1
|
Emerging two-dimensional metallenes: Recent advances in structural regulations and electrocatalytic applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
The contribution of water molecules to the hydrogen evolution reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Liu M, Lu B, Yang G, Yuan P, Xia H, Wang Y, Guo K, Zhao S, Liu J, Yu Y, Yan W, Dong C, Zhang J, Mu S. Concave Pt-Zn Nanocubes with High-Index Faceted Pt Skin as Highly Efficient Oxygen Reduction Catalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200147. [PMID: 35199956 PMCID: PMC9036018 DOI: 10.1002/advs.202200147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 06/02/2023]
Abstract
High dosage of expensive Pt to catalyze the sluggish oxygen reduction reaction (ORR) on the cathode severely impedes the commercialization of proton exchange membrane fuel cells. Therefore, it is urgent to cut down the Pt catalyst by efficiently improving the ORR activity while maintaining high durability. Herein, magic concave Pt-Zn nanocubes with high-index faceted Pt skin (Pt78 Zn22 ) are proposed for high-efficiency catalysis toward proton exchange membrane fuel cells. These unique structural features endow the Pt-skin Pt78 Zn22 /KB with a mass activity of 1.18 mA μgPt -1 and a specific activity of 3.64 mA cm-2 for the ORR at 0.9 V (vs RHE). Meanwhile, the H2 -O2 fuel cell assembled by this catalyst delivers an ultrahigh peak power density of ≈1449 mW cm-2 . Both experiments and theoretical calculations show that the electronic structure of the surface is adjusted, thereby shortening the length of the Pt-Pt bond and reducing the adsorption energy of OH*/O* on the Pt surface. This work demonstrates the synergistic effect of the oxidation-resistant metal Zn and the construction of Pt-rich surface engineering. Also, it guides the future development of catalysts for their practical applications in energy conversion technologies and beyond.
Collapse
Affiliation(s)
- Mengli Liu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Bang‐An Lu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Gege Yang
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Pengfei Yuan
- International Joint Research Laboratory for Quantum Functional Materials of Henan Provinceand School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450000P. R. China
| | - Huicong Xia
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Yajin Wang
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Kai Guo
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Shuyan Zhao
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Jia Liu
- Shanghai Hydrogen Propulsion Technology Co., Ltd.Shanghai200000P. R. China
| | - Yue Yu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis & Preparative ChemistryJilin UniversityChangchun130000P. R. China
| | - Chung‐Li Dong
- Department of PhysicsTamkang UniversityNew Taipei CityTaiwan
| | - Jia‐Nan Zhang
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| |
Collapse
|
4
|
Zhang X, Su X, Zheng Y, Hu S, Shi L, Gao F, Yang P, Niu Z, Wu Z, Qin S, Wu R, Duan Y, Gu C, Zheng X, Zhu J, Gao M. Strongly Coupled Cobalt Diselenide Monolayers for Selective Electrocatalytic Oxygen Reduction to H
2
O
2
under Acidic Conditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiao‐Long Zhang
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute, CAS Shanghai 201210 China
| | - Ya‐Rong Zheng
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Shao‐Jin Hu
- Division of Theoretical and Computational Sciences Hefei National Laboratory for Physical Sciences at Microscale CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics University of Science and Technology of China Hefei 230026 China
| | - Lei Shi
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Fei‐Yue Gao
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Peng‐Peng Yang
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Zhuang‐Zhuang Niu
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Zhi‐Zheng Wu
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Shuai Qin
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Rui Wu
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Yu Duan
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Chao Gu
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Xu‐Sheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 China
| | - Jun‐Fa Zhu
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 China
| | - Min‐Rui Gao
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
5
|
Zhang XL, Su X, Zheng YR, Hu SJ, Shi L, Gao FY, Yang PP, Niu ZZ, Wu ZZ, Qin S, Wu R, Duan Y, Gu C, Zheng XS, Zhu JF, Gao MR. Strongly Coupled Cobalt Diselenide Monolayers for Selective Electrocatalytic Oxygen Reduction to H 2 O 2 under Acidic Conditions. Angew Chem Int Ed Engl 2021; 60:26922-26931. [PMID: 34553478 DOI: 10.1002/anie.202111075] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/11/2022]
Abstract
Electrosynthesis of hydrogen peroxide (H2 O2 ) in the acidic environment could largely prevent its decomposition to water, but efficient catalysts that constitute entirely earth-abundant elements are lacking. Here we report the experimental demonstration of narrowing the interlayer gap of metallic cobalt diselenide (CoSe2 ), which creates high-performance catalyst to selectively drive two-electron oxygen reduction toward H2 O2 in an acidic electrolyte. The enhancement of the interlayer coupling between CoSe2 atomic layers offers a favorable surface electronic structure that weakens the critical *OOH adsorption, promoting the energetics for H2 O2 production. Consequently, on the strongly coupled CoSe2 catalyst, we achieved Faradaic efficiency of 96.7 %, current density of 50.04 milliamperes per square centimeter, and product rate of 30.60 mg cm-2 h-1 . Moreover, this catalyst shows no sign of degradation when operating at -63 milliamperes per square centimeter over 100 hours.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, 201210, China
| | - Ya-Rong Zheng
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shao-Jin Hu
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Shi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shuai Qin
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Rui Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Duan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Gu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xu-Sheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Jun-Fa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Wang S, Zhu E, Huang Y, Heinz H. Direct correlation of oxygen adsorption on platinum-electrolyte interfaces with the activity in the oxygen reduction reaction. SCIENCE ADVANCES 2021; 7:eabb1435. [PMID: 34108201 PMCID: PMC8189588 DOI: 10.1126/sciadv.abb1435] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2021] [Indexed: 05/24/2023]
Abstract
The oxygen reduction reaction (ORR) on platinum catalysts is essential in fuel cells. Quantitative predictions of the relative ORR activity in experiments, in the range of 1 to 50 times, have remained challenging because of incomplete mechanistic understanding and lack of computational tools to account for the associated small differences in activation energies (<2.3 kilocalories per mole). Using highly accurate molecular dynamics (MD) simulation with the Interface force field (0.1 kilocalories per mole), we elucidated the mechanism of adsorption of molecular oxygen on regular and irregular platinum surfaces and nanostructures, followed by local density functional theory (DFT) calculations. The relative ORR activity is determined by oxygen access to platinum surfaces, which greatly depends on specific water adlayers, while electron transfer occurs at a similar slow rate. The MD methods facilitate quantitative predictions of relative ORR activities of any platinum nanostructures, are applicable to other catalysts, and enable effective MD/DFT approaches.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Enbo Zhu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
7
|
Tian X, Zhao X, Su YQ, Wang L, Wang H, Dang D, Chi B, Liu H, Hensen EJM, Lou XWD, Xia BY. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2020; 366:850-856. [PMID: 31727830 DOI: 10.1126/science.aaw7493] [Citation(s) in RCA: 527] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/09/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Development of efficient and robust electrocatalysts is critical for practical fuel cells. We report one-dimensional bunched platinum-nickel (Pt-Ni) alloy nanocages with a Pt-skin structure for the oxygen reduction reaction that display high mass activity (3.52 amperes per milligram platinum) and specific activity (5.16 milliamperes per square centimeter platinum), or nearly 17 and 14 times higher as compared with a commercial platinum on carbon (Pt/C) catalyst. The catalyst exhibits high stability with negligible activity decay after 50,000 cycles. Both the experimental results and theoretical calculations reveal the existence of fewer strongly bonded platinum-oxygen (Pt-O) sites induced by the strain and ligand effects. Moreover, the fuel cell assembled by this catalyst delivers a current density of 1.5 amperes per square centimeter at 0.6 volts and can operate steadily for at least 180 hours.
Collapse
Affiliation(s)
- Xinlong Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Xiao Zhao
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Ya-Qiong Su
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Lijuan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
| | - Hongming Wang
- Institute for Advanced Study, Nanchang University, 999 Xuefu Road, Nanchang, PR China
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Bin Chi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
8
|
Jiang F, Zhu F, Yang F, Yan X, Wu A, Luo L, Li X, Zhang J. Comparative Investigation on the Activity Degradation Mechanism of Pt/C and PtCo/C Electrocatalysts in PEMFCs during the Accelerate Degradation Process Characterized by an in Situ X-ray Absorption Fine Structure. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- FangLing Jiang
- Institute of Cells, Shanghai Jiao Tong University, Shanghai 200240, Peoples R China
| | - FengJuan Zhu
- Institute of Cells, Shanghai Jiao Tong University, Shanghai 200240, Peoples R China
| | - Fan Yang
- Institute of Cells, Shanghai Jiao Tong University, Shanghai 200240, Peoples R China
| | - XiaoHui Yan
- Institute of Cells, Shanghai Jiao Tong University, Shanghai 200240, Peoples R China
| | - AiMing Wu
- Institute of Cells, Shanghai Jiao Tong University, Shanghai 200240, Peoples R China
| | - LiuXuan Luo
- Institute of Cells, Shanghai Jiao Tong University, Shanghai 200240, Peoples R China
| | - XiaoLin Li
- Institute of Cells, Shanghai Jiao Tong University, Shanghai 200240, Peoples R China
| | - JunLiang Zhang
- Institute of Cells, Shanghai Jiao Tong University, Shanghai 200240, Peoples R China
| |
Collapse
|