1
|
Cleary SR, Starace AK, Curran-Velasco CC, Ruddy DA, McGuirk CM. The Overlooked Potential of Sulfated Zirconia: Reexamining Solid Superacidity Toward the Controlled Depolymerization of Polyolefins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6612-6653. [PMID: 38509763 DOI: 10.1021/acs.langmuir.3c03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Closed-loop recycling via an efficient chemical process can help alleviate the global plastic waste crisis. However, conventional depolymerization methods for polyolefins, which compose more than 50% of plastics, demand high temperatures and pressures, employ precious noble metals, and/or yield complex mixtures of products limited to single-use fuels or oils. Superacidic forms of sulfated zirconia (SZrO) with Hammet Acidity Functions (H0) ≤ - 12 (i.e., stronger than 100% H2SO4) are industrially deployed heterogeneous catalysts capable of activating hydrocarbons under mild conditions and are shown to decompose polyolefins at temperatures near 200 °C and ambient pressure. Additionally, confinement of active sites in porous supports is known to radically increase selectivity, coking and sintering resistance, and acid site activity, presenting a possible approach to low-energy polyolefin depolymerization. However, a critical examination of the literature on SZrO led us to a surprising conclusion: despite 40 years of catalytic study, engineering, and industrial use, the surface chemistry of SZrO is poorly understood. Ostensibly spurred by SZrO's impressive catalytic activity, the application-driven study of SZrO has resulted in deleterious ambiguity in requisite synthetic conditions for superacidity and insufficient characterization of acidity, porosity, and active site structure. This ambiguity has produced significant knowledge gaps surrounding the synthesis, structure, and mechanisms of hydrocarbon activation for optimized SZrO, stunting the potential of this catalyst in olefin cracking and other industrially relevant reactions, such as isomerization, esterification, and alkylation. Toward mitigating these long extant issues, we herein identify and highlight these current shortcomings and knowledge gaps, propose explicit guidelines for characterization of and reporting on characterization of solid acidity, and discuss the potential of pore-confined superacids in the efficient and selective depolymerization of polyolefins.
Collapse
Affiliation(s)
- Scott R Cleary
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Anne K Starace
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Caleb C Curran-Velasco
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Daniel A Ruddy
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - C Michael McGuirk
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Samudrala KK, Conley MP. Effects of surface acidity on the structure of organometallics supported on oxide surfaces. Chem Commun (Camb) 2023; 59:4115-4127. [PMID: 36912586 DOI: 10.1039/d3cc00047h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Well-defined organometallics supported on high surface area oxides are promising heterogeneous catalysts. An important design factor in these materials is how the metal interacts with the functionalities on an oxide support, commonly anionic X-type ligands derived from the reaction of an organometallic M-R with an -OH site on the oxide. The metal can either form a covalent M-O bond or form an electrostatic M+⋯-O ion-pair, which impacts how well-defined organometallics will interact with substrates in catalytic reactions. A less common reaction pathway involves the reaction of a Lewis site on the oxide with the organometallic, resulting in abstraction to form an ion-pair, which is relevant to industrial olefin polymerization catalysts. This Feature Article views the spectrum of reactivity between an organometallic and an oxide through the prism of Brønsted and/or Lewis acidity of surface sites and draws analogies to the molecular frame where Lewis and Brønsted acids are known to form reactive ion-pairs. Applications of the well-defined sites developed in this article are also discussed.
Collapse
Affiliation(s)
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
3
|
Gao J, Zhu L, Conley MP. Cationic Tantalum Hydrides Catalyze Hydrogenolysis and Alkane Metathesis Reactions of Paraffins and Polyethylene. J Am Chem Soc 2023; 145:4964-4968. [PMID: 36827508 DOI: 10.1021/jacs.2c13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Sulfated aluminum oxide (SAO), a high surface area material containing sulfate anions that behave like weakly coordinating anions, reacts with Ta(═CHtBu)(CH2tBu)3 to form [Ta(CH2tBu)2(O-)2][SAO] (1). Subsequent treatment with H2 forms Ta-H+ sites supported on SAO that are active in hydrogenolysis and alkane metathesis reactions. In both reactions Ta-H+ is more active than related neutral Ta-H sites supported on silica. This reaction chemistry extends to melts of high-density polyethylene (HDPE), where Ta-H+ converts 30% of a low molecular weight HDPE (Mn = 2.5 kg mol-1; Đ = 3.6) to low molecular weight paraffins under hydrogenolysis conditions. Under alkane metathesis conditions Ta-H+ converts this HDPE to a high MW fraction (Mn = 6.2 kDa; Đ = 2.3) and low molecular weight alkane products (C13-C32). These results show that incorporating charge as a design element in supported d0 metal hydrides is a viable strategy to increase the reaction rate in challenging reactions involving reorganization of C-C bonds in alkanes.
Collapse
Affiliation(s)
- Jiaxin Gao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lingchao Zhu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Rodriguez J, Boudjelel M, Schrock RR, Conley MP. A Tungsten Oxo Alkylidene Supported on Sulfated Zirconium Oxide for Olefin Metathesis. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Jessica Rodriguez
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Maxime Boudjelel
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Richard R. Schrock
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P. Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Zhang C, Shi XK, Wu CD. Stabilization of Ni 0/Ni II Heterojunctions inside Robust Porous Metal Silicate Materials for High-Performance Catalysis. Inorg Chem 2022; 61:16786-16793. [PMID: 36228321 DOI: 10.1021/acs.inorgchem.2c02624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterostructural nanomaterials demonstrate great potential to replace noble metal-based catalysts because heterojunctions could induce relocalization of electrons and facilitate the migration of electrons and charge carriers at the heterostructural boundary between electron-rich and electron-deficient metal sites; however, the instability of heterojunctions greatly hinders their practical applications. We report herein an effective strategy for the fabrication and stabilization of Ni0/NiII heterojunctions inside a porous metal silicate (PMS) material PMS-22 using a nickel coordination complex as the bifunctional template. The synergistic activity between metallic nickel and nickel silicate in PMS-22 highly boosts the catalytic activity in the hydrogenation of phenol, which could activate phenol at a very low temperature of 50 °C. Most importantly, PMS-22 demonstrates robust stability in catalysis, attributed to the strong interaction and charge transfer between metallic Ni and nickel silicate at the heterointerfaces inside the confined pores. Therefore, this work paves a new pathway to improve the stability and activity of heterostructural nanomaterials for catalytic applications.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou310027, P. R. China
| | - Xiao-Ke Shi
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou310027, P. R. China
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou310027, P. R. China
| |
Collapse
|
6
|
Rodriguez J, Conley MP. A Heterogeneous Iridium Catalyst for the Hydroboration of Pyridines. Org Lett 2022; 24:4680-4683. [PMID: 35709504 DOI: 10.1021/acs.orglett.2c01859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfated zirconium oxide (SZO) capped with silylium-like ions reacts with (cod)Ir(py)Cl (cod = 1,5-cyclooctadiene; py = pyridine) to form [Ir(cod)py][SZO] (1) and Me3SiCl. 1 can also be formed in reactions of phosphonium functionalized SZO and [Ir(cod)(OSi(OtBu)3]2, which forms [Ir(cod)P(tBu)2Ph][SZO] (2), followed by reaction with pyridine to form 1. FTIR and 15N{1H} MAS NMR spectroscopy are consistent with coordination of pyridine in 1 to an electrophilic iridium. 1 is moderately active in the dearomative hydroboration of pyridine. The primary product of this reaction is 1,2-dihydropyridine, which converts to the 1,4-dihydropyridine product at long reaction times. 1 catalyzes the dearomative hydroboration of a variety of substituted pyridines and is also reactive toward pyrazines and N-methylimidazole.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Bekyarova E, Conley MP. The coordination chemistry of oxide and nanocarbon materials. Dalton Trans 2022; 51:8557-8570. [PMID: 35586978 DOI: 10.1039/d2dt00459c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding how a ligand affects the steric and electronic properties of a metal is the cornerstone of the inorganic chemistry enterprise. What happens when the ligand is an extended surface? This question is central to the design and implementation of state-of-the-art functional materials containing transition metals. This perspective will describe how these two very different sets of extended surfaces can form well-defined coordination complexes with metals. In the Green formalism, functionalities on oxide surfaces react with inorganics to form species that contain X-type or LX-type interactions between the metal and the oxide. Carbon surfaces are neutral L-type ligands; this perspective focuses on carbons that donate six electrons to a metal. The nature of this interaction depends on the curvature, and thereby orbital overlap, between the metal and the extended π-system from the nanocarbon.
Collapse
Affiliation(s)
- Elena Bekyarova
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
8
|
Shaafi FB, Motavalizadehkakhky A, Zhiani R, Nouri SMM, Hosseiny M. Sulfated zirconium oxide-decorated magnetite KCC-1 as a durable and recyclable adsorbent for the efficient removal of asphaltene from crude oil. RSC Adv 2021; 11:26174-26187. [PMID: 35479476 PMCID: PMC9037333 DOI: 10.1039/d1ra04560a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfated zirconium oxide (ZrO2/SO4 2-) as a highly durable acidic reagent was immobilized on magnetite KCC-1 nanoparticles (Fe3O4@SiO2/KCC-1@ZrO2/SO4 2- NPs), and the resulting hybrid was used as a highly efficient recyclable adsorbent for the adsorption and removal of asphaltene from crude oil. The presence of ZrO2/SO4 2- groups not only promotes the adsorption capacity, but also helps recycle the adsorbents without any significant efficiency loss arising from its high chemical resistance. The results showed an obvious synergistic effect between the magnetic core (Fe3O4 NPs), fibrous silica (KCC-1) and the sulfated zirconium oxide groups with high correlation for asphaltene adsorption. The effective parameters in asphaltene adsorption, including initial asphaltene concentration, catalyst concentration and temperature, were investigated. Maximum adsorption occurred in the presence of 0.7 g L-1 of the adsorbent, at a concentration of 2000 mg L-1 of asphaltene. The asphaltene adsorption by NPs follows a quasi-second order adsorption kinetics. Asphaltene adsorption kinetics were studied by Langmuir, Freundlich, and Temkin isotherms. The prominent advantage of the adsorbent is its ability to be recovered after each adsorption by acid treatment, so that no significant reduction in adsorbent adsorption activity was observed, which can be directly attributed to the presence of ZrO2/SO4 2- groups in the hybrid.
Collapse
Affiliation(s)
- Farhad Bohlooli Shaafi
- Department of Chemical Engineering, Faculty of Sciences, Neyshabur Branch, Islamic Azad University Neyshabur Iran
| | | | - Rahele Zhiani
- Department of Chemistry, Faculty of Sciences, Neyshabur Branch, Islamic Azad University Neyshabur Iran .,New Materials Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University Neyshabur Iran
| | | | - Malihesadat Hosseiny
- Department of Chemistry, Faculty of Sciences, Neyshabur Branch, Islamic Azad University Neyshabur Iran
| |
Collapse
|
9
|
Maier S, Cronin SP, Vu Dinh MA, Li Z, Dyballa M, Nowakowski M, Bauer M, Estes DP. Immobilized Platinum Hydride Species as Catalysts for Olefin Isomerizations and Enyne Cycloisomerizations. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sarah Maier
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Steve P. Cronin
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Manh-Anh Vu Dinh
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Zheng Li
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Michael Dyballa
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Michal Nowakowski
- Department of Chemistry, University of Paderborn, Warburger Straße 100, Paderborn D-33098, Germany
| | - Matthias Bauer
- Department of Chemistry, University of Paderborn, Warburger Straße 100, Paderborn D-33098, Germany
| | - Deven P. Estes
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| |
Collapse
|
10
|
Yi X, Peng YK, Chen W, Liu Z, Zheng A. Surface Fingerprinting of Faceted Metal Oxides and Porous Zeolite Catalysts by Probe-Assisted Solid-State NMR Approaches. Acc Chem Res 2021; 54:2421-2433. [PMID: 33856775 DOI: 10.1021/acs.accounts.1c00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acid catalysis in heterogeneous systems such as metal oxides and porous zeolites has been widely involved in various catalytic processes for chemical and petrochemical industries. In acid-catalyzed reactions, the performance (e.g., activity and selectivity) is closely associated with the acidic features of the catalysts, viz., type (Lewis vs Brønsted acidity), distribution (external vs internal surface), strength (strong vs weak), concentration (amount), and spatial interactions of acidic sites. The characterization of local structure and acidic properties of these active sites has important implications for understanding the reaction mechanism and the practical catalytic applications of acidic catalysts. Among diverse acidity characterization approaches, the solid-state nuclear magnetic resonance (SSNMR) technique with suitable probe molecules has been recognized as a reliable and versatile tool. Such a probe-assisted SSNMR approach could provide qualitative (type, distribution, and spatial interactions) and quantitative (strength and concentration) information on each acidic site. This Account aims to integrate our recent important findings in determining the structures and acidic characteristics of some typical metal oxide and zeolite catalysts by using the probe-assisted SSNMR technique, as well as clarifying the continuously evolving process of each discrete acidic site under hydrothermal or chemical treatments even at the molecular level with multiscale theoretical simulations.More specifically, we will describe herein the development and applications of the probe-assisted SSNMR methods, such as trimethylphosphine (TMP) and acetonitrile-d3 (CD3CN) in conjunction with advanced two-dimensional (2D) homo- and heteronuclear correlation spectroscopy, for characterizing the structures and properties of acidic sites in varied solid catalysts. Moreover, relevant information regarding the surface fingerprinting of various facets on crystalline metal oxide nanoparticles and active centers inside porous zeolites, the mapping of relevant spatial interactions, and the verification of structure-activity correlation were investigated as well. Relevant discussions are mainly based on the recent NMR experiments of our collaborating research groups, including (i) determining the acidic characterization with probe-assisted SSNMR approaches, (ii) mapping various active centers (or crystalline facets), and (iii) revealing their influence on catalytic performance of solid acid catalyst systems. It is anticipated that this information may provide more in-depth insights toward our fundamental understanding of solid acid catalysis.
Collapse
Affiliation(s)
- Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Rodriguez J, Conley MP. Ethylene Polymerization Activity of (R 3P)Ni(codH) + (cod = 1,5-cylcooctadiene) Sites Supported on Sulfated Zirconium Oxide. Inorg Chem 2021; 60:6946-6949. [PMID: 33844523 DOI: 10.1021/acs.inorgchem.1c00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PAr3 containing o-OMe, o-Me, or o-Et substituents reacts with Brønsted sites on sulfated zirconium oxide (SZO) to form [HPAr3][SZO]. The phosphonium sites on this material react with bis(cyclooctadiene)nickel [Ni(cod)2] to form [Ni(PAr3)(codH)][SZO] that are active in ethylene polymerization reactions. Selective poisoning studies with pyridine show that ∼90% of the Ni(PAr3)(codH)+ sites in this material are active in polymerization reactions.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Department of Chemistry, University of California-Riverside (UCR), Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California-Riverside (UCR), Riverside, California 92521, United States
| |
Collapse
|
12
|
Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts. Nat Protoc 2020; 15:3527-3555. [PMID: 32968252 DOI: 10.1038/s41596-020-0385-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/07/2020] [Indexed: 11/08/2022]
Abstract
Solid acid catalysts are used extensively in various advanced chemical and petrochemical processes. Their catalytic performance (namely, activity, selectivity, and reaction pathway) mostly depends on their acid properties, such as type (Brønsted versus Lewis), location, concentration, and strength, as well as the spatial correlations of their acid sites. Among the diverse methods available for acidity characterization, solid-state nuclear magnetic resonance (SSNMR) techniques have been recognized as the most valuable and reliable tool, especially in conjunction with suitable probe molecules that possess observable nuclei with desirable properties. Taking 31P probe molecules as an example, both trimethylphosphine (TMP) and trimethylphosphine oxide (TMPO) adsorb preferentially to the acid sites on solid catalysts and thus are capable of providing qualitative and quantitative information for both Brønsted and Lewis acid sites. This protocol describes procedures for (i) the pretreatment of typical solid acid catalysts, (ii) adoption and adsorption of various 31P probe molecules, (iii) considerations for one- and two-dimensional (1D and 2D, respectively) NMR acquisition, (iv) relevant data analysis and spectral assignment, and (v) methodology for NMR mapping with the assistance of theoretical calculations. Users familiar with SSNMR experiments can complete 31P-1H heteronuclear correlation (HETCOR), 31P-31P proton-driven spin diffusion (PDSD), and double-quantum (DQ) homonuclear correlation with this protocol within 2-3 d, depending on the complexity and the accessible acid sites of the solid acid samples.
Collapse
|
13
|
Witzke RJ, Chapovetsky A, Conley MP, Kaphan DM, Delferro M. Nontraditional Catalyst Supports in Surface Organometallic Chemistry. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03350] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan J. Witzke
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alon Chapovetsky
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew P. Conley
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
14
|
Culver DB, Huynh W, Tafazolian H, Conley MP. Solid-State 45Sc NMR Studies of Cp* 2Sc–OR (R = CMe 2CF 3, CMe(CF 3) 2, C(CF 3) 3, SiPh 3) and Relationship to the Structure of Cp* 2Sc-Sites Supported on Partially Dehydroxylated Silica. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien B. Culver
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Winn Huynh
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Hosein Tafazolian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P. Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
15
|
Huynh W, Conley MP. Origin of the 29Si NMR chemical shift in R3Si–X and relationship to the formation of silylium (R3Si+) ions. Dalton Trans 2020; 49:16453-16463. [DOI: 10.1039/d0dt02099k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin in deshielding of 29Si NMR chemical shifts in R3Si–X, where X = H, OMe, Cl, OTf, [CH6B11X6], toluene, and OX (OX = surface oxygen), as well as iPr3Si+ and Mes3Si+ were studied using DFT methods.
Collapse
Affiliation(s)
- Winn Huynh
- Department of Chemistry
- University of California
- Riverside
- USA
| | | |
Collapse
|
16
|
Culver DB, Venkatesh A, Huynh W, Rossini AJ, Conley MP. Al(OR F) 3 (R F = C(CF 3) 3) activated silica: a well-defined weakly coordinating surface anion. Chem Sci 2019; 11:1510-1517. [PMID: 34084380 PMCID: PMC8148071 DOI: 10.1039/c9sc05904k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Weakly Coordinating Anions (WCAs) containing electron deficient delocalized anionic fragments that are reasonably inert allow for the isolation of strong electrophiles. Perfluorinated borates, perfluorinated aluminum alkoxides, and halogenated carborane anions are a few families of WCAs that are commonly used in synthesis. Application of similar design strategies to oxide surfaces is challenging. This paper describes the reaction of Al(ORF)3*PhF (RF = C(CF3)3) with silica partially dehydroxylated at 700 °C (SiO2-700) to form the bridging silanol [triple bond, length as m-dash]Si-OH⋯Al(ORF)3 (1). DFT calculations using small clusters to model 1 show that the gas phase acidity (GPA) of the bridging silanol is 43.2 kcal mol-1 lower than the GPA of H2SO4, but higher than the strongest carborane acids, suggesting that deprotonated 1 would be a WCA. Reactions of 1 with NOct3 show that 1 forms weaker ion-pairs than classical WCAs, but stronger ion-pairs than carborane or borate anions. Though 1 forms stronger ion-pairs than these state-of-the-art WCAs, 1 reacts with alkylsilanes to form silylium type surface species. To the best of our knowledge, this is the first example of a silylium supported on derivatized silica.
Collapse
Affiliation(s)
- Damien B Culver
- Department of Chemistry, University of California Riverside California 92521 USA
| | - Amrit Venkatesh
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Winn Huynh
- Department of Chemistry, University of California Riverside California 92521 USA
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Matthew P Conley
- Department of Chemistry, University of California Riverside California 92521 USA
| |
Collapse
|
17
|
Chen TW, Sivasamy Vasantha A, Chen SM, Al Farraj DA, Soliman Elshikh M, Alkufeidy RM, Al Khulaifi MM. Sonochemical synthesis and fabrication of honeycomb like zirconium dioxide with chitosan modified electrode for sensitive electrochemical determination of anti-tuberculosis (TB) drug. ULTRASONICS SONOCHEMISTRY 2019; 59:104718. [PMID: 31442770 DOI: 10.1016/j.ultsonch.2019.104718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Herein, novel honeycomb like zirconium dioxide with chitosan (ZrO2@chitosan) nanocomposite have been designed through a facile ultrasound-assisted method and followed by a simple sonication process (bath-type ultrasound washer; Honda Electronics-W-118T; 100 W/cm2 and 300 kHz frequency). After then, as-synthesized ZrO2@chitosan was characterized by FESEM, XRD and EIS. The ZrO2@chitosan nanocomposite modified glassy carbon electrode shows excellent electrochemical sensing performance towards anti-tuberculosis drug (rifampicin). Furthermore, the ZrO2@chitosan modified and fabricated electrochemical sensor showed a wide linear range between 0.015 µM and 547.4 µM and nanomolar detection limit (7.5 nM). Moreover, the ZrO2@chitosan modified electrode showed selectivity towards the detection of anti-tuberculosis drug (rifampicin). The ZrO2@chitosan nanocomposite film modified non-enzymatic sensor has high stable and good reproducible towards the detection of rifampicin. In addition, the as-synthesized ZrO2@chitosan nanocomposite modified electrode has been applied to the determination of rifampicin in biological samples such as human serum and urine samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Airathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Roua M Alkufeidy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Manal M Al Khulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Syed ZH, Kaphan DM, Perras FA, Pruski M, Ferrandon MS, Wegener EC, Celik G, Wen J, Liu C, Dogan F, Goldberg KI, Delferro M. Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization. J Am Chem Soc 2019; 141:6325-6337. [DOI: 10.1021/jacs.9b00896] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zoha H. Syed
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Marek Pruski
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Magali S. Ferrandon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Evan C. Wegener
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gokhan Celik
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fulya Dogan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karen I. Goldberg
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
19
|
Chen W, Yi X, Huang L, Liu W, Li G, Acharya D, Sun X, Zheng A. Can Hammett indicators accurately measure the acidity of zeolite catalysts with confined space? Insights into the mechanism of coloration. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01392j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The acidic properties of zeolite catalysts play a crucial role in governing catalytic performances, which makes the acidity characterization an important subject in the field of zeolite catalysis.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Ling Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Wentao Liu
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Guangchao Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Dinesh Acharya
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Xianyong Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Key Laboratory of Magnetic Resonance in Biological Systems
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| |
Collapse
|