1
|
Wix P, Tandon S, Vaesen S, Karimu K, Mathieson JS, Esien K, Felton S, Watson GW, Schmitt W. Alkali cation-π interactions in aqueous systems, modulating supramolecular stereoisomerism of nanoscopic metal-organic capsules. Nat Commun 2024; 15:10180. [PMID: 39580478 PMCID: PMC11585540 DOI: 10.1038/s41467-024-54426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024] Open
Abstract
Contrary to common chemical intuition, cation-π interactions can persist in polar, aqueous reaction solutions, rather than in dry non-coordinative solvent systems. This account highlights how alkali ion-π interactions impart distinctive structure-influencing supramolecular forces that can be exploited in the preparation of nanoscopic metal-organic capsules. The incorporation of alkali ions from polar solutions into molecular pockets promotes the assembly of otherwise inaccessible capsular entities whose structures are distinctive to those of common polyoxovanadate clusters in which {V=O} moieties usually point radially to the outside, shielding the molecular entities. The applied concept is exemplified by homologous {V20} and {V30} cages, composed of inverted, hemispherical {V5O9} units. The number and geometrical organization of these {V5O9} sub-units in these cages are associated with prevailing cation- π interactions and competing steric effects. The stereoisomers of these resulting nano-sized objects are comparable to Alfred Werner-type structural isomers of simple mononuclear complexes in-line with fundamental coordination chemistry principles.
Collapse
Affiliation(s)
- Paul Wix
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Swetanshu Tandon
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Sebastien Vaesen
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Kadri Karimu
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Jennifer S Mathieson
- School of Chemistry, University of Glasgow, Joseph Black Building, University Ave, Glasgow, G12 8QQ, UK
| | - Kane Esien
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Belfast, UK
| | - Solveig Felton
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN, Belfast, UK
| | - Graeme W Watson
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Wolfgang Schmitt
- School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland.
| |
Collapse
|
2
|
Jozeliūnaitė A, Guo SY, Sakai N, Matile S. Electric-Field Catalysis on Carbon Nanotubes in Electromicrofluidic Reactors: Monoterpene Cyclizations. Angew Chem Int Ed Engl 2024:e202417333. [PMID: 39387156 DOI: 10.1002/anie.202417333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
The control over the movement of electrons during chemical reactions with oriented external electric fields (OEEFs) has been predicted to offer a general approach to catalysis. Recently, we suggested that many problems to realize electric-field catalysis in practice under scalable bulk conditions could possibly be solved on multiwalled carbon nanotubes in electromicrofluidic reactors. Here, we selected monoterpene cyclizations to assess the scope of our system in organic synthesis. We report that electric-field catalysis can function by stabilizing both anionic and cationic transition states, depending on the orientation of the applied field. Moreover, electric-field catalysis can promote reactions which are barely accessible by general Brønsted and Lewis acids and field-free anion-π and cation-π interactions, and drive chemoselectivity toward intrinsically disfavored products without the need for pyrene interfacers attached to the substrate to prolong binding to the carbon nanotubes. Finally, interfacing with chiral organocatalysts is explored and evidence against contributions from redox chemistry is provided.
Collapse
Affiliation(s)
- Augustina Jozeliūnaitė
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR, 1095, Basel, Switzerland
| | - Shen-Yi Guo
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR, 1095, Basel, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR, 1095, Basel, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR, 1095, Basel, Switzerland
| |
Collapse
|
3
|
Tarannam N, Gupta PK, Zev S, Major DT. Stability trends in carbocation intermediates stemming from germacrene A and hedycaryol. Beilstein J Org Chem 2024; 20:1189-1197. [PMID: 38887567 PMCID: PMC11181226 DOI: 10.3762/bjoc.20.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
In the current work, we analyzed the origin of difference in stabilities among the germacrene A and hedycaryol-derived carbocations. This study focused on twelve hydrocarbons derived from germacrene A and twelve from hedycaryol, which can be divided into three groups: four molecules containing 6-6 bicyclic rings, four 5-7 bicyclic compounds with the carbocation being on the seven-membered ring and the remaining four 5-7 bicyclic compounds with the carbocation on the five-membered ring. The variations in energy within the groups of carbocations (i.e., 6-6 and two kinds of 5-7 bicyclic carbocations) can be ascribed to intramolecular repulsion interactions, as seen from non-covalent interactions plots. Despite the structural similarities between germacrene A and hedycaryol cations, they possess a somewhat different stability trend. These differences are attributed to C+···OH intramolecular interactions present in some hedycaryol cations, which are absent in the carbocations derived from germecrene A.
Collapse
Affiliation(s)
- Naziha Tarannam
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shani Zev
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
4
|
Cornu I, Syntrivanis LD, Tiefenbacher K. Biomimetic tail-to-head terpene cyclizations using the resorcin[4]arene capsule catalyst. Nat Protoc 2024; 19:313-339. [PMID: 38040980 DOI: 10.1038/s41596-023-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023]
Abstract
The tail-to-head terpene (THT) cyclization is a biochemical process that gives rise to many terpene natural product skeletons encountered in nature. Historically, it has been difficult to achieve THT synthetically without using an enzyme. In this protocol, a hexameric resorcin[4]arene capsule acts as an artificial enzyme mimic to carry out biomimetic THT cyclizations and related carbocationic rearrangements. The precursor molecule bears a leaving group (usually an alcohol or acetate group) and undergoes the THT reaction in the presence of the capsule catalyst and HCl as a cocatalyst. Careful control of several parameters (including water content, amount of HCl cocatalyst, temperature and solvent) is crucial to successfully carrying out the reaction. To facilitate the application of this unique capsule-catalysis methodology, we therefore developed a very detailed procedure that includes the preparation and analysis of all reaction components. In this protocol, we describe how to prepare two different terpenes: isolongifolene and presilphiperfolan-1β-ol. The two procedures differ in the water content required for efficient product formation, and thus exemplify the two common use cases of this methodology. The influence of other crucial reaction parameters and means of precisely controlling them are described. A commercially available substrate, nerol, can be used as simple test substrate to validate the reaction setup. Each synthetic procedure requires 5-7 d, including 1-5 h of hands-on time. The protocol applies to the synthesis of many complex terpene natural products that would otherwise be difficult to access in synthetically useful yields.
Collapse
Affiliation(s)
- Ivan Cornu
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
5
|
Norjmaa G, Rebek J, Himo F. Modeling Amine Methylation in Methyl Ester Cavitand. Chemistry 2024:e202303911. [PMID: 38224206 DOI: 10.1002/chem.202303911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Methylation of amines inside an introverted resorcinarene-based deep methyl ester cavitand is investigated by means of molecular dynamics simulations and quantum chemical calculations. Experimentally, the cavitand has been shown to bind a number of amines and accelerate the methylation reaction by more than four orders of magnitude for some of them. Eight different amines are considered in the present study, and the geometries and energies of their binding to the cavitand are first characterized and analyzed. Next, the methyl transfer reactions are investigated and the calculated barriers are found to be in generally good agreement with experimental results. In particular, the experimentally-observed rate acceleration in the cavitand as compared to the solution reaction is well reproduced by the calculations. The origins of this rate acceleration are analyzed by computational modifications made to the structure of the cavitand, and the role of the solvent is discussed.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Julius Rebek
- The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, California, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, 200444, Shanghai, P. R. China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
6
|
Xu R, Meisner J, Chang AM, Thompson KC, Martínez TJ. First principles reaction discovery: from the Schrodinger equation to experimental prediction for methane pyrolysis. Chem Sci 2023; 14:7447-7464. [PMID: 37449065 PMCID: PMC10337770 DOI: 10.1039/d3sc01202f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Our recent success in exploiting graphical processing units (GPUs) to accelerate quantum chemistry computations led to the development of the ab initio nanoreactor, a computational framework for automatic reaction discovery and kinetic model construction. In this work, we apply the ab initio nanoreactor to methane pyrolysis, from automatic reaction discovery to path refinement and kinetic modeling. Elementary reactions occurring during methane pyrolysis are revealed using GPU-accelerated ab initio molecular dynamics simulations. Subsequently, these reaction paths are refined at a higher level of theory with optimized reactant, product, and transition state geometries. Reaction rate coefficients are calculated by transition state theory based on the optimized reaction paths. The discovered reactions lead to a kinetic model with 53 species and 134 reactions, which is validated against experimental data and simulations using literature kinetic models. We highlight the advantage of leveraging local brute force and Monte Carlo sensitivity analysis approaches for efficient identification of important reactions. Both sensitivity approaches can further improve the accuracy of the methane pyrolysis kinetic model. The results in this work demonstrate the power of the ab initio nanoreactor framework for computationally affordable systematic reaction discovery and accurate kinetic modeling.
Collapse
Affiliation(s)
- Rui Xu
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Jan Meisner
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Alexander M Chang
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Keiran C Thompson
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Todd J Martínez
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|
7
|
Liang R, Zhou Q, Li X, Wong MW, Chung LW. A Computational Study on the Reaction Mechanism of Stereocontrolled Synthesis of β-Lactam within [2]Rotaxane. J Org Chem 2023. [PMID: 37257155 DOI: 10.1021/acs.joc.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The macrocycle effect of [2]rotaxane on the highly trans-stereoselective cyclization reaction of N-benzylfumaramide was extensively investigated by various computational methods, including DFT and high-level DLPNO-CCSD(T) methods. Our computational results suggest that the most favorable mechanism of the CsOH-promoted cyclization of the fumaramide into trans-β-lactam within [2]rotaxane initiates with deprotonation of a N-benzyl group of the interlocked fumaramide substrate by CsOH, followed by the trans-selective C-C bond formation and protonation by one amide functional group of the macrocycle. Our distortion/interaction analysis further shows that the uncommon trans-stereoselective cyclization forming β-lactam within the rotaxane may be attributed to a higher distortion energy (mainly from the distortion of the twisted cis-fumaramide conformation enforced by the rotaxane). Our systematic study should give deeper mechanistic insight into the reaction mechanism influenced by a supramolecular host.
Collapse
Affiliation(s)
- Rong Liang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Qinghai Zhou
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xin Li
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Guerra JVS, Alves LFG, Bourissou D, Lopes-de-Oliveira PS, Szalóki G. Cavity Characterization in Supramolecular Cages. J Chem Inf Model 2023. [PMID: 37129917 DOI: 10.1021/acs.jcim.3c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Confining molecular guests within artificial hosts has provided a major driving force in the rational design of supramolecular cages with tailored properties. Over the last 30 years, a set of design strategies have been developed that enabled the controlled synthesis of a myriad of cages. Recently, there has been a growing interest in involving in silico methods in this toolbox. Cavity shape and size are important parameters that can be easily accessed by inexpensive geometric algorithms. Although these algorithms are well developed for the detection of nonartificial cavities (e.g., enzymes), they are not routinely used for the rational design of supramolecular cages. In order to test the capabilities of this tool, we have evaluated the performance and characteristics of seven different cavity characterization software in the context of 22 analogues of well-known supramolecular cages. Among the tested software, KVFinder project and Fpocket proved to be the most software to characterize supramolecular cavities. With the results of this work, we aim to popularize this underused technique within the supramolecular community.
Collapse
Affiliation(s)
- João V S Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Rua Giuseppe Máximo Scolfaro, 10000, Bosque Das Palmeiras, Campinas, SP 13083-100, Brazil
| | - Luiz F G Alves
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Rua Giuseppe Máximo Scolfaro, 10000, Bosque Das Palmeiras, Campinas, SP 13083-100, Brazil
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Toulouse III─Paul Sabatier, 118 Route de Narbonne, Toulouse 31062, Cedex 09, France
| | - Paulo S Lopes-de-Oliveira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Rua Giuseppe Máximo Scolfaro, 10000, Bosque Das Palmeiras, Campinas, SP 13083-100, Brazil
| | - György Szalóki
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Toulouse III─Paul Sabatier, 118 Route de Narbonne, Toulouse 31062, Cedex 09, France
| |
Collapse
|
9
|
Mao XR, Wang Q, Zhuo SP, Xu LP. Reactivity and Selectivity of the Diels-Alder Reaction of Anthracene in [Pd 6L 4] 12+ Supramolecular Cages: A Computational Study. Inorg Chem 2023; 62:4330-4340. [PMID: 36863004 DOI: 10.1021/acs.inorgchem.3c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The field of supramolecular metal-organic cage catalysis has grown rapidly in recent years. However, theoretical studies regarding the reaction mechanism and reactivity and selectivity controlling factors for supramolecular catalysis are still underdeveloped. Herein, we demonstrate a detailed density functional theory study on the mechanism, catalytic efficiency, and regioselectivity of the Diels-Alder reaction in bulk solution and within two [Pd6L4]12+ supramolecular cages. Our calculations are consistent with experiments. The origins of the catalytic efficiency of the bowl-shaped cage 1 have been elucidated to be the host-guest stabilization of the transition states and the favorable entropy effect. The reasons for the switch of the regioselectivity from 9,10-addition to 1,4-addition within the octahedral cage 2 were attributed to the confinement effect and the noncovalent interactions. This work would shed light on the understanding of [Pd6L4]12+ metallocage-catalyzed reactions and provide a detailed mechanistic profile otherwise difficult to obtain from experiments. The findings of this study could also aid to the improvement and development of more efficient and selective supramolecular catalysis.
Collapse
Affiliation(s)
- Xin-Rui Mao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Shu-Ping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
10
|
Norjmaa G, Himo F, Maréchal J, Ujaque G. Catalysis by [Ga 4 L 6 ] 12- Metallocage on the Nazarov Cyclization: The Basicity of Complexed Alcohol is Key. Chemistry 2022; 28:e202201792. [PMID: 35859038 PMCID: PMC9804567 DOI: 10.1002/chem.202201792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/05/2023]
Abstract
The Nazarov cyclization is investigated in solution and within K12 [Ga4 L6 ] supramolecular organometallic cage by means of computational methods. The reaction needs acidic condition in solution but works at neutral pH in the presence of the metallocage. The reaction steps for the process are analogous in both media: (a) protonation of the alcohol group, (b) water loss and (c) cyclization. The relative Gibbs energies of all the steps are affected by changing the environment from solvent to the metallocage. The first step in the mechanism, the alcohol protonation, turns out to be the most critical one for the acceleration of the reaction inside the metallocage. In order to calculate the relative stability of protonated alcohol inside the cavity, we propose a computational scheme for the calculation of basicity for species inside cavities and can be of general use. These results are in excellent agreement with the experiments, identifying key steps of catalysis and providing an in-depth understanding of the impact of the metallocage on all the reaction steps.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| |
Collapse
|
11
|
Zev S, Ringel M, Driller R, Loll B, Brück T, Major DT. Understanding the competing pathways leading to hydropyrene and isoelisabethatriene. Beilstein J Org Chem 2022; 18:972-978. [PMID: 35965858 PMCID: PMC9359192 DOI: 10.3762/bjoc.18.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Terpene synthases are responsible for the biosynthesis of terpenes, the largest family of natural products. Hydropyrene synthase generates hydropyrene and hydropyrenol as its main products along with two byproducts, isoelisabethatrienes A and B. Fascinatingly, a single active site mutation (M75L) diverts the product distribution towards isoelisabethatrienes A and B. In the current work, we study the competing pathways leading to these products using quantum chemical calculations in the gas phase. We show that there is a great thermodynamic preference for hydropyrene and hydropyrenol formation, and hence most likely in the synthesis of the isoelisabethatriene products kinetic control is at play.
Collapse
Affiliation(s)
- Shani Zev
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Marion Ringel
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Ronja Driller
- Institute for Chemistry and Biochemistry, Structural Biochemistry Laboratory, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany,
- Department of Molecular Biology and Genetics, Aarhus University, Danish Research Institute of Translational Neuroscience – DANDRITE, Universitetsbyen 81, 8000 Aarhus C, Denmark
| | - Bernhard Loll
- Institute for Chemistry and Biochemistry, Structural Biochemistry Laboratory, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany,
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Dan T Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
12
|
Piskorz TK, Martí-Centelles V, Young TA, Lusby PJ, Duarte F. Computational Modeling of Supramolecular Metallo-organic Cages-Challenges and Opportunities. ACS Catal 2022; 12:5806-5826. [PMID: 35633896 PMCID: PMC9127791 DOI: 10.1021/acscatal.2c00837] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Indexed: 01/18/2023]
Abstract
Self-assembled metallo-organic cages have emerged as promising biomimetic platforms that can encapsulate whole substrates akin to an enzyme active site. Extensive experimental work has enabled access to a variety of structures, with a few notable examples showing catalytic behavior. However, computational investigations of metallo-organic cages are scarce, not least due to the challenges associated with their modeling and the lack of accurate and efficient protocols to evaluate these systems. In this review, we discuss key molecular principles governing the design of functional metallo-organic cages, from the assembly of building blocks through binding and catalysis. For each of these processes, computational protocols will be reviewed, considering their inherent strengths and weaknesses. We will demonstrate that while each approach may have its own specific pitfalls, they can be a powerful tool for rationalizing experimental observables and to guide synthetic efforts. To illustrate this point, we present several examples where modeling has helped to elucidate fundamental principles behind molecular recognition and reactivity. We highlight the importance of combining computational and experimental efforts to speed up supramolecular catalyst design while reducing time and resources.
Collapse
Affiliation(s)
- Tomasz K. Piskorz
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Valencia 46022, Spain
| | - Tom A. Young
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
13
|
Zhao J, Zheng X. Progress on Exploring the Luminescent Properties of Organic Molecular Aggregates by Multiscale Modeling. Front Chem 2022; 9:808957. [PMID: 35096770 PMCID: PMC8790572 DOI: 10.3389/fchem.2021.808957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
Luminescent molecular aggregates have attracted worldwide attention because of their potential applications in many fields. The luminescent properties of organic aggregates are complicated and highly morphology-dependent, unraveling the intrinsic mechanism behind is urgent. This review summarizes recent works on investigating the structure-property relationships of organic molecular aggregates at different environments, including crystal, cocrystal, amorphous aggregate, and doped systems by multiscale modeling protocol. We aim to explore the influence of intermolecular non-covalent interactions on molecular packing and their photophysical properties and then pave the effective way to design, synthesize, and develop advanced organic luminescent materials.
Collapse
Affiliation(s)
- Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
He W, Tashiro S, Shionoya M. Highly selective acid-catalyzed olefin isomerization of limonene to terpinolene by kinetic suppression of the overreactions in a confined space of porous metal-macrocycle framework. Chem Sci 2022; 13:8752-8758. [PMID: 35975147 PMCID: PMC9350587 DOI: 10.1039/d2sc01561g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Natural enzymes control the intrinsic reactivity of chemical reactions in the natural environment, giving only the necessary products. In recent years, challenging research on the reactivity control of terpenes with structural diversity using artificial host compounds that mimic such enzymatic reactions has been actively pursued. A typical example is the acid-catalyzed olefin isomerization of (+)-limonene, which generally gives a complex mixture due to over-isomerization to thermodynamically favored isomers. Herein we report a highly controlled conversion of (+)-limonene by kinetic suppression of over-isomerization in a confined space of a porous metal–macrocycle framework (MMF) equipped with a Brønsted acid catalyst. The terminal double bond of (+)-limonene migrated to one neighbor, preferentially producing terpinolene. This reaction selectivity was in stark contrast to the homogeneous acid-catalyzed reaction in bulk solution and to previously reported catalytic reactions. X-ray structural analysis and examination of the reaction with adsorption inhibitors suggest that the reactive substrates may bind non-covalently to specific positions in the confined space of the MMF, thereby inhibiting the over-isomerization reaction. The nanospaces of the MMF with substrate binding ability are expected to enable highly selective synthesis of a variety of terpene compounds. A porous metal–macrocycle framework (MMF) equipped with a Brønsted acid catalyst in nanochannels enables highly selective isomerization of limonene to terpinolene by kinetically suppressing over-isomerization at confined acid sites.![]()
Collapse
Affiliation(s)
- Wei He
- Department of Chemistry, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| |
Collapse
|
15
|
Zev S, Gupta PK, Pahima E, Major DT. A Benchmark Study of Quantum Mechanics and Quantum Mechanics-Molecular Mechanics Methods for Carbocation Chemistry. J Chem Theory Comput 2021; 18:167-178. [PMID: 34905380 DOI: 10.1021/acs.jctc.1c00746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbocations play key roles in classical organic reactions and have also been implicated in several enzyme families. A hallmark of carbocation chemistry is multitudes of competing reaction pathways, and to be able to distinguish between pathways with quantum chemical calculations, it is necessary to approach chemical accuracy for relative energies between carbocations. Here, we present an extensive study of the performance of selected density functional theory (DFT) methods in describing the thermochemistry and kinetics of carbocations and their corresponding neutral alkenes both in the gas-phase and within a hybrid quantum mechanics-molecular mechanics (QM/MM) framework. The density functionals are benchmarked against accurate ab initio methods such as CBS-QB3 and DLPNO-CCSD(T). Based on the findings in the gas-phase calculations of carbocations and alkenes, the best functionals are chosen and tested further for non-covalent interactions in model systems using QM and QM/MM methods. We compute the interaction energies between a model carbocation/alkane and model π, dipole, and hydrophobic systems using DFT and QM(DFT)/MM and compare with DLPNO-CCSD(T). These latter model systems are representative of side chains of amino acids such as phenylalanine/tyrosine, tryptophan, asparagine/glutamine, serine/threonine, methionine, and other hydrophobic groups. The Lennard-Jones parameters of the QM atoms in QM(DFT)/MM calculations are modified to obtain an optimal fit with the QM energies. Finally, a selected carbocation reaction is studied in the gas phase and in implicit chloroform solvent using QM and in explicit chloroform solvent using QM/MM and umbrella sampling simulations. This study highlights the highest accuracy possible with selected density functionals and QM/MM methods but also some limitations in using QM/MM methods for carbocation systems.
Collapse
Affiliation(s)
- Shani Zev
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Efrat Pahima
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
16
|
Norjmaa G, Maréchal J, Ujaque G. Origin of the Rate Acceleration in the C-C Reductive Elimination from Pt(IV)-complex in a [Ga 4 L 6 ] 12- Supramolecular Metallocage. Chemistry 2021; 27:15973-15980. [PMID: 34545974 PMCID: PMC9293218 DOI: 10.1002/chem.202102250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 12/29/2022]
Abstract
The reductive elimination on [(Me3 P)2 Pt(MeOH)(CH3 )3 ]+ , 2P, complex performed in MeOH solution and inside a [Ga4 L6 ]12- metallocage are computationally analysed by mean of QM and MD simulations and compared with the mechanism of gold parent systems previously reported [Et3 PAu(MeOH)(CH3 )2 ]+ , 2Au. The comparative analysis between the encapsulated Au(III) and Pt(IV)-counterparts shows that there are no additional solvent MeOH molecules inside the cavity of the metallocage for both systems. The Gibbs energy barriers for the 2P reductive elimination calculated at DFT level are in good agreement with the experimental values for both environments. The effect of microsolvation and encapsulation on the rate acceleration are evaluated and shows that the latter is far more relevant, conversely to 2Au. Energy decomposition analysis indicates that the encapsulation is the main responsible for most of the energy barrier reduction. Microsolvation and encapsulation effects are not equally contributing for both metal systems and consequently, the reasons of the rate acceleration are not the same for both metallic systems despite the similarity between them.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| |
Collapse
|
17
|
López-Coll R, Álvarez-Yebra R, Feixas F, Lledó A. Comprehensive Characterization of the Self-Folding Cavitand Dynamics. Chemistry 2021; 27:10099-10106. [PMID: 33881199 PMCID: PMC8361935 DOI: 10.1002/chem.202100563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/21/2022]
Abstract
The conformational equilibria and guest exchange process of a resorcin[4]arene derived self-folding cavitand receptor have been characterized in detail by molecular dynamics simulations (MD) and 1 H EXSY NMR experiments. A multi-timescale strategy for exploring the fluxional behaviour of this system has been constructed, exploiting conventional MD and accelerated MD (aMD) techniques. The use of aMD allows the reconstruction of the folding/unfolding process of the receptor by sampling high-energy barrier processes unattainable by conventional MD simulations. We obtained MD trajectories sampling events occurring at different timescales from ns to s: 1) rearrangement of the directional hydrogen bond seam stabilizing the receptor, 2) folding/unfolding of the structure transiting partially open intermediates, and 3) guest departure from different folding stages. Most remarkably, reweighing of the biased aMD simulations provided kinetic barriers that are in very good agreement with those determined experimentally by 1 H NMR. These results constitute the first comprehensive characterization of the complex dynamic features of cavitand receptors. Our approach emerges as a valuable rational design tool for synthetic host-guest systems.
Collapse
Affiliation(s)
- Ricard López-Coll
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona
| | - Rubén Álvarez-Yebra
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona
| | - Ferran Feixas
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona
| | - Agustí Lledó
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona
| |
Collapse
|
18
|
Pieri E, Lahana D, Chang AM, Aldaz CR, Thompson KC, Martínez TJ. The non-adiabatic nanoreactor: towards the automated discovery of photochemistry. Chem Sci 2021; 12:7294-7307. [PMID: 34163820 PMCID: PMC8171323 DOI: 10.1039/d1sc00775k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ab initio nanoreactor has previously been introduced to automate reaction discovery for ground state chemistry. In this work, we present the nonadiabatic nanoreactor, an analogous framework for excited state reaction discovery. We automate the study of nonadiabatic decay mechanisms of molecules by probing the intersection seam between adiabatic electronic states with hyper-real metadynamics, sampling the branching plane for relevant conical intersections, and performing seam-constrained path searches. We illustrate the effectiveness of the nonadiabatic nanoreactor by applying it to benzene, a molecule with rich photochemistry and a wide array of photochemical products. Our study confirms the existence of several types of S0/S1 and S1/S2 conical intersections which mediate access to a variety of ground state stationary points. We elucidate the connections between conical intersection energy/topography and the resulting photoproduct distribution, which changes smoothly along seam space segments. The exploration is performed with minimal user input, and the protocol requires no previous knowledge of the photochemical behavior of a target molecule. We demonstrate that the nonadiabatic nanoreactor is a valuable tool for the automated exploration of photochemical reactions and their mechanisms.
Collapse
Affiliation(s)
- Elisa Pieri
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Dean Lahana
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Alexander M Chang
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Cody R Aldaz
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Keiran C Thompson
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Todd J Martínez
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|
19
|
Szyszka Ł, Cmoch P, Górecki M, Ceborska M, Potopnyk MA, Jarosz S. Chiral Molecular Cages Based on Cyclotriveratrylene and Sucrose Units Connected with
p
‐Phenylene Linkers. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Łukasz Szyszka
- Institute of Organic Chemistry Polish Academy of Sciences M. Kasprzaka 44/52 01-224 Warsaw Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry Polish Academy of Sciences M. Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marcin Górecki
- Institute of Organic Chemistry Polish Academy of Sciences M. Kasprzaka 44/52 01-224 Warsaw Poland
| | - Magdalena Ceborska
- Institute of Physical Chemistry Polish Academy of Sciences M. Kasprzaka 44/52 01-224 Warsaw Poland
| | - Mykhaylo A. Potopnyk
- Institute of Organic Chemistry Polish Academy of Sciences M. Kasprzaka 44/52 01-224 Warsaw Poland
| | - Sławomir Jarosz
- Institute of Organic Chemistry Polish Academy of Sciences M. Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
20
|
Affiliation(s)
- Dominic Danielsiek
- Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Gerald Dyker
- Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
21
|
Raz K, Driller R, Dimos N, Ringel M, Brück T, Loll B, Major DT. The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol. J Am Chem Soc 2020; 142:21562-21574. [PMID: 33289561 DOI: 10.1021/jacs.0c11348] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Terpene synthases generate terpenes employing diversified carbocation chemistry, including highly specific ring formations, proton and hydride transfers, and methyl as well as methylene migrations, followed by reaction quenching. In this enzyme family, the main catalytic challenge is not rate enhancement, but rather structural and reactive control of intrinsically unstable carbocations in order to guide the resulting product distribution. Here we employ multiscale modeling within classical and quantum dynamics frameworks to investigate the reaction mechanism in the diterpene synthase CotB2, commencing with the substrate geranyl geranyl diphosphate and terminating with the carbocation precursor to the final product cyclooctat-9-en-7-ol. The 11-step in-enzyme carbocation cascade is compared with the same reaction in the absence of the enzyme. Remarkably, the free energy profiles in gas phase and in CotB2 are surprisingly similar. This similarity contrasts the multitude of strong π-cation, dipole-cation, and ion-pair interactions between all intermediates in the reaction cascade and the enzyme, suggesting a remarkable balance of interactions in CotB2. We ascribe this balance to the similar magnitude of the interactions between the carbocations along the reaction coordinate and the enzyme environment. The effect of CotB2 mutations is studied using multiscale mechanistic docking, machine learning, and X-ray crystallography, pointing the way for future terpene synthase design.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ronja Driller
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Nicole Dimos
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Marion Ringel
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
22
|
Paraja M, Hao X, Matile S. Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π-Acidic Aromatic Surfaces. Angew Chem Int Ed Engl 2020; 59:15093-15097. [PMID: 32181559 DOI: 10.1002/anie.202000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/03/2023]
Abstract
Anion-π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion-π interactions suggests that they serve best in stabilizing long-distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation-π biocatalysis, reported here is the anion-π-catalyzed epoxide-opening ether cyclizations of oligomers. Only on π-acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto /kcat >104 m-1 ). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks-type substrate concentration dependence, entropy-centered substrate destabilization) and opens intriguing perspectives for future developments.
Collapse
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Paraja M, Hao X, Matile S. Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π‐Acidic Aromatic Surfaces. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
24
|
Daver H, Rebek J, Himo F. Modeling the Reaction of Carboxylic Acids and Isonitriles in a Self-Assembled Capsule. Chemistry 2020; 26:10861-10870. [PMID: 32428333 PMCID: PMC7522688 DOI: 10.1002/chem.202001735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Indexed: 11/10/2022]
Abstract
Quantum chemical calculations were used to study the reaction of carboxylic acids with isonitriles inside a resorcinarene-based self-assembled capsule. Experimentally, it has been shown that the reactions between p-tolylacetic acid and n-butyl isonitrile or isopropyl isonitrile behave differently in the presence of the capsule compared both with each other and also with their solution counterparts. Herein, the reasons for these divergent behaviors are addressed by comparing the detailed energy profiles for the reactions of the two isonitriles inside and outside the capsule. An energy decomposition analysis was conducted to quantify the different factors affecting the reactivity. The calculations reproduce the experimental findings very well. Thus, encapsulation leads to lowering of the energy barrier for the first step of the reaction, the concerted α-addition and proton transfer, which in solution is rate-determining, and this explains the rate acceleration observed in the presence of the capsule. The barrier for the final step of the reaction, the 1,3 O→N acyl transfer, is calculated to be higher with the isopropyl substituent inside the capsule compared with n-butyl. With the isopropyl substituent, the transition state and the product of this step are significantly shorter than the preceding intermediate, and this results in energetically unfavorable empty spaces inside the capsule, which cause a higher barrier. With the n-butyl substituent, on the other hand, the carbon chain can untwine and hence uphold an appropriate guest length.
Collapse
Affiliation(s)
- Henrik Daver
- Department of Organic ChemistryArrhenius LaboratoryStockholm University106 91StockholmSweden
- Present address: Department of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Julius Rebek
- The Skaggs Institute for Chemical Biology and Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCalifornia92037USA
- Center for Supramolecular Chemistry and CatalysisShanghai UniversityShanghai200444P.R. China
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University106 91StockholmSweden
| |
Collapse
|
25
|
García-Simón C, Colomban C, Çetin YA, Gimeno A, Pujals M, Ubasart E, Fuertes-Espinosa C, Asad K, Chronakis N, Costas M, Jiménez-Barbero J, Feixas F, Ribas X. Complete Dynamic Reconstruction of C60, C70, and (C59N)2 Encapsulation into an Adaptable Supramolecular Nanocapsule. J Am Chem Soc 2020; 142:16051-16063. [DOI: 10.1021/jacs.0c07591] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristina García-Simón
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Cédric Colomban
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Yarkin Aybars Çetin
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain
| | - Míriam Pujals
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Ernest Ubasart
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Carles Fuertes-Espinosa
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Karam Asad
- Department of Chemistry, University of Cyprus, University str. 1, Building No. 13, 2109 Aglantzia, Nicosia, Cyprus
| | - Nikos Chronakis
- Department of Chemistry, University of Cyprus, University str. 1, Building No. 13, 2109 Aglantzia, Nicosia, Cyprus
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Spain
| | - Ferran Feixas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| |
Collapse
|
26
|
Raz K, Levi S, Gupta PK, Major DT. Enzymatic control of product distribution in terpene synthases: insights from multiscale simulations. Curr Opin Biotechnol 2020; 65:248-258. [PMID: 32679412 DOI: 10.1016/j.copbio.2020.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 11/25/2022]
Abstract
In this opinion, we review some recent work on terpene biosynthesis using multiscale simulation approaches, with special focus on contributions from our group. Terpene synthases generate terpenes employing rich carbocation chemistry, including highly specific ring formations, proton, hydride, methyl, and methylene migrations, followed by reaction quenching. In these enzymes, the main catalytic challenge is not rate enhancement, but rather control of intrinsically reactive carbocations and the resulting product distribution. Herein, we review multiscale simulations of selected mono-, sesqui-, and diterpene synthases. We point to the many tools adopted by terpene synthases to achieve correct substrate fold, carbocation formation, carbocation reaction environment, and reaction quenching. A better understanding of the toolbox employed by terpene synthases is expected to aid in the search for new enzymatic and biomimetic synthetic routes to natural and unnatural terpenes.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shani Levi
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
27
|
Levi S, Zhang Q, Major DT. Thermodynamic and Kinetic Control Determine the Sesquiterpene Reaction Pathways Inside Nanocapsules. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shani Levi
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
| | - Dan T. Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
28
|
Pham AT, Matile S. Peptide Stapling with Anion-π Catalysts. Chem Asian J 2020; 15:1562-1566. [PMID: 32311232 DOI: 10.1002/asia.202000309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Indexed: 12/12/2022]
Abstract
We report design, synthesis and evaluation of a series of naphthalenediimides (NDIs) that are bridged with short peptides. Reminiscent of peptide stapling technologies, the macrocycles are conveniently accessible by a chromogenic nucleophilic aromatic substitution of two bromides in the NDI core with two thiols from cysteine sidechains. The dimension of core-bridged NDIs matches that of one turn of an α helix. NDI-stapled peptides exist as two, often separable atropisomers. Introduction of tertiary amine bases in amino-acid sidechains above the π-acidic NDI surface affords operational anion-π catalysts. According to an enolate chemistry benchmark reaction, anion-π catalysis next to peptides occurs with record chemoselectivity but weak enantioselectivity. Catalytic activity drops with increasing distance of the amine base to the NDI surface, looser homocysteine bridges, mismatched, shortened and elongated α-helix turns, and acyclic peptide controls. Elongation of isolated turns into short α helices significantly increases activity. This increase is consistent with remote control of anion-π catalysis from the α-helix macrodipole.
Collapse
Affiliation(s)
- Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Norjmaa G, Maréchal J, Ujaque G. Reaction Rate Inside the Cavity of [Ga
4
L
6
]
12−
Supramolecular Metallocage is Regulated by the Encapsulated Solvent. Chemistry 2020; 26:6988-6992. [PMID: 32125031 DOI: 10.1002/chem.201905608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| | - Jean‐Didier Maréchal
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| | - Gregori Ujaque
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| |
Collapse
|
30
|
Kutateladze DA, Strassfeld DA, Jacobsen EN. Enantioselective Tail-to-Head Cyclizations Catalyzed by Dual-Hydrogen-Bond Donors. J Am Chem Soc 2020; 142:6951-6956. [PMID: 32223127 PMCID: PMC7293861 DOI: 10.1021/jacs.0c02665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chiral urea derivatives are shown to catalyze enantioselective tail-to-head cyclization reactions of neryl chloride analogues. Experimental data are consistent with a mechanism in which π-participation by the nucleophilic olefin facilitates chloride ionization and thereby circumvents simple elimination pathways. Kinetic and computational studies support a cooperative mode of catalysis wherein two molecules of the urea catalyst engage the substrate and induce enantioselectivity through selective transition state stabilization.
Collapse
Affiliation(s)
| | | | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
31
|
Syntrivanis LD, Némethová I, Schmid D, Levi S, Prescimone A, Bissegger F, Major DT, Tiefenbacher K. Four-Step Access to the Sesquiterpene Natural Product Presilphiperfolan-1β-ol and Unnatural Derivatives via Supramolecular Catalysis. J Am Chem Soc 2020; 142:5894-5900. [DOI: 10.1021/jacs.0c01464] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Ivana Némethová
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Dario Schmid
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Shani Levi
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Fabian Bissegger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Dan T. Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 24, 4058 Basel, Switzerland
| |
Collapse
|
32
|
Mousavi S, Nazari B, Keshavarz MH, Bordbar A. Towards the Safe and Simple Production of Hydrocinnamic Acid by High‐Performance Palladium on Charcoal Nanocatalyst and Modeling the Nanocatalyst Fabrication Method. ChemistrySelect 2020. [DOI: 10.1002/slct.201904557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sajjad Mousavi
- Department of ChemistryMalek-ashtar University of Technology Shahin shahr 83145/115 Iran
| | - Behzad Nazari
- Department of ChemistryMalek-ashtar University of Technology Shahin shahr 83145/115 Iran
| | - Mohammad H. Keshavarz
- Department of ChemistryMalek-ashtar University of Technology Shahin shahr 83145/115 Iran
| | | |
Collapse
|
33
|
Affiliation(s)
- Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
34
|
Ishizuka S, Matsugi A, Hama T, Enami S. Interfacial Water Mediates Oligomerization Pathways of Monoterpene Carbocations. J Phys Chem Lett 2020; 11:67-74. [PMID: 31808704 DOI: 10.1021/acs.jpclett.9b03110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The air-water interface plays central roles in "on-droplet" synthesis, living systems, and the atmosphere; however, what makes reactions at the interface specific is largely unknown. Here, we examined carbocationic reactions of monoterpene (C10H16 isomer) on an acidic water microjet by using spray ionization mass spectrometry. Gaseous monoterpenes are trapped in the uppermost layers of a water surface via proton transfer and then undergo a chain-propagation reaction. The oligomerization pathway of β-pinene (β-P), which showed prompt chain-propagation, is examined by simultaneous exposure to camphene (CMP). (CMP)H+ is the most stable isomer formed via rearrangement of (β-P)H+ in the gas phase; however, no co-oligomerization was observed. This indicates that the oligomerization of (β-P)H+ proceeded via ring-opening isomerization. Quantum chemical calculations for [carbocation-(H2O)n=1,2] complexes revealed that the ring-opened isomer is stabilized by hydrogen-π bonds. We propose that partial hydration is a key factor that makes the interfacial reaction unique.
Collapse
Affiliation(s)
- Shinnosuke Ishizuka
- National Institute for Environmental Studies , 16-2 Onogawa , Tsukuba 305-8506 , Japan
| | - Akira Matsugi
- Research Institute of Science for Safety and Sustainability , National Institute of Advanced Industrial Science and Technology , 16-1 Onogawa , Tsukuba 305-8569 , Japan
| | - Tetsuya Hama
- Institute of Low Temperature Science , Hokkaido University , Kita-19 Nishi-8 , Sapporo 060-0819 , Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , 16-2 Onogawa , Tsukuba 305-8506 , Japan
| |
Collapse
|
35
|
Young TA, Martí-Centelles V, Wang J, Lusby PJ, Duarte F. Rationalizing the Activity of an “Artificial Diels-Alderase”: Establishing Efficient and Accurate Protocols for Calculating Supramolecular Catalysis. J Am Chem Soc 2019; 142:1300-1310. [DOI: 10.1021/jacs.9b10302] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tom A. Young
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Vicente Martí-Centelles
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Jianzhu Wang
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Paul J. Lusby
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
36
|
Gambaro S, La Manna P, De Rosa M, Soriente A, Talotta C, Gaeta C, Neri P. The Hexameric Resorcinarene Capsule as a Brønsted Acid Catalyst for the Synthesis of Bis(heteroaryl)methanes in a Nanoconfined Space. Front Chem 2019; 7:687. [PMID: 31696107 PMCID: PMC6817573 DOI: 10.3389/fchem.2019.00687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 11/25/2022] Open
Abstract
Herein, we show that the hexameric resorcinarene capsule C is able to catalyze the formation of bis(heteroaryl)methanes by reaction between pyrroles or indoles and carbonyl compounds (α-ketoesters or aldehydes) in excellent yields and selectivity. Our results suggest that the capsule can play a double catalytic role as a H-bond catalyst, for the initial activation of the carbonyl substrate, and as a Brønsted acid catalyst, for the dehydration of the intermediate alcohol.
Collapse
Affiliation(s)
- Stefania Gambaro
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Salerno, Italy
| | - Pellegrino La Manna
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Salerno, Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Salerno, Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Salerno, Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Salerno, Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Salerno, Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Salerno, Italy
| |
Collapse
|
37
|
Meisner J, Zhu X, Martínez TJ. Computational Discovery of the Origins of Life. ACS CENTRAL SCIENCE 2019; 5:1493-1495. [PMID: 31572775 PMCID: PMC6764069 DOI: 10.1021/acscentsci.9b00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Jan Meisner
- Department of Chemistry and The PULSE Institute,
Stanford University, Stanford, California 94305,
United States
- SLAC National Accelerator
Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025,
United States
| | - Xiaolei Zhu
- Department of Chemistry and The PULSE Institute,
Stanford University, Stanford, California 94305,
United States
- SLAC National Accelerator
Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025,
United States
| | - Todd J. Martínez
- Department of Chemistry and The PULSE Institute,
Stanford University, Stanford, California 94305,
United States
- SLAC National Accelerator
Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025,
United States
| |
Collapse
|
38
|
Bornhof A, Vázquez‐Nakagawa M, Rodríguez‐Pérez L, Ángeles Herranz M, Sakai N, Martín N, Matile S, López‐Andarias J. Anion–π Catalysis on Carbon Nanotubes. Angew Chem Int Ed Engl 2019; 58:16097-16100. [DOI: 10.1002/anie.201909540] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Anna‐Bea Bornhof
- Department of Organic Chemistry University of Geneva 1211 Geneva Switzerland
| | - Mikiko Vázquez‐Nakagawa
- Department of Organic Chemistry Faculty of Chemistry Universidad Complutense de Madrid 28040 Madrid Spain
| | - Laura Rodríguez‐Pérez
- Department of Organic Chemistry Faculty of Chemistry Universidad Complutense de Madrid 28040 Madrid Spain
| | - María Ángeles Herranz
- Department of Organic Chemistry Faculty of Chemistry Universidad Complutense de Madrid 28040 Madrid Spain
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva 1211 Geneva Switzerland
| | - Nazario Martín
- Department of Organic Chemistry Faculty of Chemistry Universidad Complutense de Madrid 28040 Madrid Spain
- IMDEA-Nanociencia c/ Faraday 9, Campus Cantoblanco 28049 Madrid Spain
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva 1211 Geneva Switzerland
| | | |
Collapse
|
39
|
Bornhof A, Vázquez‐Nakagawa M, Rodríguez‐Pérez L, Ángeles Herranz M, Sakai N, Martín N, Matile S, López‐Andarias J. Anion–π Catalysis on Carbon Nanotubes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anna‐Bea Bornhof
- Department of Organic ChemistryUniversity of Geneva 1211 Geneva Switzerland
| | - Mikiko Vázquez‐Nakagawa
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Laura Rodríguez‐Pérez
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid 28040 Madrid Spain
| | - María Ángeles Herranz
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva 1211 Geneva Switzerland
| | - Nazario Martín
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid 28040 Madrid Spain
- IMDEA-Nanociencia c/ Faraday 9, Campus Cantoblanco 28049 Madrid Spain
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva 1211 Geneva Switzerland
| | | |
Collapse
|
40
|
Norjmaa G, Maréchal JD, Ujaque G. Microsolvation and Encapsulation Effects on Supramolecular Catalysis: C-C Reductive Elimination inside [Ga 4L 6] 12- Metallocage. J Am Chem Soc 2019; 141:13114-13123. [PMID: 31390202 DOI: 10.1021/jacs.9b04909] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The host effect of the supramolecular [Ga4L6]12- tetrahedral metallocage on reductive elimination of substrate by encapsulated Au(III) complexes is investigated by means of computational methods. The behavior of the reactants in solution and within the metallocage is initially evaluated by means of classical molecular dynamics simulations. These results guided the selection of proper computational models to describe the reaction in solution and inside the metallocage at the DFT level. The calculated Gibbs energy barriers are in very good agreement with experiment both in solution and inside the metallocage. The analysis in solution revealed that microsolvation around the Au(III) complex increases the Gibbs energy barrier. The analysis within the metallocage shows that its encapsulation favors the reaction. The process can be formally described as removing explicit microsolvation around the gold complex and encapsulating the metal complex inside the metallocage. Both processes are important for the reaction, but the removal of the solvent molecules surrounding the Au(III) metal complex is fundamental for the reduction of the reaction barrier. The energy decomposition analysis of the barrier among strain, interaction, and thermal terms shows that strain term is very low whereas the contribution of thermal (entropic) effects is moderate. Interestingly, the key term responsible for reducing the Gibbs energy barrier is the interaction. This term can be mainly associated with electrostatic interactions in agreement with previous examples in the literature.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universitat Autònoma de Barcelona , Cerdanyola del Valles , 08193 Barcelona , Catalonia , Spain
| | - Jean-Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universitat Autònoma de Barcelona , Cerdanyola del Valles , 08193 Barcelona , Catalonia , Spain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universitat Autònoma de Barcelona , Cerdanyola del Valles , 08193 Barcelona , Catalonia , Spain
| |
Collapse
|