1
|
Suzuki W, Takahata R, Mizuhata Y, Tokitoh N, Xue S, Teranishi T. Quantitative analysis of air-oxidation reactions of thiolate-protected gold nanoclusters. Chem Sci 2024:d4sc02995j. [PMID: 39464616 PMCID: PMC11503621 DOI: 10.1039/d4sc02995j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
The interaction of dioxygen (O2) with inorganic nanomaterials is one of the most essential steps to understanding the reaction mechanism of O2-related reactions. However, quantitative analyses for O2-binding processes and subsequent oxidation reactions on the surface are still elusive, whereas the reaction of O2 with molecules such as transition metal complexes has been widely explored. Herein, we have quantitatively evaluated reaction processes of air-oxidation reactions of atomically precise thiolate-protected Au25 nanoclusters ([Au25(SR)18]-) as a model of O2 activation by inorganic nanomaterials. Kinetic analyses on the air-oxidation reaction of [Au25(SR)18]- revealed a controlling factor for O2-activation processes, which could be finely tunable by the protecting thiolate ligands.
Collapse
Affiliation(s)
- Wataru Suzuki
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
| | - Ryo Takahata
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
- Integrated Research Consortium on Chemical Sciences Uji Kyoto 611-0011 Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
- Integrated Research Consortium on Chemical Sciences Uji Kyoto 611-0011 Japan
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University 301 Xuefu Road Zhenjiang 212013 China
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School for Science, Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
2
|
Cook EN, Flaxman LA, Reid AG, Dickie DA, Machan CW. Acid Strength Effects on Dimerization during Metal-Free Catalytic Dioxygen Reduction. J Am Chem Soc 2024; 146:24892-24900. [PMID: 39205655 PMCID: PMC11403605 DOI: 10.1021/jacs.4c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Development of earth-abundant catalysts for the reduction of dioxygen (ORR) is essential for the development of alternative industrial processes and energy sources. Here, we report a transition metal-free dicationic organocatalyst (Ph2Phen2+) for the ORR. The ORR performance of this compound was studied in acetonitrile solution under both electrochemical conditions and spectrochemical conditions, using halogenated acetic acid derivatives spanning a pKa range of 12.65 to 20.3. Interestingly, it was found that under electrochemical conditions, a kinetically relevant peroxo dimer species forms with all acids. However, under spectrochemical conditions, strong acids diminish the kinetic contribution of this dimer to the observed rate due to lower catalyst concentrations, whereas weaker acids were still rate-limited by the dimer equilibrium. Together, these results provide insight into the mechanisms of ORR by organic-based, metal-free catalysts, suggesting that balancing redox activity and unsaturated character of these molecules with respect to the pKa of intermediates can enable reaction tuning analogous to transition metal-based systems.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Luke A Flaxman
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Amelia G Reid
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
3
|
Suzuki W, Mizuhata Y, Tokitoh N, Teranishi T. Dioxygen Activation by Gold(I)-Distorted Porphyrin Dinuclear Complexes. Chemistry 2024; 30:e202401242. [PMID: 38888030 DOI: 10.1002/chem.202401242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Interactions between gold-based materials and dioxygen (O2) have motivated researchers to understand reaction mechanisms for O2 activation by homo- and heterogeneous gold catalysts. In this work, gold(I) porphyrin dinuclear complexes were synthesized with a saddle-distorted porphyrin ligand. The gold(I) porphyrin complexes showed unprecedented O2 activation in the presence of protic solvents to form gold(III) tetradentate porphyrin complexes. Mechanistic insights into the O2 activation by the gold(I) center were elucidated by spectroscopic measurements and theoretical calculations, revealing that dissociation of halides on the gold(I) center by alcohol solvents and hydrogen bonding of an N-H proton in the distorted porphyrin with dioxygen played important roles in establishing the unique reactivities of gold(I) complexes.
Collapse
Affiliation(s)
- Wataru Suzuki
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Engineering, University of Hyogo, 2167 Shosha Himeji, Hyogo, 671-2280, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
4
|
Ishizuka T, Grover N, Kingsbury CJ, Kotani H, Senge MO, Kojima T. Nonplanar porphyrins: synthesis, properties, and unique functionalities. Chem Soc Rev 2022; 51:7560-7630. [PMID: 35959748 DOI: 10.1039/d2cs00391k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porphyrins are variously substituted tetrapyrrolic macrocycles, with wide-ranging biological and chemical applications derived from metal chelation in the core and the 18π aromatic surface. Under suitable conditions, the porphyrin framework can deform significantly from regular planar shape, owing to steric overload on the porphyrin periphery or steric repulsion in the core, among other structure modulation strategies. Adopting this nonplanar porphyrin architecture allows guest molecules to interact directly with an exposed core, with guest-responsive and photoactive electronic states of the porphyrin allowing energy, information, atom and electron transfer within and between these species. This functionality can be incorporated and tuned by decoration of functional groups and electronic modifications, with individual deformation profiles adapted to specific key sensing and catalysis applications. Nonplanar porphyrins are assisting breakthroughs in molecular recognition, organo- and photoredox catalysis; simultaneously bio-inspired and distinctly synthetic, these molecules offer a new dimension in shape-responsive host-guest chemistry. In this review, we have summarized the synthetic methods and design aspects of nonplanar porphyrin formation, key properties, structure and functionality of the nonplanar aromatic framework, and the scope and utility of this emerging class towards outstanding scientific, industrial and environmental issues.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Nitika Grover
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Christopher J Kingsbury
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Mathias O Senge
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Lichtenbergstrasse 2a, 85748 Garching, Germany.
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
5
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022; 61:e202208143. [PMID: 35730106 DOI: 10.1002/anie.202208143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/10/2022]
Abstract
A cobalt porphyrin complex with a pendant imidazole base ([(L1 )CoII ]) is an efficient catalyst for the homogeneous catalytic two-electron reduction of dioxygen by 1,1'-dimethylferrocene (Me2 Fc) in the presence of triflic acid (HOTf), as compared with a cobalt porphyrin complex without a pendant imidazole base ([(L2 )CoII ]). The pendant imidazole ligand plays a crucial role not only to provide an imidazolinium proton for proton-coupled electron transfer (PCET) from [(L1 )CoII ] to O2 in the presence of HOTf but also to facilitate electron transfer (ET) from [(L1 )CoII ] to O2 in the absence of HOTf. The kinetics analysis and the detection of intermediates in the stoichiometric and catalytic reduction of O2 have provided clues to clarify the crucial roles of the pendant imidazole ligand of [(L1 )CoII ] for the first time.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ni Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaochao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
6
|
Sugimura H, Nakajima K, Yamashita KI, Ogawa T. 20π Antiaromatic Isophlorins without Metallation or Core Modification. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haruna Sugimura
- Osaka University School of Science Graduate School of Science: Osaka Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Department of Chemistry JAPAN
| | - Kana Nakajima
- Osaka University School of Science Graduate School of Science: Osaka Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Department of Chemistry JAPAN
| | - Ken-ichi Yamashita
- Graduate School of Science, Osaka University Department of Chemistry 1-1 Machikaneyama, Toyonaka 560-0043 Osaka JAPAN
| | - Takuji Ogawa
- Osaka University School of Science Graduate School of Science: Osaka Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Department of Chemistry JAPAN
| |
Collapse
|
7
|
Pushpanandan P, Ravikanth M. Synthesis and Properties of Stable 20π Porphyrinoids. CHEM REC 2022; 22:e202200144. [PMID: 35896952 DOI: 10.1002/tcr.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Indexed: 11/09/2022]
Abstract
The 20π porphyrinoids are immediate higher homologues of 18π porphyrins and differ from porphyrins in aromaticity which in turn affects the structure, properties and chemical reactivities. Research over the years indicated that the 20π porphyrinoids can be stabilized as non-aromatic/anti-aromatic or Mobius aromatic macrocycles using different strategies such as core-modification of porphyrins, non-metal/metal complexation of porphyrins, peripheral modification of porphyrins and expanded porphyrinoids. The structural properties such as aromaticity of the macrocycle can be controlled by choosing the right synthetic strategy. This review will provide an overview of the development in the chemistry of 20π porphyrinoids giving emphasize on the synthesis, structure and electronic properties of these macrocycles which have huge potential for various applications.
Collapse
Affiliation(s)
- Poornenth Pushpanandan
- Department of Chemistry, Indian Institute of Technology Bombay, Macrocyclic Lab, Lab No. 338, 400076, Mumbai, India
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology Bombay, Macrocyclic Lab, Lab No. 338, 400076, Mumbai, India
| |
Collapse
|
8
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jindou Yang
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Ping Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xialiang Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Lisi Xie
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ni Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Lei
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chaochao Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yong-Min Lee
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Weiqiang Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Rui Cao
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Shunichi Fukuzumi
- Osaka University Department of Material and Life Science 2-1 Yamada-oka 565-0871 Suita JAPAN
| | - Wonwoo Nam
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| |
Collapse
|
9
|
Singh G, Chandra S. Unravelling the structural‐property relations of porphyrinoids with respect to photo‐ and electro‐chemical activities. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Gita Singh
- School of Chemistry University College Dublin Dublin 4 Ireland
| | - Sudeshna Chandra
- Department of Chemistry Sunandan Divatia School of Science SVKM's NMIMS (Deemed to be) University Mumbai India
| |
Collapse
|
10
|
Norvaiša K, Maguire S, Donohoe C, O'Brien JE, Twamley B, Gomes-da-Silva LC, Senge MO. Steric Repulsion Induced Conformational Switch in Supramolecular Structures. Chemistry 2021; 28:e202103879. [PMID: 34792217 PMCID: PMC9299809 DOI: 10.1002/chem.202103879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/24/2022]
Abstract
Inspired by the rigidified architecture of ‘picket‐fence’ systems, we propose a strategy utilizing strain to impose intramolecular tension in already peripherally overcrowded structures leading to selective atropisomeric conversion. Employing this approach, tuneable shape‐persistent porphyrin conformations were acquired exhibiting distinctive supramolecular nanostructures based on the orientation of the peripheral groups. The intrinsic assemblies driven by non‐covalent bonding interactions form supramolecular polymers while encapsulating small molecules in parallel channels or solvent‐accessible voids. The developed molecular strain engineering methodologies combined with synthetic approaches have allowed the introduction of the pivalate units creating a highly strained molecular skeleton. Changes in the absorption spectrum indicated the presence of severe steric repulsions between the peripheral groups which were confirmed by single crystal X‐ray analysis. To release the steric strain introduced by the peripheral units, thermal equilibration strategies were used to selectively convert the most abundant atropisomer to the desirable minor one.
Collapse
Affiliation(s)
- Karolis Norvaiša
- School of Chemistry, Chair of Organic Chemistry Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, D02 R590, Dublin 2, Ireland
| | - Sophie Maguire
- School of Chemistry, Chair of Organic Chemistry Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, D02 R590, Dublin 2, Ireland
| | - Claire Donohoe
- School of Chemistry, Chair of Organic Chemistry Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, D02 R590, Dublin 2, Ireland.,CQC, Coimbra Chemistry Center Department of Chemistry, University of Coimbra, 3000-435, Coimbra, Portugal
| | - John E O'Brien
- School of Chemistry Trinity College Dublin, The University of Dublin, D02 PN40, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin, The University of Dublin, D02 PN40, Dublin 2, Ireland
| | - Ligia C Gomes-da-Silva
- CQC, Coimbra Chemistry Center Department of Chemistry, University of Coimbra, 3000-435, Coimbra, Portugal
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry Trinity Biomedical Sciences Institute Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, D02 R590, Dublin 2, Ireland.,Institute for Advanced Study (TUM-IAS) Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenbergstrasse 2a, D-85748, Garching, Germany
| |
Collapse
|
11
|
Norvaiša K, Yeow K, Twamley B, Roucan M, Senge MO. Strategic Synthesis of 'Picket Fence' Porphyrins Based on Nonplanar Macrocycles. European J Org Chem 2021; 2021:1871-1882. [PMID: 33889056 PMCID: PMC8048935 DOI: 10.1002/ejoc.202100154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Indexed: 12/31/2022]
Abstract
Traditional 'picket fence' porphyrin systems have been a topic of interest for their capacity to direct steric shielding effects selectively to one side of the macrocycle. Sterically overcrowded porphyrin systems that adopt macrocycle deformations have recently drawn attention for their applications in organocatalysis and sensing. Here we explore the combined benefits of nonplanar porphyrins and the old molecular design to bring new concepts to the playing field. The challenging ortho-positions of meso-phenyl residues in dodecasubstituted porphyrin systems led us to transition to less hindered para- and meta-sites and develop selective demethylation based on the steric interplay. Isolation of the symmetrical target compound [2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(3,5-dipivaloyloxyphenyl)porphyrin] was investigated under two synthetic pathways. The obtained insight was used to isolate unsymmetrical [2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(2-nitro-5-pivaloyloxyphenyl)porphyrin]. Upon separation of the atropisomers, a detailed single-crystal X-ray crystallographic analysis highlighted intrinsic intermolecular interactions. The nonplanarity of these systems in combination with 'picket fence' motifs provides an important feature in the design of supramolecular ensembles.
Collapse
Affiliation(s)
- Karolis Norvaiša
- Chair of Organic ChemistrySchool of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin2Ireland
| | - Kathryn Yeow
- Chair of Organic ChemistrySchool of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin2Ireland
| | - Brendan Twamley
- School of ChemistryTrinity College DublinThe University of DublinDublin2Ireland
| | - Marie Roucan
- Chair of Organic ChemistrySchool of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin2Ireland
| | - Mathias O. Senge
- Chair of Organic ChemistrySchool of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin2Ireland
- Institute for Advanced Study (TUM-IAS)Technical University of MunichLichtenbergstrasse 2a85748GarchingGermany
| |
Collapse
|
12
|
|
13
|
Norvaiša K, O'Brien JE, Gibbons DJ, Senge MO. Elucidating Atropisomerism in Nonplanar Porphyrins with Tunable Supramolecular Complexes. Chemistry 2020; 27:331-339. [PMID: 33405259 PMCID: PMC7839692 DOI: 10.1002/chem.202003414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Atropisomerism is a fundamental feature of substituted biaryls resulting from rotation around the biaryl axis. Different stereoisomers are formed due to restricted rotation about the single bond, a situation often found in substituted porphyrins. Previously NMR determination of porphyrin atropisomers proved difficult, if not almost impossible to accomplish, due to low resolution or unresolvable resonance signals that predominantly overlapped. Here, we shed some light on this fundamental issue found in porphyrinoid stereochemistry. Using benzenesulfonic acid (BSA) for host‐guest interactions and performing 1D, 2D NMR spectroscopic analyses, we were able to characterize all four rotamers of the nonplanar 5,10,15,20‐tetrakis(2‐aminophenyl)‐2,3,7,8,12,13,17,18‐octaethylporphyirin as restricted H‐bonding complexes. Additionally, X‐ray structural analysis was used to investigate aspects of the weak host–guest interactions. A detailed assignment of the chemical signals suggests charge‐assisted complexation as a key to unravel the atropisomeric enigma. From a method development perspective, symmetry operations unique to porphyrin atropisomers offer an essential handle to accurately identify the rotamers using NMR techniques only.
Collapse
Affiliation(s)
- Karolis Norvaiša
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - John E O'Brien
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Dáire J Gibbons
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Mathias O Senge
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland.,Institute for Advanced Study (TUM-IAS), Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
| |
Collapse
|
14
|
Suzuki W, Kotani H, Ishizuka T, Kojima T. A Mechanistic Dichotomy in Two-Electron Reduction of Dioxygen Catalyzed by N,N'-Dimethylated Porphyrin Isomers. Chemistry 2020; 26:10480-10486. [PMID: 32329533 DOI: 10.1002/chem.202000942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2020] [Indexed: 12/13/2022]
Abstract
Selective two-electron reduction of dioxygen (O2 ) to hydrogen peroxide (H2 O2 ) has been achieved by two saddle-distorted N,N'-dimethylated porphyrin isomers, an N21,N'22-dimethylated porphyrin (anti-Me2 P) and an N21,N'23-dimethylated porphyrin (syn-Me2 P) as catalysts and ferrocene derivatives as electron donors in the presence of protic acids in acetonitrile. The higher catalytic performance in an oxygen reduction reaction (ORR) was achieved by anti-Me2 P with higher turnover number (TON=250 for 30 min) than that by syn-Me2 P (TON=218 for 60 min). The reactive intermediates in the catalytic ORR were confirmed to be the corresponding isophlorins (anti-Me2 Iph or syn-Me2 Iph) by spectroscopic measurements. The rate-determining step in the catalytic ORRs was concluded to be proton-coupled electron-transfer reduction of O2 with isophlorins based on kinetic analysis. The ORR rate by anti-Me2 Iph was accelerated by external protons, judging from the dependence of the observed initial rates on acid concentrations. In contrast, no acceleration of the ORR rate with syn-Me2 Iph by external protons was observed. The different mechanisms in the O2 reduction by the two isomers should be derived from that of the arrangement of hydrogen bonding of a O2 with inner NH protons of the isophlorins.
Collapse
Affiliation(s)
- Wataru Suzuki
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
15
|
Transition‐Metal Phosphide/Sulfide Nanocomposites for Effective Electrochemical Non‐Enzymatic Detection of Hydrogen Peroxide. ChemElectroChem 2020. [DOI: 10.1002/celc.202000867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Yamashita KI, Nakajima K, Honda Y, Ogawa T. Facile Redox-Induced Aromatic-Antiaromatic Interconversion of a β-Tetracyano-21,23-Dithiaporphyrin under Ambient Conditions. Chemistry 2020; 26:3633-3640. [PMID: 31880373 DOI: 10.1002/chem.201905823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 01/12/2023]
Abstract
Facile redox-induced aromatic-antiaromatic interconversions were accomplished by using β-tetracyano-21,23-dithiaporphyrin (CN4 S2 Por). Introduced cyano groups not only increased the reduction potential of the porphyrin core but also stabilized the antiaromatic isophlorin (CN4 S2 Iph) by π conjugation. The reduction of CN4 S2 Por with hydrazine in polar solvents quantitatively affords CN4 S2 Iph, even under ambient conditions. CN4 S2 Iph retains a nearly planar conformation and exhibits considerable antiaromaticity. Aerobic oxidation of CN4 S2 Iph to CN4 S2 Por occurs in nonpolar solvents. This study was conducted to contribute to the understanding of the structure-antiaromaticity relationship.
Collapse
Affiliation(s)
- Ken-Ichi Yamashita
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kana Nakajima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yusuke Honda
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takuji Ogawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
17
|
Norvaiša K, Flanagan KJ, Gibbons D, Senge MO. Konformativer Umbau von Porphyrinen als Rezeptoren mit schaltbaren N‐H⋅⋅⋅X‐Bindungsmodi. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Karolis Norvaiša
- School of Chemistry SFI Tetrapyrrole Laboratory Trinity Biomedical Sciences Institute Trinity College Dublin The University of Dublin 152–160 Pearse Street Dublin 2 Irland
| | - Keith J. Flanagan
- School of Chemistry SFI Tetrapyrrole Laboratory Trinity Biomedical Sciences Institute Trinity College Dublin The University of Dublin 152–160 Pearse Street Dublin 2 Irland
| | - Dáire Gibbons
- School of Chemistry SFI Tetrapyrrole Laboratory Trinity Biomedical Sciences Institute Trinity College Dublin The University of Dublin 152–160 Pearse Street Dublin 2 Irland
| | - Mathias O. Senge
- School of Chemistry SFI Tetrapyrrole Laboratory Trinity Biomedical Sciences Institute Trinity College Dublin The University of Dublin 152–160 Pearse Street Dublin 2 Irland
- Institute for Advanced Study (TUM-IAS) Technische Universität München Lichtenberg-Str. 2a 85748 Garching Deutschland
| |
Collapse
|
18
|
Norvaiša K, Flanagan KJ, Gibbons D, Senge MO. Conformational Re-engineering of Porphyrins as Receptors with Switchable N-H⋅⋅⋅X-Type Binding Modes. Angew Chem Int Ed Engl 2019; 58:16553-16557. [PMID: 31412154 PMCID: PMC6899560 DOI: 10.1002/anie.201907929] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Indexed: 11/07/2022]
Abstract
The selectivity and functional variability of porphyrin cofactors are typically based on substrate binding of metalloporphyrins wherein the pyrrole nitrogen units only serve to chelate the metal ions. Yet, using the porphyrin inner core system for other functions is possible through conformational engineering. As a first step towards porphyrin “enzyme‐like” active centers, a structural and spectroscopic study of substrate binding to the inner core porphyrin system shows that a highly saddle‐distorted porphyrin with peripheral amino receptor groups (1, 2,3,7,8,12,13,17,18‐octaethyl‐5,10,15,20‐tetrakis(2‐aminophenyl)porphyrin) coordinates analytes in a switchable manner dependent on the acidity of the solution. The supramolecular ensemble exhibits exceptionally high affinity to and selectivity for the pyrophosphate anion (2.26±0.021)×109
m−1. 1H NMR spectroscopic studies provided insight into the likely mode of binding and the characterization of atropisomers, all four of which were also studied by X‐ray crystallography.
Collapse
Affiliation(s)
- Karolis Norvaiša
- School of ChemistrySFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin 2Ireland
| | - Keith J. Flanagan
- School of ChemistrySFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin 2Ireland
| | - Dáire Gibbons
- School of ChemistrySFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin 2Ireland
| | - Mathias O. Senge
- School of ChemistrySFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152–160 Pearse StreetDublin 2Ireland
- Institute for Advanced Study (TUM-IAS)Technische Universität MünchenLichtenberg-Str. 2a85748GarchingGermany
| |
Collapse
|