Calix[6]arenes with halogen bond donor groups as selective and efficient anion transporters. Chem Commun (Camb) 2022; 58:6255-6258. [PMID: 35521967 PMCID: PMC9128489 DOI: 10.1039/d2cc00847e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we present the anion binding and anion transport properties of a series of calix[6]arenes decorated on their small rim with either halogen bond or hydrogen bond donating groups. We show that the halogen bond donating iodotriazole groups enable highly selective transport of chloride and nitrate anions, without transport of protons or hydroxide, at rates similar to those observed with thiourea or squaramide groups. A calix[6]arene with three preorganised halogen bond donating groups gives >100-fold selectivity for Cl− uniport over HCl symport, in contrast to analogous compounds with strong hydrogen bond donating groups.![]()
Collapse
Affiliation(s)
- Anurag Singh
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Tom Vanderlinden
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium. .,Université libre de Bruxelles (ULB), Faculty of science, Laboratoire de Chimie Organique, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium
| | - Nathan Renier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Luis Martínez-Crespo
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Nikolay Tumanov
- Namur Institute of Structured Matter and Namur Research Institute for Life Sciences, Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Johan Wouters
- Namur Institute of Structured Matter and Namur Research Institute for Life Sciences, Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Kristin Bartik
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| | - Ivan Jabin
- Université libre de Bruxelles (ULB), Faculty of science, Laboratoire de Chimie Organique, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium.
| |
Collapse
|
38
|
Jena S, Dutta J, Tulsiyan KD, Sahu AK, Choudhury SS, Biswal HS. Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking. Chem Soc Rev 2022; 51:4261-4286. [PMID: 35560317 DOI: 10.1039/d2cs00133k] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the noncovalent interactions (NCIs) among the residues of proteins and nucleic acids, and between drugs and proteins/nucleic acids, etc., has extraordinary relevance in biomolecular structure and function. It helps in interpreting the dynamics of complex biological systems and enzymatic activity, which is esential for new drug design and efficient drug delivery. NCIs like hydrogen bonding (H-bonding) and π-stacking have been researchers' delight for a long time. Prominent among the recently discovered NCIs are halogen, chalcogen, pnictogen, tetrel, carbo-hydrogen, and spodium bonding, and n → π* interaction. These NCIs have caught the imaginations of various research groups in recent years while explaining several chemical and biological processes. At this stage, a holistic view of these new ideas and findings lying scattered can undoubtedly trigger our minds to explore more. The present review attempts to address NCIs beyond H-bonding and π-stacking, which are mainly n → σ*, n → π* and σ → σ* type interactions. Five of the seven NCIs mentioned earlier are linked to five non-inert end groups of the modern periodic table. Halogen (group-17) bonding is one of the oldest and most explored NCIs, which finds its relevance in biomolecules due to the phase correction and inhibitory properties of halogens. Chalcogen (group 16) bonding serves as a redox-active functional group of different active sites of enzymes and acts as a nucleophile in proteases and phosphates. Pnictogen (group 15), tetrel (group 14), triel (group 13) and spodium (group 12) bonding does exist in biomolecules. The n → π* interactions are linked to backbone carbonyl groups and protein side chains. Thus, they are crucial in determining the conformational stability of the secondary structures in proteins. In addition, a more recently discovered to and fro σ → σ* type interaction, namely carbo-hydrogen bonding, is also present in protein-ligand systems. This review summarizes these grand epiphanies routinely used to elucidate the structure and dynamics of biomolecules, their enzymatic activities, and their application in drug discovery. It also briefs about the future perspectives and challenges posed to the spectroscopists and theoreticians.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Shubhranshu Shekhar Choudhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
39
|
Weiss R, Aubert E, Groslambert L, Pale P, Mamane V. Chalcogen Bonding with Diaryl Ditellurides: Evidence from Solid State and Solution Studies. Chemistry 2022; 28:e202200395. [DOI: 10.1002/chem.202200395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Robin Weiss
- Institute of Chemistry of Strasbourg, UMR 7177 - LASYROC CNRS and Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | | | - Loic Groslambert
- Institute of Chemistry of Strasbourg, UMR 7177 - LASYROC CNRS and Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177 - LASYROC CNRS and Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177 - LASYROC CNRS and Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
40
|
Gabbai FP, Karimi M. Hydrogen Bond‐Assisted Fluoride Binding by a Stiborane. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Mohammadjavad Karimi
- Texas A&M University Chemistry Corner of Ross and Spence 77843 COLLEGE STATION UNITED STATES
| |
Collapse
|
41
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Stibium Bond or the Antimony-Centered Pnictogen Bond: The Covalently Bound Antimony Atom in Molecular Entities in Crystal Lattices as a Pnictogen Bond Donor. Int J Mol Sci 2022; 23:4674. [PMID: 35563065 PMCID: PMC9099767 DOI: 10.3390/ijms23094674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
A stibium bond, i.e., a non-covalent interaction formed by covalently or coordinately bound antimony, occurs in chemical systems when there is evidence of a net attractive interaction between the electrophilic region associated with an antimony atom and a nucleophile in another, or the same molecular entity. This is a pnictogen bond and are likely formed by the elements of the pnictogen family, Group 15, of the periodic table, and is an inter- or intra-molecular non-covalent interaction. This overview describes a set of illustrative crystal systems that were stabilized (at least partially) by means of stibium bonds, together with other non-covalent interactions (such as hydrogen bonds and halogen bonds), retrieved from either the Cambridge Structure Database (CSD) or the Inorganic Crystal Structure Database (ICSD). We demonstrate that these databases contain hundreds of crystal structures of various dimensions in which covalently or coordinately bound antimony atoms in molecular entities feature positive sites that productively interact with various Lewis bases containing O, N, F, Cl, Br, and I atoms in the same or different molecular entities, leading to the formation of stibium bonds, and hence, being partially responsible for the stability of the crystals. The geometric features, pro-molecular charge density isosurface topologies, and extrema of the molecular electrostatic potential model were collectively examined in some instances to illustrate the presence of Sb-centered pnictogen bonding in the representative crystal systems considered.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| |
Collapse
|
42
|
Yuan L, Jiang P, Hu J, Zeng H, Huo Y, Li Z, Zeng H. A highly active and selective chalcogen bond-mediated perchlorate channel. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Tong Q, Zhao Z, Wang Y. A Se···O bonding catalysis approach to the synthesis of calix[4]pyrroles. Beilstein J Org Chem 2022; 18:325-330. [PMID: 35368584 PMCID: PMC8941317 DOI: 10.3762/bjoc.18.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
Described herein is a chalcogen bonding catalysis approach to the synthesis of calix[4]pyrrole derivatives. The Se···O bonding interactions between selenide catalysts and ketones gave rise to the catalytic activity in the condensation reactions between pyrrole and ketones, leading to the generation of calix[4]pyrrole derivatives in moderate to high yields. This chalcogen bonding catalysis approach was efficient since only 5 mol % catalyst loading was used to promote the consecutive condensation processes while the reactions could be carried out at room temperature, thus highlighting the potential of this type of nonclassical interactions in catalyzing relative complex transformations.
Collapse
Affiliation(s)
- Qingzhe Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Zhiguo Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| |
Collapse
|
44
|
Romito D, Fresta E, Cavinato LM, Kählig H, Amenitsch H, Caputo L, Chen Y, Samorì P, Charlier JC, Costa R, Bonifazi D. Supramolecular Chalcogen‐Bonded Semiconducting Nanoribbons at work in Lighting Devices. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deborah Romito
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Organic Chemistry Währinger Straße 38 1090 Vienna AUSTRIA
| | - Elisa Fresta
- Technical University Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Luca Maria Cavinato
- Technical University of Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Hanspeter Kählig
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Organic Chemistry Währinger Straße 38 1090 vienna AUSTRIA
| | - Heinz Amenitsch
- Graz University of Technology: Technische Universitat Graz Institute for Inorganic Chemistry Stremayergasse 9/V 8010 Graz AUSTRIA
| | - Laura Caputo
- UCLouvain Saint-Louis Bruxelles: Universite Saint-Louis - Bruxelles Institute of Condensed Matter and Nanosciences Chemin des étoiles 8 B-1348 Louvain-la-Neuve BELGIUM
| | - Yusheng Chen
- Universite de Strasbourg CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg FRANCE
| | - Paolo Samorì
- Universite de Strasbourg CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg FRANCE
| | - Jean-Christophe Charlier
- UCLouvain Saint-Louis Bruxelles: Universite Saint-Louis - Bruxelles Institute of Condensed Matter and Nanosciences Chemin des étoiles 8 B-1348 Louvain-la-Neuve BELGIUM
| | - Rubén Costa
- Technical University of Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Davide Bonifazi
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Institute of Organic Chemistry Währinger Strasse 38 1090 Vienna AUSTRIA
| |
Collapse
|
45
|
Radiush EA, Pritchina EA, Chulanova EA, Dmitriev AA, Bagryanskaya IY, Slawin AMZ, Woollins JD, Gritsan NP, Zibarev AV, Semenov NA. Chalcogen-bonded donor–acceptor complexes of 5,6-dicyano[1,2,5]selenadiazolo[3,4- b]pyrazine with halide ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With halides X− (X = Cl, Br, I) 5,6-dicyano-[1,2,5]selenadiazolo[3,4-b]pyrazine 1 forms chalcogen-bonded complexes [1–X]− structurally defined by XRD. UV/Vis spectra of [1–X]− feature red-shifted charge-transfer bands in the Vis part.
Collapse
Affiliation(s)
- Ekaterina A. Radiush
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena A. Pritchina
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, National Research University – Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena A. Chulanova
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey A. Dmitriev
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, National Research University – Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Irina Yu Bagryanskaya
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | - J. Derek Woollins
- School of Chemistry, University of St. Andrews, St Andrews, Fife KY16 9ST, UK
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Nina P. Gritsan
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zibarev
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikolay A. Semenov
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
46
|
Sun Y, Li Y, Li X, Zeng Y. Mechanism and Impact of Mono/bis(iodoimidazolium) Halogen-Bond Donor Catalysts on Michael Addition of Indole with Trans-crotonophenone: DFT Investigations. Phys Chem Chem Phys 2022; 24:6690-6698. [DOI: 10.1039/d2cp00075j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bidentate halogen bond donor catalysts in organic reactions have attracted greatly attention in recent years. In this work, the catalytic mechanism of mono/bis(iodoimidazolium) halogen bond donor catalysts on the...
Collapse
|
47
|
Macreadie LK, Gilchrist AM, McNaughton DA, Ryder WG, Fares M, Gale PA. Progress in anion receptor chemistry. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Gonzalez VM, Park G, Yang M, Gabbaï FP. Fluoride anion complexation and transport using a stibonium cation stabilized by an intramolecular PO → Sb pnictogen bond. Dalton Trans 2021; 50:17897-17900. [PMID: 34816847 DOI: 10.1039/d1dt03370k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the synthesis of [o-Ph2P(O)(C6H4)SbPh3]+ ([2]+), an intramolecularly base-stabilized stibonium Lewis acid which was obtained by reaction of [o-Ph2P(C6H4)SbPh3]+ with NOBF4. This cation reacts with fluoride anions to afford the corresponding fluorostiborane o-Ph2P(O)(C6H4)SbFPh3, the structure of which indicates a strengthening of the PO → Sb interaction. When deployed in fluoride-containing POPC unilamellar vesicles, [2]+ behaves as a potent fluoride anion transporter whose activity greatly exceeds that of [Ph4Sb]+.
Collapse
Affiliation(s)
- Vanessa M Gonzalez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - Gyeongjin Park
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - Mengxi Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| |
Collapse
|
49
|
Gilchrist AM, Wang P, Carreira-Barral I, Alonso-Carrillo D, Wu X, Quesada R, Gale PA. Supramolecular methods: the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) transport assay. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1999956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Patrick Wang
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | - Xin Wu
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roberto Quesada
- Departmento De Química, Universidad De Burgos, Burgos, Spain
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
50
|
Ho PC, Tomassetti V, Britten JF, Vargas-Baca I. Iso-Tellurazolium -N-Phenoxides: A Family of Te···O Chalcogen-Bonding Supramolecular Building Blocks. Inorg Chem 2021; 60:16726-16733. [PMID: 34672560 DOI: 10.1021/acs.inorgchem.1c02585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formal substitution of the oxygen atom of an iso-tellurazole N-oxide with deprotonated (ortho, meta, and para)-hydroxyphenyl groups generated molecules that readily aggregate through Te···O chalcogen bonding (ChB) interactions. The molecules undergo autoassociation in solution, as shown by variable temperature (VT) 1H NMR experiments and paralleling the behavior of iso-tellurazole N-oxides. Judicious adjustment of crystallization conditions enabled the isolation of either polymeric or macrocyclic aggregates. Among the latter, the ortho compound assembled a calixarene-like trimer, while the para isomer built a macrocyclic tetramer akin to a molecular square. The Te···O ChB distances in these structures range from 2.13 to 2.17 Å, comparable to those in the structures of iso-tellurazole N-oxides. DFT calculations estimate that the corresponding Te···O ChB energies are between -122 and -195 kJ mol-1 in model dimers and suggest that macrocyclic aggregation enhances these interactions.
Collapse
Affiliation(s)
- Peter C Ho
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Valerie Tomassetti
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - James F Britten
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Ignacio Vargas-Baca
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| |
Collapse
|