1
|
Xu W, Zhang H, Zhou Y, Lu T, Li Y, Zhu Y, Wei C, Zheng J, Li R, Li J, Chen L, Zhang G, Shi J, Liu J, Zhang D, Hong W. Supramolecular Diodes with Donor-Acceptor Interactions. J Am Chem Soc 2025; 147:5879-5886. [PMID: 39918352 DOI: 10.1021/jacs.4c14656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Inspired by the initial proposal of σ-bridged donor-acceptor (D-σ-A) single-molecule diodes in 1974, extensive studies over the past 50 years have explored various designs for π-conjugated D-π-A single-molecule diodes due to their feasible chemical synthesis and effective charge transfer. However, the rectification ratio of π-conjugated single-molecule diodes has been long-term limited by the challenge of asymmetric electronic coupling to induce the rectification effect. Here, we present a supramolecular diode constructed through an intramolecular π-π interaction-driven assembly strategy. The asymmetric transmission in this system is tunable via subangström mechanical control, resulting in a rectification ratio of up to 16. Electron transport studies reveal that this through-space D-π-π-A system constructed by the π-π stacking between pyrene (Py) and naphthalenediimide (NDI) is crucial for achieving asymmetric currents under different bias polarization. Theoretical calculations suggest that the intermolecular destructive quantum interference not only enables a sharp variation in electron transmission but also facilitates asymmetric electronic energy shifts through mechanical stretching, significantly improving the rectification ratio. Our work provides a general approach to fabricating and modulating asymmetric molecular architectures through noncovalent supramolecular interactions, showcasing the potential of high-performance single-molecule rectifiers.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Taige Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Yuting Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Yixuan Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Caiyun Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Ruihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Jing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
2
|
Li J, Liu C, Wang J, Liu C, Zhao C, Ren J, Huang H, Wang Y, Zhang Q, Dappe YJ, Nichols RJ, Yang L. Multi-stimuli actuation of a photoresponsive azobenzene based molecular switch. NANOSCALE 2025; 17:2147-2161. [PMID: 39655484 DOI: 10.1039/d4nr03312d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
There has been considerable interest in building switching functions into self-assembled monolayers with switching actuated by external stimuli such as light, electrical current, heat, pressure or chemical changes. In this study, dual switching functionality has been built into azobenzene based molecular monolayers. Switching behaviour has been compared for unsubstituted azobenzene monolayer adsorbates and two other monolayers whose ortho position on the terminal phenyl group is substituted by ethyl and isopropyl chains, respectively. The dual molecular switching functionality with light or protonation actuation is compared. EGaIn contacts to the monolayers have been used to record the J-V curves and characterize the on/off switching. This is complemented with further characterization by transition voltage spectroscopy (TVS), ultraviolet photoelectron spectroscopy (UPS), water contact angle determination, atomic force microscopy (AFM) and theoretical computations. It is concluded that side chains (the ethyl and isopropyl groups) are able to decouple neighbouring azobenzene adsorbates which promotes the photo-efficiency of isomerisation and switching. In addition, acid treatment is also applied to these three molecular layers to try to achieve dual stimuli actuation. The absorption wavelength of the azobenzene moiety red shifts by ∼100 nm for all the three protonated molecules. In the case of the unsubstituted azobenzene, its triggering wavelength is totally reversed once it is protonated. A logic truth table has been constructed for the SAM device, which shows that the simple azobenzene molecular layers exhibit the behaviour of an 'AND' logic gate which uses blue light and acid as two inputs.
Collapse
Affiliation(s)
- Jianbo Li
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Chang Liu
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Jinyan Wang
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- School of Robotics, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
| | - Chenguang Liu
- School of Robotics, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
| | - Chun Zhao
- School of Robotics, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
| | - Jiawei Ren
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Hailian Huang
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Yijia Wang
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Qian Zhang
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Yannick J Dappe
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Li Yang
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China.
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| |
Collapse
|
3
|
Wang H, Hu F, Adijiang A, Emusani R, Zhang J, Hu Q, Guo X, Lee T, Chen L, Xiang D. Gating the Rectifying Direction of Tunneling Current through Single-Molecule Junctions. J Am Chem Soc 2024; 146:35347-35355. [PMID: 39668520 DOI: 10.1021/jacs.4c13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In electronic functional chips, one of the most crucial components is the field-effect transistor (FET). To meet the urgent demands for further miniaturization of electronic devices, solid-state single-molecule transistors by molecular orbital gating have been extensively reported. However, under negative bias and positive bias, achieving a distinct gating effect is extremely challenging because molecular orbital gating is independent of the bias polarity. Here, we demonstrated that rectifiers can be realized in single-molecule junctions with a symmetric molecular structure and an electrode material by simply breaking the symmetry of the electrode's chemical potential via ionic adsorption. We further demonstrated that the tunneling current can be gated with opposite change tendencies under negative and positive bias by applying an ionic gating voltage, which eventually results in a reversal of the rectifying direction. Our experiments elucidate that, unlike the classical mechanism for solid molecular FET, the modulation of the electrode's chemical potential, rather than the regulation of molecular orbitals, might dominate the electron transport in the ionic liquid environment upon a gating voltage. Our study gains deeper insights into the mechanism of ionic liquid gating and opens a window for designing high-performance electrochemical-based functional devices.
Collapse
Affiliation(s)
- Haoyu Wang
- Institute of Modern Optics and Center of Single-Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Fenglu Hu
- Institute of Modern Optics and Center of Single-Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Adila Adijiang
- Institute of Modern Optics and Center of Single-Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Ramya Emusani
- Institute of Modern Optics and Center of Single-Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Jieyi Zhang
- Institute of Modern Optics and Center of Single-Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Qihong Hu
- Institute of Modern Optics and Center of Single-Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xuefeng Guo
- Institute of Modern Optics and Center of Single-Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Takhee Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Lichuan Chen
- Institute of Modern Optics and Center of Single-Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Dong Xiang
- Institute of Modern Optics and Center of Single-Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Li Y, Xie J, Sun L, Zeng J, Zhou L, Hao Z, Pan L, Ye J, Wang P, Li Y, Xu J, Shi Y, Wang X, He D. Monolayer Organic Crystals for Ultrahigh Performance Molecular Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305100. [PMID: 38145961 PMCID: PMC10933607 DOI: 10.1002/advs.202305100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Molecular diodes are of considerable interest for the increasing technical demands of device miniaturization. However, the molecular diode performance remains contact-limited, which represents a major challenge for the advancement of rectification ratio and conductance. Here, it is demonstrated that high-quality ultrathin organic semiconductors can be grown on several classes of metal substrates via solution-shearing epitaxy, with a well-controlled number of layers and monolayer single crystal over 1 mm. The crystals are atomically smooth and pinhole-free, providing a native interface for high-performance monolayer molecular diodes. As a result, the monolayer molecular diodes show record-high rectification ratio up to 5 × 108 , ideality factor close to unity, aggressive unit conductance over 103 S cm-2 , ultrahigh breakdown electric field, excellent electrical stability, and well-defined contact interface. Large-area monolayer molecular diode arrays with 100% yield and excellent uniformity in the diode metrics are further fabricated. These results suggest that monolayer molecular crystals have great potential to build reliable, high-performance molecular diodes and deeply understand their intrinsic electronic behavior.
Collapse
Affiliation(s)
- Yating Li
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Jiacheng Xie
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Li Sun
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Junpeng Zeng
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Liqi Zhou
- National Laboratory of Solid‐State MicrostructuresJiangsu Key Laboratory of Artificial Functional MaterialsCollege of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023China
| | - Ziqian Hao
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Lijia Pan
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Jiandong Ye
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Peng Wang
- Department of PhysicsUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - Yun Li
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Jian‐Bin Xu
- Department of Electronic Engineering and Materials Science and Technology Research CenterThe Chinese University of Hong KongHong Kong999077China
| | - Yi Shi
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Xinran Wang
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
- School of Integrated CircuitsNanjing UniversitySuzhou215163China
| | - Daowei He
- National Laboratory of Solid‐State MicrostructuresSchool of Electronic Science and EngineeringKey Lab of Optoelectronic Devices and Systems with Extreme Performances and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
| |
Collapse
|
5
|
Li Z, Chen Z, Shi Z, Zou G, Chu L, Chen XK, Zhang C, So SK, Yip HL. Charge injection engineering at organic/inorganic heterointerfaces for high-efficiency and fast-response perovskite light-emitting diodes. Nat Commun 2023; 14:6441. [PMID: 37833266 PMCID: PMC10575909 DOI: 10.1038/s41467-023-41929-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The development of advanced perovskite emitters has considerably improved the performance of perovskite light-emitting diodes (LEDs). However, the further development of perovskite LEDs requires ideal device electrical properties, which strongly depend on its interfaces. In perovskite LEDs with conventional p-i-n structures, hole injection is generally less efficient than electron injection, causing charge imbalance. Furthermore, the popular hole injection structure of NiOx/poly(9-vinylcarbazole) suffers from several issues, such as weak interfacial adhesion, high interfacial trap density and mismatched energy levels. In this work, we insert a self-assembled monolayer of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid between the NiOx and poly(9-vinylcarbazole) layers to overcome these challenges at the organic/inorganic heterointerfaces by establishing a robust interface, passivating interfacial trap states and aligning the energy levels. We successfully demonstrate blue (emission at 493 nm) and green (emission at 515 nm) devices with external quantum efficiencies of 14.5% and 26.0%, respectively. More importantly, the self-assembled monolayer also gives rise to devices with much faster response speeds by reducing interfacial capacitance and resistance. Our results pave the way for developing more efficient and brighter perovskite LEDs with quick response, widening their potential application scope.
Collapse
Affiliation(s)
- Zhenchao Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
- State Key Laboratory of Advanced Materials and Electronic Components, Guangdong Fenghua Advanced Technology Holding Co. Ltd., Zhaoqing, Guangdong, 526020, China
| | - Ziming Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China.
- Department of Chemistry and Centre for Processible Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Zhangsheng Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Guangruixing Zou
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Linghao Chu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Xian-Kai Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
- Hong Kong Institute for Advanced Study, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, PR China.
| | - Chujun Zhang
- Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, 999077, Hong Kong SAR, P.R. China
| | - Shu Kong So
- Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, 999077, Hong Kong SAR, P.R. China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China.
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Peng W, Chen N, Wang C, Xie Y, Qiu S, Li S, Zhang L, Li Y. Fine-Tuning the Molecular Design for High-Performance Molecular Diodes Based on Pyridyl Isomers. Angew Chem Int Ed Engl 2023; 62:e202307733. [PMID: 37401826 DOI: 10.1002/anie.202307733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Better control of molecule-electrode coupling (Γ) to minimize leakage current is an effective method to optimize the functionality of molecular diodes. Herein we embedded 5 isomers of phenypyridyl derivatives, each with an N atom placed at a different position, in two electrodes to fine-tune Γ between self-assembled monolayers (SAMs) and the top electrode of EGaIn (eutectic Ga-In terminating in Ga2 O3 ). Combined with electrical tunnelling results, characterizations of electronic structures, single-level model fittings, and DFT calculations, we found that the values of Γ of SAMs formed by these isomers could be regulated by nearly 10 times, thereby contributing to the leakage current changing over about two orders of magnitude and switching the isomers from resistors to diodes with a rectification ratio (r+ =|J(+1.5 V)/J(-1.5 V)|) exceeding 200. We demonstrated that the N atom placement can be chemically engineered to tune the resistive and rectifying properties of the molecular junctions, making it possible to convert molecular resistors into rectifiers. Our study provides fundamental insights into the role of isomerism in molecular electronics and offers a new avenue for designing functional molecular devices.
Collapse
Affiliation(s)
- Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Caiyun Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shengzhe Qiu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuwei Li
- Center for Combustion Energy, Tsinghua University, Beijing, 100084, China
- School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Liang Zhang
- Center for Combustion Energy, Tsinghua University, Beijing, 100084, China
- School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Nguyen QV, Thi HL, Truong GL. Chemical Conformation Induced Transport Carrier Switching in Molecular Junction based on Carboxylic-Terminated Thiol Molecules. NANO LETTERS 2022; 22:10147-10153. [PMID: 36475760 DOI: 10.1021/acs.nanolett.2c04031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The paper demonstrates the effect of the chemical conformation of the -COOH group on the transport characteristic including conductance, rectification, and length effect in molecular junctions (MJs) formed by self-assembled monolayers of carboxylic-terminated thiol molecules. For an alkyl chain shorter than C11, the transport mechanism was attributed to a direct off-resonant tunneling of a hole carrier, located at the Au-S interface, whereas a hopping mechanism was assigned to the alkyl chain longer than the C11 chain located at the -COOH group. The hopping mechanism may be operated by electron transport associated with the breaking of the -OH bonding likely driven by a voltage. Importantly, at the C11 alkyl chain, we observed that the transport carrier operating in MJs could change from a hole carrier into an electron carrier. The result strongly proves that the chemical conformation should be considered in analyzing molecular electronics and provides a basis for the rational design of molecular electronic devices.
Collapse
Affiliation(s)
- Quyen Van Nguyen
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Huong Le Thi
- Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| | - Giang Le Truong
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam
| |
Collapse
|
8
|
Huez C, Guérin D, Lenfant S, Volatron F, Calame M, Perrin ML, Proust A, Vuillaume D. Redox-controlled conductance of polyoxometalate molecular junctions. NANOSCALE 2022; 14:13790-13800. [PMID: 36102689 DOI: 10.1039/d2nr03457c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We demonstrate the reversible in situ photoreduction of molecular junctions of a phosphomolybdate [PMo12O40]3- monolayer self-assembled on flat gold electrodes, connected by the tip of a conductive atomic force microscope. The conductance of the one electron reduced [PMo12O40]4- molecular junction is increased by ∼10, and this open-shell state is stable in the junction in air at room temperature. The analysis of a large current-voltage dataset by unsupervised machine learning and clustering algorithms reveals that the electron transport in the pristine phosphomolybdate junctions leads to symmetric current-voltage curves, controlled by the lowest unoccupied molecular orbital (LUMO) at 0.6-0.7 eV above the Fermi energy with ∼25% of the junctions having a better electronic coupling to the electrodes than the main part of the dataset. This analysis also shows that a small fraction (∼18% of the dataset) of the molecules is already reduced. The UV light in situ photoreduced phosphomolybdate junctions systematically feature slightly asymmetric current-voltage behaviors, which is ascribed to the electron transport mediated by the single occupied molecular orbital (SOMO) nearly at resonance with the Fermi energy of the electrodes and by a closely located single unoccupied molecular orbital (SUMO) at ∼0.3 eV above the SOMO with a weak electronic coupling to the electrodes (∼50% of the dataset) or at ∼0.4 eV but with a better electrode coupling (∼50% of the dataset). These results shed light on the electronic properties of reversible switchable redox polyoxometalates, a key point for potential applications in nanoelectronic devices.
Collapse
Affiliation(s)
- Cécile Huez
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - David Guérin
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Stéphane Lenfant
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| | - Florence Volatron
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Michel Calame
- EMPA, Transport at the Nanoscale Laboratory, 8600 Dübendorf, Switzerland
- Dept. of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Mickael L Perrin
- EMPA, Transport at the Nanoscale Laboratory, 8600 Dübendorf, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Anna Proust
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Dominique Vuillaume
- Institute for Electronics Microelectronics and Nanotechnology (IEMN), CNRS, University of Lille, Av. Poincaré, Villeneuve d'Ascq, France.
| |
Collapse
|
9
|
Wang Z, Palma JL, Wang H, Liu J, Zhou G, Ajayakumar MR, Feng X, Wang W, Ulstrup J, Kornyshev AA, Li Y, Tao N. Electrochemically controlled rectification in symmetric single-molecule junctions. Proc Natl Acad Sci U S A 2022; 119:e2122183119. [PMID: 36136968 PMCID: PMC9522371 DOI: 10.1073/pnas.2122183119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule electrochemical science has advanced over the past decades and now extends well beyond molecular imaging, to molecular electronics functions such as rectification and amplification. Rectification is conceptually the simplest but has involved mostly challenging chemical synthesis of asymmetric molecular structures or asymmetric materials and geometry of the two enclosing electrodes. Here we propose an experimental and theoretical strategy for building and tuning in situ (in operando) rectification in two symmetric molecular structures in electrochemical environment. The molecules were designed to conduct electronically via either their lowest unoccupied molecular orbital (LUMO; electron transfer) or highest occupied molecular orbital (HOMO; "hole transfer"). We used a bipotentiostat to control separately the electrochemical potential of the tip and substrate electrodes of an electrochemical scanning tunneling microscope (EC-STM), which leads to independent energy alignment of the STM tip, the molecule, and the STM substrate. By creating an asymmetric energy alignment, we observed single-molecule rectification of each molecule within a voltage range of ±0.5 V. By varying both the dominating charge transporting LUMO or HOMO energy and the electrolyte concentration, we achieved tuning of the polarity as well as the amplitude of the rectification. We have extended an earlier proposed theory that predicts electrolyte-controlled rectification to rationalize all the observed in situ rectification features and found excellent agreement between theory and experiments. Our study thus offers a way toward building controllable single-molecule rectifying devices without involving asymmetric molecular structures.
Collapse
Affiliation(s)
- Zixiao Wang
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- 1To whom correspondence may be addressed. or or or
| | - Julio L. Palma
- bDepartment of Chemistry, Pennsylvania State University, Fayette, The Eberly Campus, Lemont Furnace, PA 15456
| | - Hui Wang
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junzhi Liu
- cDepartment of Chemistry and State Key Laboratory of Synthetic Chemistry, the University of Hong Kong, Hong Kong, China
| | - Gang Zhou
- dLaboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - M. R. Ajayakumar
- eCentre for Advancing Electronics Dresden, Faculty of Chemistry and Food Chemistry, Technische University Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- eCentre for Advancing Electronics Dresden, Faculty of Chemistry and Food Chemistry, Technische University Dresden, 01062 Dresden, Germany
| | - Wei Wang
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jens Ulstrup
- fDepartment of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- 1To whom correspondence may be addressed. or or or
| | - Alexei A. Kornyshev
- gDepartment of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, United Kingdom
- 1To whom correspondence may be addressed. or or or
| | - Yueqi Li
- hCenter for Bioanalytical Chemistry, University of Science and Technology of China, Hefei 230026, China
- 1To whom correspondence may be addressed. or or or
| | - Nongjian Tao
- aState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- iCenter for Bioelectronics and Biosensors, Biodesign Institute and School of Electrical, Energy and Computer Engineering, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
10
|
Khalid H, Opodi EM, Song X, Wang Z, Li B, Tian L, Yu X, Hu W. Modulated Structure and Rectification Properties of a Molecular Junction by a Mixed Self-Assembled Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10893-10901. [PMID: 36007164 DOI: 10.1021/acs.langmuir.2c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The organization of the self-assembled monolayer (SAM) determines its electronic structure and so governs the charge transport process and device performance when adopted into a molecular device. We report a systematic study on the supramolecular structure and rectification performance of the ferrocene (11-ferrocenyl-1-undecanethiol, FUT) based SAM modulated by mixed SAM with inert 1-undecanethiol (C11SH) as diluent. We compared mixed SAMs by two different post assembly strategies, i.e., post assembly of C11SH on FUT SAM and post assembly of FUT on C11SH SAM. The organization and structure of FUT in the mixed SAM were extensively studied by cyclic voltammetry (CV) using the Laviron model. Rectification properties of the mixed SAM obtained using eutectic indium gallium (EGaIn) as the top electrode revealed that the magnitude and stability of the rectification ratio (RR) strongly correlated to not only the amount but also the phase structure and orientation of the FUT in the monolayer, resulting in a tunable RR and increased stability. The mixed monolayer achieved an increased performance relative to pure FUT by post assembling FUT on C11SH SAM, which formed an optimally dense and well-packed monolayer with the FUT head resting on the top of the alkane SAM.
Collapse
Affiliation(s)
- Hira Khalid
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Esther Martine Opodi
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xianneng Song
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Ziyan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Baili Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
11
|
Qiu X, Chiechi RC. Printable logic circuits comprising self-assembled protein complexes. Nat Commun 2022; 13:2312. [PMID: 35484124 PMCID: PMC9050843 DOI: 10.1038/s41467-022-30038-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
This paper describes the fabrication of digital logic circuits comprising resistors and diodes made from protein complexes and wired together using printed liquid metal electrodes. These resistors and diodes exhibit temperature-independent charge-transport over a distance of approximately 10 nm and require no encapsulation or special handling. The function of the protein complexes is determined entirely by self-assembly. When induced to self-assembly into anisotropic monolayers, the collective action of the aligned dipole moments increases the electrical conductivity of the ensemble in one direction and decreases it in the other. When induced to self-assemble into isotropic monolayers, the dipole moments are randomized and the electrical conductivity is approximately equal in both directions. We demonstrate the robustness and utility of these all-protein logic circuits by constructing pulse modulators based on AND and OR logic gates that function nearly identically to simulated circuits. These results show that digital circuits with useful functionality can be derived from readily obtainable biomolecules using simple, straightforward fabrication techniques that exploit molecular self-assembly, realizing one of the primary goals of molecular electronics. Proteins are promising molecular materials for next-generation electronic devices. Here, the authors fabricated printable digital logic circuits comprising resistors and diodes from self-assembled photosystem I complexes that enable pulse modulation.
Collapse
Affiliation(s)
- Xinkai Qiu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. .,Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. .,Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, United States.
| |
Collapse
|
12
|
Bâldea I. Are Asymmetric SAM‐Induced Work Function Modifications Relevant for Real Molecular Rectifiers? ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ioan Bâldea
- Theoretical Chemistry Heidelberg University Im Neuenheimer Feld 229 Heidelberg D‐69120 Germany
| |
Collapse
|
13
|
Ashkarran AA, Hosseini A, Loloee R, Perry G, Lee KB, Lund M, Ejtehadi MR, Mahmoudi M. Conformation- and phosphorylation-dependent electron tunnelling across self-assembled monolayers of tau peptides. J Colloid Interface Sci 2022; 606:2038-2050. [PMID: 34749450 DOI: 10.1016/j.jcis.2021.09.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
We report on charge transport across self-assembled monolayers (SAMs) of short tau peptides by probing the electron tunneling rates and quantum mechanical simulation. We measured the electron tunneling rates across SAMs of carboxyl-terminated linker molecules (C6H12O2S) and short cis-tau (CT) and trans-tau (TT) peptides, supported on template-stripped gold (AuTS) bottom electrode, with Eutectic Gallium-Indium (EGaIn)(EGaIn) top electrode. Measurements of the current density across thousands of AuTS/linker/tau//Ga2O3/EGaIn single-molecule junctions show that the tunneling current across CT peptide is one order of magnitude lower than that of TT peptide. Quantum mechanical simulation demonstrated a wider energy bandgap of the CT peptide, as compared to the TT peptide, which causes a reduction in its electron tunneling current. Our findings also revealed the critical role of phosphorylation in altering the charge transport characteristics of short peptides; more specifically, we found that the presence of phosphate groups can reduce the energy band gap in tau peptides and alter their electrical properties. Our results suggest that conformational and phosphorylation of short peptides (e.g., tau) can significantly change their charge transport characteristics and energy levels.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Atiyeh Hosseini
- Division of Theoretical Chemistry, Lund University, Lund, Sweden; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Reza Loloee
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mikael Lund
- Division of Theoretical Chemistry, Lund University, Lund, Sweden.
| | | | - Morteza Mahmoudi
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Bu D, Huang C, Sha P, Chen S, Bu D, Huang S. Tuning the current rectification behavior of Rh 2-based molecular junctions by varying their supramolecular structures. NANOSCALE 2021; 13:19200-19209. [PMID: 34783332 DOI: 10.1039/d1nr05487b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular junctions with similar backbones, tunable chemical structures and controllable length are critical for the systematic study of the structure-functionality relationships of their charge transport behavior. Taking advantage of the feasibility and tunability of stepwise fabrication, we built series of asymmetric supramolecular SAMs on gold using Rh2(O2CCR3)4 (Rh2, R = CH3, H, and F) as the building blocks and conjugated N,N'-bidentate ligands (pyrazine (LS), 4,4'-bipyridine (LM) and 1,2-bis(4-pyridyl)ethene (LL)) as the bridges. By varying the Rh2 units and bridging ligands, series of supramolecules with similar backbone and tunable chemical structures were assembled on gold. Their charge transport behavior was examined using conductive-probe atomic force microscopy. Notably, current rectification diminishes gradually as the degree of conjugation of the bridging ligands gets larger from LS to LL due to the decrease in the energy gap between the donor and the acceptor in π(Rh2)-π(L) conjugated MO arrays. Additionally, current rectification can be enhanced when the charge transport mechanistic transits from tunneling in dimers to hopping in tetramers. Unlike charges hopping along the MO arrays in tetramers, charges tunnel through the frontier MOs in dimers. The occupied frontier MOs of dimers localize near the center of the supramolecules or delocalize on the donor and acceptor, which contributes to the weakening of the asymmetric charge tunneling. This work reveals that the frontier MO configurations of these supramolecules could be adjusted by varying their chemical structures, and consequently realize tuning of their charge transport behavior, which deepens the understanding of the charge transport behavior and benefits the establishment of the structure-functionality relationship of Rh2-based molecular junctions.
Collapse
Affiliation(s)
- Donglei Bu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Changgeng Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Pengzhan Sha
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Shangxian Chen
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Duocheng Bu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
15
|
Lee J, Jeon DJ, Yeo JS. Quantum Plasmonics: Energy Transport Through Plasmonic Gap. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006606. [PMID: 33891781 DOI: 10.1002/adma.202006606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Indexed: 06/12/2023]
Abstract
At the interfaces of metal and dielectric materials, strong light-matter interactions excite surface plasmons; this allows electromagnetic field confinement and enhancement on the sub-wavelength scale. Such phenomena have attracted considerable interest in the field of exotic material-based nanophotonic research, with potential applications including nonlinear spectroscopies, information processing, single-molecule sensing, organic-molecule devices, and plasmon chemistry. These innovative plasmonics-based technologies can meet the ever-increasing demands for speed and capacity in nanoscale devices, offering ultrasensitive detection capabilities and low-power operations. Size scaling from the nanometer to sub-nanometer ranges is consistently researched; as a result, the quantum behavior of localized surface plasmons, as well as those of matter, nonlocality, and quantum electron tunneling is investigated using an innovative nanofabrication and chemical functionalization approach, thereby opening a new era of quantum plasmonics. This new field enables the ultimate miniaturization of photonic components and provides extreme limits on light-matter interactions, permitting energy transport across the extremely small plasmonic gap. In this review, a comprehensive overview of the recent developments of quantum plasmonic resonators with particular focus on novel materials is presented. By exploring the novel gap materials in quantum regime, the potential quantum technology applications are also searched for and mapped out.
Collapse
Affiliation(s)
- Jihye Lee
- School of Integrated Technology, Yonsei University, Incheon, 21983, Republic of Korea
- Yonsei Institute of Convergence Technology, Yonsei University, Incheon, 21983, Republic of Korea
| | - Deok-Jin Jeon
- School of Integrated Technology, Yonsei University, Incheon, 21983, Republic of Korea
- Yonsei Institute of Convergence Technology, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jong-Souk Yeo
- School of Integrated Technology, Yonsei University, Incheon, 21983, Republic of Korea
- Yonsei Institute of Convergence Technology, Yonsei University, Incheon, 21983, Republic of Korea
| |
Collapse
|
16
|
Eo JS, Shin J, Yang S, Jeon T, Lee J, Choi S, Lee C, Wang G. Tailoring the Interfacial Band Offset by the Molecular Dipole Orientation for a Molecular Heterojunction Selector. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101390. [PMID: 34499429 PMCID: PMC8564428 DOI: 10.1002/advs.202101390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Indexed: 06/01/2023]
Abstract
Understanding and designing interfacial band alignment in a molecular heterojunction provides a foundation for realizing its desirable electronic functionality. In this study, a tailored molecular heterojunction selector is implemented by controlling its interfacial band offset between the molecular self-assembled monolayer with opposite dipole orientations and the 2D semiconductor (1L -MoS2 or 1L -WSe2 ). The molecular dipole moment direction determines the direction of the band bending of the 2D semiconductors, affecting the dominant transport pathways upon voltage application. Notably, in the molecular heterostructure with 1L -WSe2 , the opposite rectification direction is observed depending on the molecular dipole moment direction, which does not hold for the case with 1L -MoS2 . In addition, the nonlinearity of the molecular heterojunction selector can be significantly affected by the molecular dipole moment direction, type of 2D semiconductor, and metal work function. According to the choice of these heterojunction constituents, the nonlinearity is widely tuned from 1.0 × 101 to 3.6 × 104 for the read voltage scheme and from 0.4 × 101 to 2.0 × 105 for the half-read voltage scheme, which can be scaled up to an ≈482 Gbit crossbar array.
Collapse
Affiliation(s)
- Jung Sun Eo
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Jaeho Shin
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Seunghoon Yang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Takgyeong Jeon
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Jaeho Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Sanghyeon Choi
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Chul‐Ho Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
- Department of Integrative Energy EngineeringKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Gunuk Wang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
- Department of Integrative Energy EngineeringKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| |
Collapse
|
17
|
Gillet A, Cher S, Tassé M, Blon T, Alves S, Izzet G, Chaudret B, Proust A, Demont P, Volatron F, Tricard S. Polarizability is a key parameter for molecular electronics. NANOSCALE HORIZONS 2021; 6:271-276. [PMID: 33507203 DOI: 10.1039/d0nh00583e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Identifying descriptors that govern charge transport in molecular electronics is of prime importance for the elaboration of devices. The effects of molecule characteristics, such as size, bulkiness or charge, have been widely reported. Herein, we show that the molecule polarizability can be a crucial parameter to consider. To this end, platinum nanoparticle self-assemblies (PtNP SAs) are synthesized in solution, including a series of polyoxometalates (POMs). The charge of the POM unit can be modified according to the nature of the central heteroatom while keeping its size constant. POM hybrids that display remote terminal thiol functions strongly anchor the PtNP surface to form robust SAs. IV curves, recorded by conductive AFM, show a decrease in Coulomb blockade as the dielectric constant of the POMs increases. In this system, charge transport across molecular junctions can be interpreted as variations in polarizability, which is directly related to the dielectric constant.
Collapse
Affiliation(s)
- Angélique Gillet
- Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, Université de Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Belding L, Root SE, Li Y, Park J, Baghbanzadeh M, Rojas E, Pieters PF, Yoon HJ, Whitesides GM. Conformation, and Charge Tunneling through Molecules in SAMs. J Am Chem Soc 2021; 143:3481-3493. [DOI: 10.1021/jacs.0c12571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lee Belding
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Samuel E. Root
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Yuan Li
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Junwoo Park
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Mostafa Baghbanzadeh
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Edwin Rojas
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Priscilla F. Pieters
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
19
|
Gupta NK, Schultz T, Karuppannan SK, Vilan A, Koch N, Nijhuis CA. The energy level alignment of the ferrocene-EGaIn interface studied with photoelectron spectroscopy. Phys Chem Chem Phys 2021; 23:13458-13467. [PMID: 34095913 DOI: 10.1039/d1cp01690c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The energy level alignment after the formation of a molecular tunnel junction is often poorly understood because spectroscopy inside junctions is not possible, which hampers the rational design of functional molecular junctions and complicates the interpretation of the data generated by molecular junctions. In molecular junction platforms where the top electrode-molecule interaction is weak; one may argue that the energy level alignment can be deduced from measurements with the molecules supported by the bottom electrode (sometimes referred to as "half junctions"). This approach, however, still relies on a series of assumptions, which are challenging to address experimentally due to difficulties in studying the molecule-top electrode interaction. Herein, we describe top electrode-molecule junctions with a liquid metal alloy top electrode of EGaIn (which stands for eutectic alloy of Ga and In) interacting with well-characterised ferrocene (Fc) moieties. We deposited a ferrocene derivative on films of EGaIn, coated with its native GaOx layer, and studied the energy level alignment with photoelectron spectroscopy. Our results reveal that the electronic interaction between the Fc and GaOx/EGaIn is very weak, resembling physisorption. Therefore, investigations of "half junctions" for this system can provide valuable information regarding the energy level alignment of complete EGaIn junctions. Our results help to improve our understanding of the energy landscape in weakly coupled molecular junctions and aid to the rational design of molecular electronic devices.
Collapse
Affiliation(s)
- Nipun Kumar Gupta
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore and Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Thorsten Schultz
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. and Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Senthil Kumar Karuppannan
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ayelet Vilan
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Norbert Koch
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. and Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Christian A Nijhuis
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore and Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore and Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
20
|
Zharnikov M. Femtosecond Charge Transfer Dynamics in Monomolecular Films in the Context of Molecular Electronics. Acc Chem Res 2020; 53:2975-2984. [PMID: 33232123 DOI: 10.1021/acs.accounts.0c00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A key issue of molecular electronics (ME) is the correlation between the molecular structure and the charge transport properties of the molecular framework. Accordingly, a variety of model and potentially useful molecular systems are designed, to prove a particular function or correlation or to build a prototype device. These studies usually involve the measurements of the static electric conductance properties of individual molecules and their assembles on solid supports. At the same time, information about the dynamics of the charge transport (CT) and transfer in such systems, complementary in the context of ME and of a scientific value on its own, is quite scarce. Among other means, this drawback can be resolved by resonant Auger electron spectroscopy (RAES) in combination with core hole clock (CHC) approach, as described in this Account. The RAES-CHC scheme was applied to a variety of aliphatic and aromatic self-assembled monolayers (SAMs), adsorbed on Au(111) over the thiolate and selenolate docking groups. Electron transfer (ET) from a suitable terminal tail group to the substrate, across the molecular framework, was monitored, triggered by resonant excitation of this group (nitrile in most cases) by narrow-band X-ray radiation. This resulted in the quantitative data for the characteristic ET time, τET, in the femtosecond domain, with the time window ranging from ∼1 fs to ∼120 fs. The derived τET exhibit an exponential dependence on the molecular length, mimicking the behavior of the static conductance and suggesting a common physical basis behind the static CT and ET dynamics. The dynamic decay factors, βET, for the alkyl, oligophenyl, and acene molecular "wires" correlate well with the analogous parameters for the static CT. Both τET and βET values exhibit a distinct dependence on the character of the involved molecular orbital (MO), demonstrating that the efficiency and rate of the CT in molecular assemblies can be controlled by resonant injection of the charge carriers into specific MOs. This dependence as well as a lack of correlation between the molecular tilt and τET represent strong arguments in favor of the generally accepted model of CT across the molecular framework ("through-bond") in contrast to "through-space" tunneling. Comparison of the SAMs with thiolate and selenolate docking groups suggests that the use of selenolate instead of thiolate does not give any gain in terms of ET dynamics or molecular conductance. Whereas a certain difference in the efficiency of the electronic coupling of thiolate and selenolate to the substrate cannot be completely excluded, this difference is certainly too small to affect the performance of the entire molecule to a noticeable extent. The efficient electronic coupling of the thiolate docking group to the substrate was verified and the decoupling of the electronic subsystems of the substrate and π-conjugated segment by introduction of methylene group into the backbone was demonstrated. No correlation between the molecular dipole or fluorine substitution pattern (at the side positions) and the ET efficiency was recorded. Several representative examples for the resonantly addressable tail groups are given, and perspectives for future research in the context of ET dynamics in molecular assemblies are discussed.
Collapse
Affiliation(s)
- Michael Zharnikov
- Applied Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Han Y, Maglione MS, Diez Cabanes V, Casado-Montenegro J, Yu X, Karuppannan SK, Zhang Z, Crivillers N, Mas-Torrent M, Rovira C, Cornil J, Veciana J, Nijhuis CA. Reversal of the Direction of Rectification Induced by Fermi Level Pinning at Molecule-Electrode Interfaces in Redox-Active Tunneling Junctions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55044-55055. [PMID: 33237732 DOI: 10.1021/acsami.0c15435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Control over the energy level alignment in molecular junctions is notoriously difficult, making it challenging to control basic electronic functions such as the direction of rectification. Therefore, alternative approaches to control electronic functions in molecular junctions are needed. This paper describes switching of the direction of rectification by changing the bottom electrode material M = Ag, Au, or Pt in M-S(CH2)11S-BTTF//EGaIn junctions based on self-assembled monolayers incorporating benzotetrathiafulvalene (BTTF) with EGaIn (eutectic alloy of Ga and In) as the top electrode. The stability of the junctions is determined by the choice of the bottom electrode, which, in turn, determines the maximum applied bias window, and the mechanism of rectification is dominated by the energy levels centered on the BTTF units. The energy level alignments of the three junctions are similar because of Fermi level pinning induced by charge transfer at the metal-thiolate interface and by a varying degree of additional charge transfer between BTTF and the metal. Density functional theory calculations show that the amount of electron transfer from M to the lowest unoccupied molecular orbital (LUMO) of BTTF follows the order Ag > Au > Pt. Junctions with Ag electrodes are the least stable and can only withstand an applied bias of ±1.0 V. As a result, no molecular orbitals can fall in the applied bias window, and the junctions do not rectify. The junction stability increases for M = Au, and the highest occupied molecular orbital (HOMO) dominates charge transport at a positive bias resulting in a positive rectification ratio of 83 at ±1.5 V. The junctions are very stable for M = Pt, but now the LUMO dominates charge transport at a negative bias resulting in a negative rectification ratio of 912 at ±2.5 V. Thus, the limitations of Fermi level pinning can be bypassed by a judicious choice of the bottom electrode material, making it possible to access selectively HOMO- or LUMO-based charge transport and, as shown here, associated reversal of rectification.
Collapse
Affiliation(s)
- Yingmei Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Maria Serena Maglione
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Valentin Diez Cabanes
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, Mons 7000, Belgium
| | - Javier Casado-Montenegro
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
| | - Senthil Kumar Karuppannan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ziyu Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Núria Crivillers
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Marta Mas-Torrent
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Concepció Rovira
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, Mons 7000, Belgium
| | - Jaume Veciana
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Center, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
22
|
Zhao Z, Wang W, Zhou X, Ni L, Kang K, Lee T, Han H, Yuan H, Guo C, Wang M, Ko MJ, Li Y, Xiang D. Crystal Size Effect on Carrier Transport of Microscale Perovskite Junctions via Soft Contact. NANO LETTERS 2020; 20:8640-8646. [PMID: 33238097 DOI: 10.1021/acs.nanolett.0c03347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To reduce the size of optoelectronic devices, it is essential to understand the crystal size effect on the carrier transport through microscale materials. Here, we show a soft contact method to probe the properties of irregularly shaped microscale perovskite crystals by employing a movable liquid metal electrode to form a self-adaptative deformable electrode-perovskite-electrode junction. Accordingly, we demonstrate that (1) the photocurrents of perovskite quantum dot films and microplatelets show profound differences regarding both the on/off ratio and the response time upon light illumination; and (2) small-size perovskite (<50 μm) junctions may show negative differential resistance (NDR) behavior, whereas the NDR phenomenon is absent in large-size perovskite junctions within the same bias regime. Our studies provide a method for studying arbitrary-shaped crystals without mechanical damage, assisting the understanding of the photogenerated carriers transport through microscale crystals.
Collapse
Affiliation(s)
- Zhibin Zhao
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Center of Single Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Wenduo Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China
| | - Xin Zhou
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China
| | - Lifa Ni
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Center of Single Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Keehoon Kang
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Takhee Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Hong Han
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China
| | - Hongrui Yuan
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Chenyang Guo
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Center of Single Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Maoning Wang
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Center of Single Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Yuelong Li
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China
| | - Dong Xiang
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Center of Single Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
23
|
Han Y, Nijhuis CA. Functional Redox-Active Molecular Tunnel Junctions. Chem Asian J 2020; 15:3752-3770. [PMID: 33015998 PMCID: PMC7756406 DOI: 10.1002/asia.202000932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Redox-active molecular junctions have attracted considerable attention because redox-active molecules provide accessible energy levels enabling electronic function at the molecular length scales, such as, rectification, conductance switching, or molecular transistors. Unlike charge transfer in wet electrochemical environments, it is still challenging to understand how redox-processes proceed in solid-state molecular junctions which lack counterions and solvent molecules to stabilize the charge on the molecules. In this minireview, we first introduce molecular junctions based on redox-active molecules and discuss their properties from both a chemistry and nanoelectronics point of view, and then discuss briefly the mechanisms of charge transport in solid-state redox-junctions followed by examples where redox-molecules generate new electronic function. We conclude with challenges that need to be addressed and interesting future directions from a chemical engineering and molecular design perspectives.
Collapse
Affiliation(s)
- Yingmei Han
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Christian A. Nijhuis
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
- Centre for Advanced 2D Materials and Graphene Research CentreNational University of Singapore6 Science Drive 2Singapore117546Singapore
| |
Collapse
|
24
|
Werner P, Wächter T, Asyuda A, Wiesner A, Kind M, Bolte M, Weinhardt L, Terfort A, Zharnikov M. Electron Transfer Dynamics and Structural Effects in Benzonitrile Monolayers with Tuned Dipole Moments by Differently Positioned Fluorine Atoms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39859-39869. [PMID: 32805830 DOI: 10.1021/acsami.0c10513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To understand the influence of the molecular dipole moment on the electron transfer (ET) dynamics across the molecular framework, two series of differently fluorinated, benzonitrile-based self-assembled monolayers (SAMs) bound to Au(111) by either thiolate or selenolate anchoring groups were investigated. Within each series, the molecular structures were the same with the exception of the positions of two fluorine atoms affecting the dipole moment of the SAM-forming molecules. The SAMs exhibited a homogeneous anchoring to the substrate, nearly upright molecular orientations, and the outer interface comprised of the terminal nitrile groups. The ET dynamics was studied by resonant Auger electron spectroscopy in the framework of the core-hole clock method. Resonance excitation of the nitrile group unequivocally ensured an ET pathway from the tail group to the substrate. As only one of the π* orbitals of this group is hybridized with the π* system of the adjacent phenyl ring, two different ET times could be determined depending on the primary excited orbital being either localized at the nitrile group or delocalized over the entire benzonitrile moiety. The latter pathway turned out to be much more efficient, with the characteristic ET times being a factor 2.5-3 shorter than those for the localized orbital. The dynamic ET properties of the analogous thiolate- and selenolate-based adsorbates were found to be nearly identical. Finally and most importantly, these properties were found to be unaffected by the different patterns of the fluorine substitution used in the present study, thus showing no influence of the molecular dipole moment.
Collapse
Affiliation(s)
- Philipp Werner
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Tobias Wächter
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Andika Asyuda
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Adrian Wiesner
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Martin Kind
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Lothar Weinhardt
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Andreas Terfort
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
25
|
Kumar S, Soni S, Danowski W, van Beek CLF, Feringa BL, Rudolf P, Chiechi RC. Correlating the Influence of Disulfides in Monolayers across Photoelectron Spectroscopy Wettability and Tunneling Charge-Transport. J Am Chem Soc 2020; 142:15075-15083. [PMID: 32786759 PMCID: PMC7472521 DOI: 10.1021/jacs.0c06508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Despite their ubiquity, self-assembled monolayers (SAMs) of thiols on coinage metals are difficult to study and are still not completely understood, particularly with respect to the nature of thiol-metal bonding. Recent advances in molecular electronics have highlighted this deficiency due to the sensitivity of tunneling charge-transport to the subtle differences in the overall composition of SAMs and the chemistry of their attachment to surfaces. These advances have also challenged assumptions about the spontaneous formation of covalent thiol-metal bonds. This paper describes a series of experiments that correlate changes in the physical properties of SAMs to photoelectron spectroscopy to unambiguously assign binding energies of noncovalent interactions to physisorbed disulfides. These disulfides can be converted to covalent metal-thiolate bonds by exposure to free thiols, leading to the remarkable observation of the total loss and recovery of length-dependent tunneling charge-transport. The identification and assignment of physisorbed disulfides solve a long-standing mystery and reveal new, dynamic properties in SAMs of thiols.
Collapse
Affiliation(s)
- Sumit Kumar
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saurabh Soni
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wojciech Danowski
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Carlijn L. F. van Beek
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petra Rudolf
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C. Chiechi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
26
|
The Potential of X-ray Photoelectron Spectroscopy for Determining Interface Dipoles of Self-Assembled Monolayers. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the current manuscript we assess to what extent X-ray photoelectron spectroscopy (XPS) is a suitable tool for probing the dipoles formed at interfaces between self-assembled monolayers and metal substrates. To that aim, we perform dispersion-corrected, slab-type band-structure calculations on a number of biphenyl-based systems bonded to an Au(111) surface via different docking groups. In addition to changing the docking chemistry (and the associated interface dipoles), the impacts of polar tail group substituents and varying dipole densities are also investigated. We find that for densely packed monolayers the shifts of the peak positions of the simulated XP spectra are a direct measure for the interface dipoles. In the absence of polar tail group substituents they also directly correlate with adsorption-induced work function changes. At reduced dipole densities this correlation deteriorates, as work function measurements probe the difference between the Fermi level of the substrate and the electrostatic energy far above the interface, while core level shifts are determined by the local electrostatic energy in the region of the atom from which the photoelectron is excited.
Collapse
|