1
|
Kingsbury CJ, Senge MO. Quantifying near-symmetric molecular distortion using symmetry-coordinate structural decomposition. Chem Sci 2024:d4sc01670j. [PMID: 39129773 PMCID: PMC11310747 DOI: 10.1039/d4sc01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
We imagine molecules to be perfect, but rigidified units can be designed to bend from their ideal shape, discarding their symmetric elements as they progress through vibrations and larger, more permanent distortions. The shape of molecules is either simulated or measured by crystallography and strongly affects chemical properties but, beyond an image or tabulation of atom-to-atom distances, little is often discussed of the accessed conformation. We have simplified the process of shape quantification across multiple molecular types with a new web-accessible program - SCSD - through which a molecular subunit possessing near-symmetry can be dissected into symmetry coordinates with ease. This parameterization allows a common set of numbers for comparing and understanding molecular shape, and is a simple method for database analysis; this program is available at https://www.kingsbury.id.au/scsd.
Collapse
Affiliation(s)
- Christopher J Kingsbury
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin D02R590 Ireland
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin D02R590 Ireland
- Institute for Advanced Study (TUM-IAS), Technical University of Munich Lichtenberg-Str. 2a 85748 Garching Germany
| |
Collapse
|
2
|
Kidd SR, Zhou W, Warren JJ, Leznoff DB. Inducing ring distortions in unsubstituted metallophthalocyanines using axial N-heterocyclic carbenes. Dalton Trans 2024; 53:6537-6546. [PMID: 38498318 DOI: 10.1039/d4dt00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A series of metallophthalocyanine (PcM) complexes with axial N-heterocyclic carbene ligands (NHC; 1,3-diisopropylimidazol-2-ylidene (DIP) and 1,3-dimethylbenzimidazol-2-ylidene (DMB)) were prepared and structurally characterized. PcCoII(DIP), PcZnII(DIP), and PcZnII(DMB) are five-coordinate complexes with mild dome-type Pc-ring distortions, while PcFeII(DIP)2 is six-coordinate and has a very large ruffle-type ring-distortion with respect to typical PcM(L)2 systems. The distortion is induced by the highly steric axial DIP ligands. The distortions were quantified and classified by their bond lengths and torsion angles, and according to the normal-coordinate structural decomposition (NSD) analysis. Upon ligation of the NHC, the insoluble PcM materials were solublized in common organic solvents, with typical UV-visible Q-band maxima observable between 658 and 677 nm; the increased solubility is rationalized in terms of the reduced solid-state aggregation of the complexes, attributable to the axial ligation.
Collapse
Affiliation(s)
- Steven R Kidd
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | - Wen Zhou
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | - Jeffrey J Warren
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | - Daniel B Leznoff
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| |
Collapse
|
3
|
Ke MR, Chen Z, Shi J, Wei Y, Liu H, Huang S, Li X, Zheng BY, Huang JD. A smart and visible way to switch the aromaticity of silicon(IV) phthalocyanines. Chem Commun (Camb) 2023; 59:9832-9835. [PMID: 37505224 DOI: 10.1039/d3cc02910g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Unlike traditional methods of modifying phthalocyanines (Pcs), we herein report a smart and visible way to switch the aromaticity of silicon(IV) phthalocyanines via a reversible nucleophilic addition reaction of the Pc skeleton induced by alkalis and acids, leading to an interesting allochroism phenomenon and the switching of photosensitive activities.
Collapse
Affiliation(s)
- Mei-Rong Ke
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zixuan Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Jie Shi
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Ying Wei
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hao Liu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Shuping Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Xingshu Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Bi-Yuan Zheng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Jian-Dong Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
4
|
Photoantimicrobial activity of Schiff-base Morpholino phthalocyanines against drug resistant micro-organisms in their planktonic and biofilm forms. Photodiagnosis Photodyn Ther 2023; 42:103519. [PMID: 36931368 DOI: 10.1016/j.pdpdt.2023.103519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Antimicrobial photodynamic inactivation (aPDI) is an alternative treatment for the eradication of drug-resistant micro-organisms. One of the advantages of this technique, it that there is no possibility of microbial resistance. Hence, herein, the preparation and characterization of novel neutral and cationic morpholine containing Schiff base phthalocyanines are reported. The cationic complexes (4 and 5) gave moderate singlet oxygen quantum yields (ΦΔ) of ∼0.2 in aqueous media. Conversely, the neutral complexes generated very low ΦΔ values making them very poor candidates for antimicrobial studies. The cationic phthalocyanines showed excellent photodynamic activity against planktonic cells of all micro-organisms (Candida albicans, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica subspecies enterica serovar Choleraesuis, vancomycin-resistant E. faecium, and methicillin-resistant Staphylococcus aureus). The efficiency of aPDI was shown to be both concentration and light-dose-dependent. Mono biofilms were susceptible when treated with 200 µM of cationic Pcs at 108 J/cm2. However, ∼10% of the mixed biofilm survived after treatment.
Collapse
|
5
|
Shi H, Liang R, Phillips DL, Lee HK, Man WL, Lau KC, Yiu SM, Lau TC. Structure and Reactivity of One- and Two-Electron Oxidized Manganese(V) Nitrido Complexes Bearing a Bulky Corrole Ligand. J Am Chem Soc 2022; 144:7588-7593. [PMID: 35442033 DOI: 10.1021/jacs.2c02506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As a strategy to design stable but highly reactive metal nitrido species, we have synthesized a manganese(V) nitrido complex bearing a bulky corrole ligand, [MnV(N)(TTPPC)]- (1, TTPPC is the trianion of 5,10,15-Tris(2,4,6-triphenylphenyl)corrole). Complex 1 is readily oxidized by 1 equiv of Cp2Fe+ to give the neutral complex 2, which can be further oxidized by 1 equiv of [(p-Br-C6H4)3N•+][B(C6F5)4] to afford the cationic complex 3. All three complexes are stable in the solid state and in CH2Cl2 solution, and their molecular structures have been determined by X-ray crystallography. Spectroscopic and theoretical studies indicate that complexes 2 and 3 are best formulated as Mn(V) nitrido π-cation corrole [MnV(N)(TTPPC+•)] and Mn(V) nitrido π-dication corrole [MnV(N)(TTPPC2+)]+, respectively. Complex 3 is the most reactive N atom transfer reagent among isolated nitrido complexes; it reacts with PPh3 and styrene with second-order rate constants of 2.12 × 105 and 1.95 × 10-2 M-1 s-1, respectively, which are >107 faster than that of 2.
Collapse
Affiliation(s)
- Huatian Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong999077, People's Republic of China
| | - Runhui Liang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong999077, People's Republic of China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong999077, People's Republic of China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Central Avenue, Shatin, New Territories, Hong Kong999077, People's Republic of China
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong999077, People's Republic of China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong999077, People's Republic of China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong999077, People's Republic of China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong999077, People's Republic of China
| |
Collapse
|
6
|
Kurtz DA, Zhang J, Sookezian A, Kallick J, Hill MG, Hunter BM. A Cobalt Phosphine Complex in Five Oxidation States. Inorg Chem 2021; 60:17445-17449. [PMID: 34813328 DOI: 10.1021/acs.inorgchem.1c03020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report electrochemical, spectroscopic, and crystallographic characterization of a redox series of cobalt complexes in five sequential oxidation states. A simple bidentate phosphine ligand, cis-1,2-bis(diphenylphosphino)ethylene (dppv), allows for isolation of the 3+, 2+, 1+, 0, and 1- oxidation states of cobalt─the only known example of transition-metal complexes with redox-innocent ligands in five oxidation states. Electrochemistry of [Co(dppv)2]2+ reveals three reversible reductions and one reversible oxidation. Complexes in each oxidation state are characterized using single-crystal X-ray diffraction. The coordination number and geometry of the complex changes as a function of the oxidation state: including acetonitrile ligands, the Co3+ complex is pseudo-octahedral, the Co2+ complex is square-pyramidal, the Co+ complex is pseudo-square-planar, and the Co0 and Co- complexes approach pseudo-tetrahedral, illustrating structures predicted by crystal-field theory of inorganic transition-metal complexes.
Collapse
Affiliation(s)
- Daniel A Kurtz
- Rowland Institute at Harvard University, Cambridge, Massachusetts 02142, United States
| | - Jibo Zhang
- Rowland Institute at Harvard University, Cambridge, Massachusetts 02142, United States
| | - Arvin Sookezian
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Jeremy Kallick
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Michael G Hill
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Bryan M Hunter
- Rowland Institute at Harvard University, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
7
|
Thenarukandiyil R, Paenurk E, Wong A, Fridman N, Karton A, Carmieli R, Ménard G, Gershoni-Poranne R, de Ruiter G. Extensive Redox Non-Innocence in Iron Bipyridine-Diimine Complexes: a Combined Spectroscopic and Computational Study. Inorg Chem 2021; 60:18296-18306. [PMID: 34787414 PMCID: PMC8653161 DOI: 10.1021/acs.inorgchem.1c02925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Indexed: 11/28/2022]
Abstract
Metal-ligand cooperation is an important aspect in earth-abundant metal catalysis. Utilizing ligands as electron reservoirs to supplement the redox chemistry of the metal has resulted in many new exciting discoveries. Here, we demonstrate that iron bipyridine-diimine (BDI) complexes exhibit an extensive electron-transfer series that spans a total of five oxidation states, ranging from the trication [Fe(BDI)]3+ to the monoanion [Fe(BDI]-1. Structural characterization by X-ray crystallography revealed the multifaceted redox noninnocence of the BDI ligand, while spectroscopic (e.g., 57Fe Mössbauer and EPR spectroscopy) and computational studies were employed to elucidate the electronic structure of the isolated complexes, which are further discussed in this report.
Collapse
Affiliation(s)
- Ranjeesh Thenarukandiyil
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Eno Paenurk
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Anthony Wong
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Natalia Fridman
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Amir Karton
- School
of Molecular Science, The University of
Western Australia, 35 Stirling Highway, 6009 Perth, Australia
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 761000, Israel
| | - Gabriel Ménard
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Renana Gershoni-Poranne
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
8
|
Shi H, Lee HK, Pan Y, Lau KC, Yiu SM, Lam WWY, Man WL, Lau TC. Structure and Reactivity of a Manganese(VI) Nitrido Complex Bearing a Tetraamido Macrocyclic Ligand. J Am Chem Soc 2021; 143:15863-15872. [PMID: 34498856 DOI: 10.1021/jacs.1c08072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Manganese complexes in +6 oxidation state are rare. Although a number of Mn(VI) nitrido complexes have been generated in solution via one-electron oxidation of the corresponding Mn(V) nitrido species, they are too unstable to isolate. Herein we report the isolation and the X-ray structure of a Mn(VI) nitrido complex, [MnVI(N)(TAML)]- (2), which was obtained by one-electron oxidation of [MnV(N)(TAML)]2- (1). 2 undergoes N atom transfer to PPh3 and styrenes to give Ph3P═NH and aziridines, respectively. A Hammett study for various p-substituted styrenes gives a V-shaped plot; this is rationalized by the ability of 2 to function as either an electrophile or a nucleophile. 2 also undergoes hydride transfer reactions with NADH analogues, such as 10-methyl-9,10-dihydroacridine (AcrH2) and 1-benzyl-1,4-dihydronicotinamide (BNAH). A kinetic isotope effect of 7.3 was obtained when kinetic studies were carried out with AcrH2 and AcrD2. The reaction of 2 with NADH analogues results in the formation of [MnV(N)(TAML-H+)]- (3), which was characterized by ESI/MS, IR spectroscopy, and X-ray crystallography. These results indicate that this reaction occurs via an initial "separated CPET" (separated concerted proton-electron transfer) mechanism; that is, there is a concerted transfer of 1 e- + 1 H+ from AcrH2 (or BNAH) to 2, in which the electron is transferred to the MnVI center, while the proton is transferred to a carbonyl oxygen of TAML rather than to the nitrido ligand.
Collapse
Affiliation(s)
- Huatian Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Pan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - William W Y Lam
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi Road, Tsing Yi Island, Hong Kong, China
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| |
Collapse
|
9
|
De Simone BC, Alberto ME, Marino T, Russo N, Toscano M. The Contribution of Density Functional Theory to the Atomistic Knowledge of Electrochromic Processes. Molecules 2021; 26:molecules26195793. [PMID: 34641338 PMCID: PMC8510163 DOI: 10.3390/molecules26195793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 11/29/2022] Open
Abstract
In this review, we provide a brief overview of the contribution that computational studies can offer to the elucidation of the electronic mechanisms responsible for the electrochromism phenomenon, through the use of the density functional theory (DFT) and its time-dependent formulation (TDDFT). Although computational studies on electrochromic systems are not as numerous as those for other physico-chemical processes, we will show their reliability and ability to predict structures, excitation energies, and redox potentials. The results confirm that these methods not only help in the interpretation of experimental data but can also be used for the rational design of molecules with interesting electrochromic properties to be initiated for synthesis and experimental characterization.
Collapse
Affiliation(s)
- Bruna Clara De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, CS, Italy; (B.C.D.S.); (M.E.A.); (T.M.); (M.T.)
| | - Marta Erminia Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, CS, Italy; (B.C.D.S.); (M.E.A.); (T.M.); (M.T.)
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, CS, Italy; (B.C.D.S.); (M.E.A.); (T.M.); (M.T.)
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, CS, Italy; (B.C.D.S.); (M.E.A.); (T.M.); (M.T.)
- Correspondence:
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, CS, Italy; (B.C.D.S.); (M.E.A.); (T.M.); (M.T.)
| |
Collapse
|
10
|
Kolomeychuk FM, Safonova EA, Polovkova MA, Sinelshchikova AA, Martynov AG, Shokurov AV, Kirakosyan GA, Efimov NN, Tsivadze AY, Gorbunova YG. Switchable Aromaticity of Phthalocyanine via Reversible Nucleophilic Aromatic Addition to an Electron-Deficient Phosphorus(V) Complex. J Am Chem Soc 2021; 143:14053-14058. [PMID: 34423977 DOI: 10.1021/jacs.1c05831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reversible nucleophilic addition to a phthalocyanine core was observed for the first time for the electron-deficient cationic phosphorus(V) complex [PcP(OMe)2]+, whose reaction with KOH afforded a highly distorted nonaromatic adduct bearing an OH group at one of the α-pyrrolic carbon atoms. This adduct was characterized by single-crystal X-ray diffraction, ESI HRMS, and NMR, and UV-vis spectroscopy, together with quantum-chemical modeling. The acidic treatment of this adduct restored aromaticity and recovered the starting cationic complex. The reversible aromaticity breakage resulted in dramatic changes in the photophysical properties of the studied complex, which could pave the way to novel switchable Pc-based compounds and materials.
Collapse
Affiliation(s)
- Filipp M Kolomeychuk
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Evgeniya A Safonova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Marina A Polovkova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Anna A Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Alexander G Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Alexander V Shokurov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Gayane A Kirakosyan
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Nikolay N Efimov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Aslan Yu Tsivadze
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| | - Yulia G Gorbunova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, bldg. 4, Moscow 119071, Russia
| |
Collapse
|
11
|
Wang Z, Johnson SI, Wu G, Ménard G. Multiple N-H and C-H Hydrogen Atom Abstractions Through Coordination-Induced Bond Weakening at Fe-Amine Complexes. Inorg Chem 2021; 60:8242-8251. [PMID: 34011142 DOI: 10.1021/acs.inorgchem.1c00923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the use of the reported Fe-phthalocyanine complex, PcFe (1; Pc = 1,4,8,11,15,18,22,25-octaethoxy-phthalocyanine), to generate PcFe-amine complexes 1-(NH3)2, 1-(MeNH2)2, and 1-(Me2NH)2. Treatment of 1 or 1-(NH3)2 to an excess of the stable aryloxide radical, 2,4,6-tritert-butylphenoxyl radical (tBuArO•), under NH3 resulted in catalytic H atom abstraction (HAA) and C-N coupling to generate the product 4-amino-2,4,6-tritert-butylcyclohexa-2,5-dien-1-one (2) and tBuArOH. Exposing 1-(NH3)2 to an excess of the trityl (CPh3) variant, 2,6-di-tert-butyl-4-tritylphenoxyl radical (TrArO•), under NH3 did not lead to catalytic ammonia oxidation as previously reported in a related Ru-porphyrin complex. However, pronounced coordination-induced bond weakening of both α N-H and β C-H in the alkylamine congeners, 1-(MeNH2)2 and 1-(Me2NH)2, led to multiple HAA events yielding the unsaturated cyanide complex, 1-(MeNH2)(CN), and imine complex, 1-(MeN═CH2)2, respectively. Subsequent C-N bond formation was also observed in the latter upon addition of a coordinating ligand. Detailed computational studies support an alternating mechanism involving sequential N-H and C-H HAA to generate these unsaturated products.
Collapse
Affiliation(s)
- Zongheng Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
12
|
|
13
|
Garrido-Barros P, Moonshiram D, Gil-Sepulcre M, Pelosin P, Gimbert-Suriñach C, Benet-Buchholz J, Llobet A. Redox Metal-Ligand Cooperativity Enables Robust and Efficient Water Oxidation Catalysis at Neutral pH with Macrocyclic Copper Complexes. J Am Chem Soc 2020; 142:17434-17446. [PMID: 32935982 DOI: 10.1021/jacs.0c06515] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water oxidation catalysis stands out as one of the most important reactions to design practical devices for artificial photosynthesis. Use of late first-row transition metal (TM) complexes provides an excellent platform for the development of inexpensive catalysts with exquisite control on their electronic and structural features via ligand design. However, the difficult access to their high oxidation states and the general labile character of their metal-ligand bonds pose important challenges. Herein, we explore a copper complex (12-) featuring an extended, π-delocalized, tetra-amidate macrocyclic ligand (TAML) as water oxidation catalyst and compare its activity to analogous systems with lower π-delocalization (22- and 32-). Their characterization evidences a special metal-ligand cooperativity in accommodating the required oxidative equivalents using 12- that is absent in 22- and 32-. This consists of charge delocalization promoted by easy access to different electronic states at a narrow energy range, corresponding to either metal-centered or ligand-centered oxidations, which we identify as an essential factor to stabilize the accumulated oxidative charges. This translates into a significant improvement in the catalytic performance of 12- compared to 22- and 32- and leads to one of the most active and robust molecular complexes for water oxidation at neutral pH with a kobs of 140 s-1 at an overpotential of only 200 mV. In contrast, 22- degrades under oxidative conditions, which we associate to the impossibility of efficiently stabilizing several oxidative equivalents via charge delocalization, resulting in a highly reactive oxidized ligand. Finally, the acyclic structure of 32- prevents its use at neutral pH due to acidic demetalation, highlighting the importance of the macrocyclic stabilization.
Collapse
Affiliation(s)
- Pablo Garrido-Barros
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDE A Nanociencia), Calle Faraday, 9, 28049 Madrid, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Primavera Pelosin
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
14
|
Metal phthalocyanine (CV+){MCl2Pc}− salts with two chromophores (CV+: Crystal violet, Pc: Phthalocyanine) based on SnIIPc and FeIIIClPc phthalocyanines. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Eder S, Yoo DJ, Nogala W, Pletzer M, Santana Bonilla A, White AJP, Jelfs KE, Heeney M, Choi JW, Glöcklhofer F. Switching between Local and Global Aromaticity in a Conjugated Macrocycle for High-Performance Organic Sodium-Ion Battery Anodes. Angew Chem Int Ed Engl 2020; 59:12958-12964. [PMID: 32368821 PMCID: PMC7496320 DOI: 10.1002/anie.202003386] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Indexed: 11/06/2022]
Abstract
Aromatic organic compounds can be used as electrode materials in rechargeable batteries and are expected to advance the development of both anode and cathode materials for sodium-ion batteries (SIBs). However, most aromatic organic compounds assessed as anode materials in SIBs to date exhibit significant degradation issues under fast-charge/discharge conditions and unsatisfying long-term cycling performance. Now, a molecular design concept is presented for improving the stability of organic compounds for battery electrodes. The molecular design of the investigated compound, [2.2.2.2]paracyclophane-1,9,17,25-tetraene (PCT), can stabilize the neutral state by local aromaticity and the doubly reduced state by global aromaticity, resulting in an anode material with extraordinarily stable cycling performance and outstanding performance under fast-charge/discharge conditions, demonstrating an exciting new path for the development of electrode materials for SIBs and other types of batteries.
Collapse
Affiliation(s)
- Simon Eder
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Dong-Joo Yoo
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Matthias Pletzer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Alejandro Santana Bonilla
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Andrew J P White
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
16
|
Eder S, Yoo D, Nogala W, Pletzer M, Santana Bonilla A, White AJP, Jelfs KE, Heeney M, Choi JW, Glöcklhofer F. Switching between Local and Global Aromaticity in a Conjugated Macrocycle for High‐Performance Organic Sodium‐Ion Battery Anodes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Simon Eder
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Dong‐Joo Yoo
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Wojciech Nogala
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Matthias Pletzer
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Alejandro Santana Bonilla
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Andrew J. P. White
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Kim E. Jelfs
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| |
Collapse
|
17
|
Konarev DV, Kuzmin AV, Khasanov SS, Shestakov AF, Nazarov DI, Otsuka A, Yamochi H, Kitagawa H, Lyubovskaya RN. Radical Anions of Free-Base Tetraphenyl- and Tetrakis(pentafluorophenyl)porphyrins: Effect of Substituents on the Properties and Charge Disproportionation in {Cryptand[2.2.2](Cs+
)}(H2
TPP·-
). Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dmitri V. Konarev
- Institute of Problems of Chemical Physics RAS; Department of Kinetics and catalysis; 142432 Tschernogolowka Russian Federation
| | - Aleksey V. Kuzmin
- Institute of Solid State Physics RAS; 142432 Tschernogolowka Russian Federation
| | - Salavat S. Khasanov
- Institute of Solid State Physics RAS; 142432 Tschernogolowka Russian Federation
| | - Alexander F. Shestakov
- Institute of Problems of Chemical Physics RAS; Department of Kinetics and catalysis; 142432 Tschernogolowka Russian Federation
- Moscow State University; Leninskie Gory 119991 Moscow Russia
| | - Dmitry I. Nazarov
- Institute of Problems of Chemical Physics RAS; Department of Kinetics and catalysis; 142432 Tschernogolowka Russian Federation
- Moscow State University; Leninskie Gory 119991 Moscow Russia
| | - Akihiro Otsuka
- Division of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku 606-8502 Kyoto Japan
- Research Center for Low Temperature and Materials Sciences; Kyoto University; Sakyo-ku 606-8501 Kyoto Japan
| | - Hideki Yamochi
- Division of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku 606-8502 Kyoto Japan
- Research Center for Low Temperature and Materials Sciences; Kyoto University; Sakyo-ku 606-8501 Kyoto Japan
| | - Hiroshi Kitagawa
- Division of Chemistry; Graduate School of Science; Kyoto University; Sakyo-ku 606-8502 Kyoto Japan
| | - Rimma N. Lyubovskaya
- Institute of Problems of Chemical Physics RAS; Department of Kinetics and catalysis; 142432 Tschernogolowka Russian Federation
| |
Collapse
|
18
|
Novel peripheral tetra-substituted phthalocyanines containing methoxylated chalcone group: Synthesis, spectral, electrochemical and spectroelectrochemical properties. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Synthesis, electrochemical and spectroelectrochemical properties of novel soluble peripheral tetra triazole substituted CoII, CuII, MnIIICl and TiIVO phthalocyanines. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Peterson M, Hunt C, Wang Z, Heinrich SE, Wu G, Ménard G. Synthesis, characterization, and electrochemical properties of a first-row metal phthalocyanine series. Dalton Trans 2020; 49:16268-16277. [DOI: 10.1039/d0dt01372b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A first-row metal phthalocyanine series is synthesized and the effects of axial metal-ligand substitution is investigated electrochemically and in the context of charge carriers for redox-flow batteries.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Camden Hunt
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Zongheng Wang
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Shannon E. Heinrich
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Guang Wu
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| |
Collapse
|
21
|
Kataeva O, Metlushka K, Ivshin K, Nikitina K, Alfonsov V, Vandyukov A, Khrizanforov M, Budnikova Y, Sinyashin O, Krupskaya Y, Kataev V, Büchner B, Knupfer M. An unusual donor-acceptor system Mn IIPc-TCNQ/F 4-TCNQ and the properties of the mixed single crystals of metal phthalocyanines with organic acceptor molecules. Dalton Trans 2019; 48:17252-17257. [PMID: 31660555 DOI: 10.1039/c9dt03642c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of manganese(ii) phthalocyanine with 7,7,8,8-tetracyanoquinodimethane and its perfluoro derivative proceeds with the oxidation of Mn and the reduction of the acceptor molecules to give the first mixed single crystals of manganese(iii) phthalocyanine with TCNQ/F4-TCNQ radical anions. The crystals have unusual structures with C-Hπ interactions between the ions and their orthogonal arrangement, as well as remarkable redox properties. The charge transfer was proved by spectroscopic and magnetic studies.
Collapse
Affiliation(s)
- Olga Kataeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|