1
|
Calogero F, Wilczek L, Pinosa E, Gualandi A, Dorta R, Herrera A, Dai Y, Rossignol A, Negri F, Ziani Z, Fermi A, Ceroni P, Cozzi PG. Stable Meisenheimer Complexes as Powerful Photoreductants Readily Obtained from Aza-Hetero Aromatic Compounds. Angew Chem Int Ed Engl 2024; 63:e202411074. [PMID: 39078744 DOI: 10.1002/anie.202411074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 10/25/2024]
Abstract
Excited states of radical anions derived from the photoreduction of stable organic molecules are suggested to serve as potent reductants. However, excited states of these species are too short-lived to allow bimolecular quenching processes. Recently, the singlet excited state of Meisenheimer complexes, which possess a long-lived excited state, was identified as the competent species for the reduction of challenging organic substrates (-2.63 V vs. SCE, saturated calomel electrode). To produce reasonably stable and simply accessible different Meisenheimer complexes, the addition of nBuLi to readily available aromatic heterocycles was investigated, and the photoreactivity of the generated species was studied. In this paper, we present the straightforward preparation of a family of powerful photoreductants (*Eox<-3 V vs. SCE in their excited states, determined by DFT and time-dependent TD-DFT calculations; DFT, density functional theory) that can induce dehalogenation of electron-rich aryl chlorides and to form C-C bond through radical cyclization. Photophysical analyses and computational studies in combination with experimental mechanistic investigations demonstrate the ability of the adduct to act as a strong electron donor under visible light irradiation.
Collapse
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Leonie Wilczek
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Institute of Organic Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| | - Emanuele Pinosa
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Andrea Gualandi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Romano Dorta
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Alberto Herrera
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Yasi Dai
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Arthur Rossignol
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Fabrizia Negri
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Zakaria Ziani
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
2
|
Cao M, Wang H, Hou F, Zhu Y, Liu Q, Tung CH, Liu L. Catalytic Enantioselective Hydroxylation of Tertiary Propargylic C(sp 3)-H Bonds in Acyclic Systems: a Kinetic Resolution Study. J Am Chem Soc 2024; 146:18396-18406. [PMID: 38936812 DOI: 10.1021/jacs.4c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Direct site-selective and enantioselective oxyfunctionalization of C(sp3)-H bonds to form alcohols with a general scope, with predictable selectivities, and in preparatively useful yields represents a paradigm shift in the standard logic of synthetic organic chemistry. However, the knowledge of either enzymatic or nonenzymatic asymmetric hydroxylation of tertiary C-H bonds for enantioenriched tertiary alcohol synthesis is sorely lacking. Here, we report a practical manganese-catalyzed enantio-differentiating hydroxylation of tertiary propargylic C-H bonds in acyclic systems, producing a wide range of structurally diverse enantioenriched tertiary propargyl alcohols in high efficiency with extremely efficient chemo- and enantio-discrimination. Other features include the use of C-H substrates as the limiting reagent, noteworthy functional group compatibility, great synthetic utilities, and scalability. The findings serve as a blueprint for the development of metal-catalyzed asymmetric oxidation of challenging substrates.
Collapse
Affiliation(s)
- Min Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Hongliang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fangao Hou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuhang Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qianqian Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
3
|
Astle S, Guggiari S, Frost JR, Hepburn HB, Klauber DJ, Christensen KE, Burton JW. Enantioselective Synthesis of Sealutomicin C. J Am Chem Soc 2024; 146:17757-17764. [PMID: 38885121 PMCID: PMC11228992 DOI: 10.1021/jacs.4c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The sealutomicins are a family of anthraquinone antibiotics featuring an enediyne (sealutomicin A) or Bergman-cyclized aromatic ring (sealutomicins B-D). Herein we report the development of an enantioselective organocatalytic method for the synthesis of dihydroquinolines and the use of the developed method in the total synthesis of sealutomicin C which features a transannular cyclization of an aryllithium onto a γ-lactone as a second key step.
Collapse
Affiliation(s)
- Stuart
M. Astle
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Sean Guggiari
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - James R. Frost
- UCB
Pharma, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K.
| | - Hamish B. Hepburn
- Vertex
Pharmaceuticals, 86-88
Jubilee Avenue Milton Park, Abingdon OX14 4RW, U.K.
| | - David J. Klauber
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Kirsten E. Christensen
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jonathan W. Burton
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
4
|
Wang L, Lv J, Zhang Y, Yang D. Asymmetric magnesium catalysis for important chiral scaffold synthesis. Org Biomol Chem 2024; 22:4778-4800. [PMID: 38809153 DOI: 10.1039/d4ob00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Magnesium catalysts are widely used in catalytic asymmetric reactions, and a series of catalytic strategies have been developed in recent years. Herein, in this review, we have tried to summarize asymmetric magnesium catalysis for the synthesis of important chiral scaffolds. Several important optically active motifs that are present in classic chiral ligands or natural products synthesized by Mg(II) catalytic methods are briefly discussed. Moreover, the representative mechanisms for different magnesium catalytic strategies, including in situ generated magnesium catalysts, are also shown in relation to synthetic routes for obtaining these important chiral scaffolds.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jiaming Lv
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Yongshuo Zhang
- Scientific Research and Innovation Expert Studio of China Inspection and Certification Group Liaoning Co., Ltd, Dalian, 116039, China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Cao M, Wang Z, Hou F, Liu X, Sun S, Wang X, Liu L. Catalytic Asymmetric Access to Structurally Diverse N-Alkoxy Amines via a Kinetic Resolution Strategy. JACS AU 2024; 4:1935-1940. [PMID: 38818075 PMCID: PMC11134360 DOI: 10.1021/jacsau.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
Chiral N-alkoxy amines are increasingly vital substrates in bioscience. However, asymmetric synthetic strategies for these compounds remain scarce. Catalytic kinetic resolution represents an attractive approach to prepare structurally diverse enantiopure N-alkoxy amines, which has remained elusive due to the notably reduced nucleophilicity of the nitrogen atom together with the low bond dissociation energies of labile NO-C and N-O bonds. We here report a general kinetic resolution of N-alkoxy amines through chemo- and enantioselective oxygenation. The mild and green titanium-catalyzed approach features broad substrate scope (55 examples), noteworthy functional group compatibility, high catalyst turnover number (up to 5200), excellent selectivity factor (s > 150), and scalability.
Collapse
Affiliation(s)
- Min Cao
- School
of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University, Jinan 250117, Shandong, China
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Zehua Wang
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Fangao Hou
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Xiaoyuan Liu
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Shutao Sun
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Xinning Wang
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Lei Liu
- School
of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University, Jinan 250117, Shandong, China
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
- Shenzhen
Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
6
|
Wang G, Chen T, Jia K, Ma W, Tung CH, Liu L. Catalytic Asymmetric Oxidation of Amines to Hydroxylamines. J Am Chem Soc 2023; 145:22276-22283. [PMID: 37774149 DOI: 10.1021/jacs.3c09172] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Chiral hydroxylamines are increasingly common structural elements in pharmaceuticals and agrochemicals, but their asymmetric synthesis remains challenging. Although enantioselective oxidation is the most straightforward method to prepare chiral oxides with a higher oxidation state, asymmetric and even nonasymmetric amine oxidation to hydroxylamines has been poorly addressed. We report a titanium-catalyzed asymmetric oxidation of racemic amines providing a broad range of structurally diverse chiral hydroxylamines with excellent chemo- and enantioselectivity. Notably, hydroxylamines bearing diverse substituent patterns on the stereocenters, including α,α-ester-alkyl, α,α-amide-alkyl, α,α-aryl-alkyl, α,α-alkynyl-alkyl, and α,α-dialkyl, are well tolerated with good functional group compatibility. Catalyst turnover numbers up to 5000 and selectivity factors up to 278 are observed. This finding offers a democratized platform to chiral hydroxylamines as design elements for drug discovery and provides insights into metal-catalyzed asymmetric oxidation of challenging substrates.
Collapse
Affiliation(s)
- Gang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University, Jinan 250117, China
| | - Tian Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Kuiyong Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wencheng Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
7
|
Palone A, Casadevall G, Ruiz-Barragan S, Call A, Osuna S, Bietti M, Costas M. C-H Bonds as Functional Groups: Simultaneous Generation of Multiple Stereocenters by Enantioselective Hydroxylation at Unactivated Tertiary C-H Bonds. J Am Chem Soc 2023; 145:15742-15753. [PMID: 37431886 PMCID: PMC10651061 DOI: 10.1021/jacs.2c10148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 07/12/2023]
Abstract
Enantioselective C-H oxidation is a standing chemical challenge foreseen as a powerful tool to transform readily available organic molecules into precious oxygenated building blocks. Here, we describe a catalytic enantioselective hydroxylation of tertiary C-H bonds in cyclohexane scaffolds with H2O2, an evolved manganese catalyst that provides structural complementary to the substrate similarly to the lock-and-key recognition operating in enzymatic active sites. Theoretical calculations unveil that enantioselectivity is governed by the precise fitting of the substrate scaffold into the catalytic site, through a network of complementary weak non-covalent interactions. Stereoretentive C(sp3)-H hydroxylation results in a single-step generation of multiple stereogenic centers (up to 4) that can be orthogonally manipulated by conventional methods providing rapid access, from a single precursor to a variety of chiral scaffolds.
Collapse
Affiliation(s)
- Andrea Palone
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Guillem Casadevall
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Sergi Ruiz-Barragan
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Arnau Call
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Sílvia Osuna
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| |
Collapse
|
8
|
Yeo S, Choi A, Greaves S, Meijer AJHM, Silvestri IP, Coldham I. Kinetic Resolution of 2-Aryldihydroquinolines Using Lithiation - Synthesis of Chiral 1,2- and 1,4-Dihydroquinolines. Chemistry 2023; 29:e202300815. [PMID: 37067465 PMCID: PMC10946909 DOI: 10.1002/chem.202300815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/18/2023]
Abstract
Highly enantiomerically enriched dihydrohydroquinolines were prepared in two steps from quinoline. Addition of aryllithiums to quinoline with tert-butoxycarbonyl (Boc) protection gave N-Boc-2-aryl-1,2-dihydroquinolines. These were treated with n-butyllithium and electrophilic trapping occurred exclusively at C-4 of the dihydroquinoline, a result supported by DFT studies. Variable temperature NMR spectroscopy gave kinetic data for the barrier to rotation of the carbonyl group (ΔG≠ ≈49 kJ mol-1 , 195 K). Lithiation using the diamine sparteine allowed kinetic resolutions with high enantioselectivities (enantiomer ratio up to 99 : 1). The enantioenriched 1,2-dihydroquinolines could be converted to 1,4-dihydroquinolines with retention of stereochemistry. Further functionalisation led to trisubstituted products. Reduction provided enantioenriched tetrahydroquinolines, whereas acid-promoted removal of Boc led to quinolines, and this was applied to a synthesis of the antimalarial compound M5717.
Collapse
Affiliation(s)
- Song‐Hee Yeo
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - Anthony Choi
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - Sophie Greaves
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | | | | | - Iain Coldham
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| |
Collapse
|
9
|
Chen F, Jin MY, Wang DZ, Xu C, Wang J, Xing X. Simultaneous Access to Two Enantio-enriched Alcohols by a Single Ru-Catalyst: Asymmetric Hydrogen Transfer from Racemic Alcohols to Matching Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fumin Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | | | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianchun Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Li S, Li H, Tung CH, Liu L. Practical and Selective Bio-Inspired Iron-Catalyzed Oxidation of Si–H Bonds to Diversely Functionalized Organosilanols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Song Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- School of Ocean, Shandong University, Weihai 264209, China
| | - Haibei Li
- School of Ocean, Shandong University, Weihai 264209, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
11
|
Xie J, Guo Z, Liu W, Zhang D, He Y, Yang X. Kinetic Resolution of 1,
2‐Diamines
via Organocatalyzed Asymmetric Electrophilic Aminations of Anilines. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinglei Xie
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University Fushun 113001 China
| | - Zheng Guo
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yu‐Peng He
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University Fushun 113001 China
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016 China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
12
|
Ye P, Feng A, Wang L, Cao M, Zhu R, Liu L. Kinetic resolution of cyclic benzylic azides enabled by site- and enantioselective C(sp 3)-H oxidation. Nat Commun 2022; 13:1621. [PMID: 35338143 PMCID: PMC8956603 DOI: 10.1038/s41467-022-29319-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Catalytic nonenzymatic kinetic resolution (KR) of racemates remains one of the most powerful tools to prepare enantiopure compounds, which dominantly relies on the manipulation of reactive functional groups. Moreover, catalytic KR of organic azides represents a formidable challenge due to the small size and instability of the azido group. Here, an effective KR of cyclic benzylic azides through site- and enantioselective C(sp3)-H oxidation is described. The manganese catalyzed oxidative KR reaction exhibits good functional group tolerance, and is applicable to a range of tetrahydroquinoline- and indoline-based organic azides with excellent site- and enantio-discrimination. Computational studies elucidate that the effective chiral recognition is derived from hydrogen bonding interaction between substrate and catalyst.
Collapse
Affiliation(s)
- Pengbo Ye
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Aili Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Min Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
13
|
Guan H, Tung CH, Liu L. Methane Monooxygenase Mimic Asymmetric Oxidation: Self-Assembling μ-Hydroxo, Carboxylate-Bridged Diiron(III)-Catalyzed Enantioselective Dehydrogenation. J Am Chem Soc 2022; 144:5976-5984. [PMID: 35324200 DOI: 10.1021/jacs.2c00638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mimicking naturally occurring metalloenzymes to enrich the diversity of catalytic asymmetric oxidation reactions is a long-standing goal for modern chemistry. Toward this end, a range of methane monooxygenase (MMO) mimic chiral carboxylate-bridged (μ-hydroxo) diiron(III) dimer complexes using salan as basal ligand and sodium aryl carboxylate as additive have been designed and synthesized. The chiral diiron complexes exhibit efficient catalytic reactivity in dehydrogenative kinetic resolution of indolines using environmentally benign hydrogen peroxide as oxidant. In particular, complex C9 bearing sterically encumbered salan ligands and a 2-naphthoate bridge is identified as the optimal catalyst in terms of chiral recognition. Further investigation reveals that this MMO mimic chiral catalyst can be readily generated by self-assembly under the dehydrogenation conditions. The self-assembling catalytic system is applicable to a series of indolines with multiple stereocenters and diverse substituent patterns in high efficiency with a high level of chiral recognition (selectivity factor up to 153). Late-stage dehydrogenative kinetic resolution of bioactive molecules is further examined.
Collapse
Affiliation(s)
- Honghao Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
14
|
Liu W, Wang D, Zhang D, Yang X. Catalytic Kinetic Resolution and Desymmetrization of Amines. Synlett 2022. [DOI: 10.1055/a-1790-3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Optically active amines represent critically important subunits in bioactive natural products and pharmaceuticals, as well as key scaffolds in chiral catalysts and ligands. Kinetic resolution of racemic amines and enantioselective desymmetrization of prochiral amines have proved to be efficient methods to access enantioenriched amines, especially when the racemic or prochiral amines were easy to prepare while the chiral ones are difficult to be accessed directly. In this review, we systematically summarized the development of kinetic resolution and desymmetrization of amines through nonenzymatic asymmetric catalytic approaches in the last two decades.
Collapse
Affiliation(s)
- Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Donglei Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
15
|
Jiang Q, Qin T, Yang X. Asymmetric Synthesis of Hydroquinazolines Bearing C4-Tetrasubstituted Stereocenters via Kinetic Resolution of α-Tertiary Amines. Org Lett 2022; 24:625-630. [PMID: 34978827 DOI: 10.1021/acs.orglett.1c04039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel protocol for asymmetric synthesis of hydroquinazolines bearing C4-tetrasubstituted stereocenters has been achieved through kinetic resolution of 2-amido α-tertiary benzylamines via chiral phosphoric acid catalyzed intramolecular dehydrative cyclizations. This method gave access to both α-tertiary benzylamines and hydroquinazolines with broad scope and high enantioselectivities. An intriguing restricted rotation of the C-N bond was observed for hydroquinazoline products bearing C4-tetrasubstituted stereocenters.
Collapse
Affiliation(s)
- Qianwen Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianren Qin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
16
|
Fu J, Li B, Wang X, Liang Q, Peng X, Yang L, Wan T, Wang X, Lin B, Cheng M, Liu Y. Au(I)‐Catalyzed 6‐
endo
‐
dig
Cyclizations of Aromatic 1,
5‐Enynes
to 2‐(Naphthalen‐2‐yl)anilines Leading to Divergent Syntheses of Benzo[
α
]carbazole, Benzo[
c
,
h
]cinnoline and Dibenzo[
i
]phenanthridine Derivatives. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jiayue Fu
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Bingbing Li
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Xiugui Wang
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Qida Liang
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Xiaoshi Peng
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Lu Yang
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Tao Wan
- Liaoning Kangboshi Pharmaceutical Co. LTD Anshan Liaoning 114100 China
| | - Xinxiu Wang
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Bin Lin
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Maosheng Cheng
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| | - Yongxiang Liu
- Key Laboratory of Structure‐Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education Shenyang Liaoning 110016 China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Institute of Drug Research in Medicine Capital of China Benxi Liaoning 117000 China
| |
Collapse
|
17
|
Aman M, Dostál L, Růžička A, Tydlitát J, Beckmann J, Turek J, Jambor R. Sn, P-coordinated Ru cation: a robust catalyst for aerobic oxidations of benzylamine and benzyl alcohol. Chem Commun (Camb) 2021; 57:12992-12995. [PMID: 34796897 DOI: 10.1039/d1cc06173a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stable ionic κ2Sn,P-coordinated Ru complex shows excellent catalytic activity in aerobic oxidations of benzylamine and benzyl alcohol. This complex is stabilized by a stannylene-phosphine peri-substituted naphthalene ligand, which can act as either a reducing agent for a Ru(III) complex or as a κ2Sn,P-chelating ligand for Ru(II) compounds.
Collapse
Affiliation(s)
- Michal Aman
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Jiří Tydlitát
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Jan Turek
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| |
Collapse
|
18
|
Guo Z, Xie J, Hu T, Chen Y, Tao H, Yang X. Kinetic resolution of N-aryl β-amino alcohols via asymmetric aminations of anilines. Chem Commun (Camb) 2021; 57:9394-9397. [PMID: 34528982 DOI: 10.1039/d1cc03117a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient kinetic resolution of N-aryl β-amino alcohols has been developed via asymmetric para-aminations of anilines with azodicarboxylates enabled by chiral phosphoric acid catalysis. Broad substrate scope and high kinetic resolution performances were afforded with this method. Control experiments supported the critical roles of the NH and OH group in these reactions.
Collapse
Affiliation(s)
- Zheng Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jinglei Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tao Hu
- University of Chinese Academy of Sciences, Beijing 100049, China.,iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
19
|
Pan Y, Wang D, Chen Y, Zhang D, Liu W, Yang X. Kinetic Resolution of α-Tertiary Propargylic Amines through Asymmetric Remote Aminations of Anilines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yongkai Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Donglei Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - DeKun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
20
|
Kinetic Resolution of
2‐Substituted
1,
2‐Dihydroquinolines
by
Rhodium‐Catalyzed
Asymmetric Hydroarylation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Zhu C, Liu W, Zhao F, Chen Y, Tao H, He YP, Yang X. Kinetic Resolution of 2,2-Disubstituted Dihydroquinolines through Chiral Phosphoric Acid-Catalyzed C6-Selective Asymmetric Halogenations. Org Lett 2021; 23:4104-4108. [PMID: 33998803 DOI: 10.1021/acs.orglett.1c00978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel kinetic resolution of 2,2-disubstituted dihydroquinolines was achieved by regioselective asymmetric halogenations enabled by chiral phosphoric acid catalysis. A series of dihydroquinolines bearing 2,2-disubstitutions were well-tolerated in these reactions, generating both the recovered dihydroquinolines and C-6-brominated products with high enantioselectivities, with s-factors up to 149. In addition, this kinetic resolution protocol is also applicable for 2,2-disubstituted tetrahydroquinoline and asymmetric iodonation reaction.
Collapse
Affiliation(s)
- Chaofan Zhu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun 113001, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Peng He
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun 113001, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
22
|
Wang G, Lu R, He C, Liu L. Kinetic resolution of indolines by asymmetric hydroxylamine formation. Nat Commun 2021; 12:2512. [PMID: 33947847 PMCID: PMC8096955 DOI: 10.1038/s41467-021-22658-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Catalytic kinetic resolution of amines represents a longstanding challenge in chemical synthesis. Here, we described a kinetic resolution of secondary amines through oxygenation to produce enantiopure hydroxylamines involving N–O bond formation. The economic and practical titanium-catalyzed asymmetric oxygenation with environmentally benign hydrogen peroxide as oxidant is applicable to a range of racemic indolines with multiple stereocenters and diverse substituent patterns in high efficiency with efficient chemoselectivity and enantio-discrimination. Late-stage asymmetric oxygenation of bioactive molecules that are otherwise difficult to synthesize was also explored. Catalytic kinetic resolution of amines is a longstanding challenge in chemical synthesis. Here, the authors report on titanium‐catalysed asymmetric oxygenation with hydrogen peroxide for kinetic resolution of secondary amines through oxygenation to produce enantiopure hydroxylamines involving N–O bond formation.
Collapse
Affiliation(s)
- Gang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Ran Lu
- School of Pharmaceutical Sciences, Jinan, China
| | | | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. .,School of Pharmaceutical Sciences, Jinan, China.
| |
Collapse
|
23
|
Chen Y, Zhu C, Guo Z, Liu W, Yang X. Asymmetric Synthesis of Hydroquinolines with α,α‐Disubstitution through Organocatalyzed Kinetic Resolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yunrong Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Chaofan Zhu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Zheng Guo
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Wei Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Xiaoyu Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
24
|
Chen Y, Zhu C, Guo Z, Liu W, Yang X. Asymmetric Synthesis of Hydroquinolines with α,α-Disubstitution through Organocatalyzed Kinetic Resolution. Angew Chem Int Ed Engl 2021; 60:5268-5272. [PMID: 33620130 DOI: 10.1002/anie.202015008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Indexed: 12/13/2022]
Abstract
The first kinetic resolution of hydroquinoline derivatives with α,α-disubstitution has been achieved through asymmetric remote aminations with azodicarboxylates enabled by chiral phosphoric acid catalysis. Mechanistic studies suggest a monomeric catalyst pathway proceeding through rate- and enantio-determining electrophilic attack promoted by a network of attractive non-covalent interactions between the substrate and catalyst. Facile subsequent removal and transformations of the newly introduced hydrazine moiety enable these protocols to serve as powerful tools for asymmetric synthesis of N-heterocycles with α,α-disubstitution.
Collapse
Affiliation(s)
- Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chaofan Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zheng Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
25
|
Sun S, Ma Y, Liu Z, Liu L. Oxidative Kinetic Resolution of Cyclic Benzylic Ethers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shutao Sun
- School of Pharmaceutical Sciences Shandong University Jinan 250100 P. R. China
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yingang Ma
- School of Pharmaceutical Sciences Shandong University Jinan 250100 P. R. China
| | - Ziqiang Liu
- School of Pharmaceutical Sciences Shandong University Jinan 250100 P. R. China
| | - Lei Liu
- School of Pharmaceutical Sciences Shandong University Jinan 250100 P. R. China
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
26
|
Sun S, Yang Y, Zhao R, Zhang D, Liu L. Site- and Enantiodifferentiating C(sp 3)-H Oxidation Enables Asymmetric Access to Structurally and Stereochemically Diverse Saturated Cyclic Ethers. J Am Chem Soc 2020; 142:19346-19353. [PMID: 33140964 DOI: 10.1021/jacs.0c09636] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A manganese-catalyzed site- and enantiodifferentiating oxidation of C(sp3)-H bonds in saturated cyclic ethers has been described. The mild and practical method is applicable to a range of tetrahydrofurans, tetrahydropyrans, and medium-sized cyclic ethers with multiple stereocenters and diverse substituent patterns in high efficiency with extremely efficient site- and enantiodiscrimination. Late-stage application in complex biological active molecules was further demonstrated. Mechanistic studies by combined experiments and computations elucidated the reaction mechanism and origins of stereoselectivity. The ability to employ ether substrates as the limiting reagent, together with a broad substrate scope, and a high level of chiral recognition, represent a valuable demonstration of the utility of asymmetric C(sp3)-H oxidation in complex molecule synthesis.
Collapse
Affiliation(s)
- Shutao Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yiying Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ran Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Dongju Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
27
|
Sun S, Ma Y, Liu Z, Liu L. Oxidative Kinetic Resolution of Cyclic Benzylic Ethers. Angew Chem Int Ed Engl 2020; 60:176-180. [PMID: 33112503 DOI: 10.1002/anie.202009594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Indexed: 01/04/2023]
Abstract
A manganese-catalyzed oxidative kinetic resolution of cyclic benzylic ethers through asymmetric C(sp3 )-H oxidation is reported. The practical approach is applicable to a wide range of 1,3-dihydroisobenzofurans bearing diverse functional groups and substituent patterns at the α position with extremely efficient enantiodiscrimination. The generality of the strategy was further demonstrated by efficient oxidative kinetic resolution of another type of five-membered cyclic benzylic ether, 2,3-dihydrobenzofurans, and six-membered 6H-benzo[c]chromenes. Direct late-stage oxidative kinetic resolution of bioactive molecules that are otherwise difficult to access was further explored.
Collapse
Affiliation(s)
- Shutao Sun
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, P. R. China.,School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yingang Ma
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, P. R. China
| | - Ziqiang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, P. R. China
| | - Lei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, P. R. China.,School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
28
|
Ma C, Sheng FT, Wang HQ, Deng S, Zhang YC, Jiao Y, Tan W, Shi F. Atroposelective Access to Oxindole-Based Axially Chiral Styrenes via the Strategy of Catalytic Kinetic Resolution. J Am Chem Soc 2020; 142:15686-15696. [DOI: 10.1021/jacs.0c00208] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chun Ma
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng-Tao Sheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Hai-Qing Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shuang Deng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
29
|
Muzalevskiy VM, Belyaeva KV, Trofimov BA, Nenajdenko VG. Organometal-Free Arylation and Arylation/Trifluoroacetylation of Quinolines by Their Reaction with CF 3-ynones and Base-Induced Rearrangement. J Org Chem 2020; 85:9993-10006. [PMID: 32631065 DOI: 10.1021/acs.joc.0c01277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of quinolines with CF3-ynones resulted in the formation of 1,3-oxazinoquinolines. Subsequent treatment of the reaction mixture with a base initiated deep structural transformation of primary products. Both steps proceed in very high yield. As a result, unusual rearrangement of 1,3-oxazinoquinolines to form either 2-arylquinolines or 2-aryl-3-trifluoroacetylquinolines was discovered. The decisive role of the base in the reaction direction was shown. Using these reactions, highly efficient pathways to 2-arylquinolines and 2-aryl-3-trifluoroacetylquinolines were elaborated to provide the corresponding compounds in high yields using a simple one-pot procedure. The possible mechanism of rearrangement is discussed.
Collapse
Affiliation(s)
- Vasiliy M Muzalevskiy
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991 Russia
| | - Kseniya V Belyaeva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, Irkutsk 664033, Russia
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Street, Irkutsk 664033, Russia
| | - Valentine G Nenajdenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991 Russia
| |
Collapse
|
30
|
Vanadium(V) Complex-Catalyzed One-Pot Synthesis of Phenanthridines via a Pictet-Spengler-Dehydrogenative Aromatization Sequence. Catalysts 2020. [DOI: 10.3390/catal10080860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phenanthridine and its derivatives are important structural motifs that exist in natural products, biologically active compounds, and functional materials. Here, we report a mild, one-pot synthesis of 6-arylphenanthridine derivatives by a sequential cascade Pictet-Spengler-dehydrogenative aromatization reaction mediated by oxovanadium(V) complexes under aerobic conditions. The reaction of 2-(3,5-dimethoxyphenyl)aniline with a range of commercially available aryl aldehydes provided the desired phenanthridine derivatives in up to 96% yield. The ability of vanadium(V) complexes to function as efficient redox and Lewis acid catalysts enables the sequential reaction to occur under mild conditions.
Collapse
|
31
|
Chen J, Gu H, Zhu X, Nam W, Wang B. Zirconium‐Salan Catalyzed Enantioselective
α
‐Hydroxylation of
β
‐Keto Esters. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Chen
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 People's Republic of China
| | - Haiyang Gu
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 People's Republic of China
| | - Xueying Zhu
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 People's Republic of China
| | - Wonwoo Nam
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Bin Wang
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 People's Republic of China
| |
Collapse
|
32
|
Saito K, Miyashita H, Ito Y, Yamanaka M, Akiyama T. Oxidative Kinetic Resolution of Acyclic Amines Based on Equilibrium Control. Org Lett 2020; 22:3128-3134. [DOI: 10.1021/acs.orglett.0c00887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kodai Saito
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hiromitsu Miyashita
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yui Ito
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
33
|
Lin Y, Hirschi WJ, Kunadia A, Paul A, Ghiviriga I, Abboud KA, Karugu RW, Vetticatt MJ, Hirschi JS, Seidel D. A Selenourea-Thiourea Brønsted Acid Catalyst Facilitates Asymmetric Conjugate Additions of Amines to α,β-Unsaturated Esters. J Am Chem Soc 2020; 142:5627-5635. [PMID: 32118419 PMCID: PMC7533150 DOI: 10.1021/jacs.9b12457] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β-Amino esters are obtained with high levels of enantioselectivity via the conjugate addition of cyclic amines to unactivated α,β-unsaturated esters. A related strategy enables the kinetic resolution of racemic cyclic 2-arylamines, using benzyl acrylate as the resolving agent. Reactions are facilitated by an unprecedented selenourea-thiourea organocatalyst. As elucidated by DFT calculations and 13C kinetic isotope effect studies, the rate-limiting and enantiodetermining step of the reaction is the protonation of a zwitterionic intermediate by the catalyst. This represents a rare case in which a thiourea compound functions as an asymmetric Brønsted acid catalyst.
Collapse
Affiliation(s)
- Yingfu Lin
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - William J Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Anuj Kunadia
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Anirudra Paul
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rachael W Karugu
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Mathew J Vetticatt
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
34
|
Cui H, Jiang L, Tan H, Liu S. Direct Synthesis of Dihydropyrrolo[2,1‐
a
]Isoquinolines through FeCl
3
Promoted Oxidative Aromatization. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hai‐Lei Cui
- Laboratory of Asymmetric SynthesisChongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 People's Republic of China
| | - Lu Jiang
- Laboratory of Asymmetric SynthesisChongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 People's Republic of China
| | - Hao Tan
- Laboratory of Asymmetric SynthesisChongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 People's Republic of China
| | - Si Liu
- Laboratory of Asymmetric SynthesisChongqing University of Arts and Sciences 319 Honghe Ave. Yongchuan, Chongqing 402160 People's Republic of China
| |
Collapse
|