1
|
Wei G, Zhou L, Wang X, Tang R, Chen K, Luo J, Song J, Shi Y, Liu N, Feng X. Construction of Pt─O Sites on Pt Nanoclusters in Silicalite-1 Zeolite for Efficient Catalytic Oxidation of Hydrogen Isotope Gases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408509. [PMID: 39665376 DOI: 10.1002/smll.202408509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The construction, use, and maintenance of tritium-related equipment will inevitably produce tritium-containing radioactive waste gas, and the production of efficient catalysts for tritium removal remains a difficult problem. Herein, silicalite-1 zeolite with entrapped Pt nanoclusters is skillfully post-oxidized at an appropriate temperature, building highly active Pt─O sites on the nanoclusters to achieve efficient oxidation of hydrogen isotopes at low temperatures. The designed Pt─O sites can directly participate in the oxidation reaction of hydrogen isotopes. Compared to the case without Pt─O sites, the presence of these sites significantly reduces the reaction energy barrier to 0.55 eV, enabling the catalyst to achieve a hydrogen conversion rate of 99% at a low temperature of 40 °C. Specifically, the O atoms consumed by the Pt─O sites in the reaction are replaced by O2 gas and this cycle repeats, which is consistent with the Mars-van Krevelen (M-K) theory. This ensures efficient catalytic oxidation of hydrogen isotopes, and provides an astonishingly high conversion rate of 99% in the nearly 34 days restart performance test. The results of this study provide insights into the strategic design of efficient catalysts for hydrogen isotope oxidation.
Collapse
Affiliation(s)
- Guilin Wei
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan, 621908, P. R. China
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Linsen Zhou
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan, 621908, P. R. China
| | - Xianglin Wang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan, 621908, P. R. China
| | - Ru Tang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan, 621908, P. R. China
| | - Kelin Chen
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan, 621908, P. R. China
| | - Junhong Luo
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan, 621908, P. R. China
| | - Jiangfeng Song
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan, 621908, P. R. China
| | - Yan Shi
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan, 621908, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Xingwen Feng
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan, 621908, P. R. China
| |
Collapse
|
2
|
Liu X, Zhao S, Yang W, Huang J. Hierarchical zeolite-encapsulated metal nanoparticles for heterogeneous catalysis. NANOSCALE 2024; 16:20842-20863. [PMID: 39444217 DOI: 10.1039/d4nr02307b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Zeolites, characterized by their highly porous structure, have become integral to modern industry and environmental science due to their broad applications in adsorption, separation, and catalysis. Recent advancements in zeolite synthesis, particularly through hydrothermal methods and the incorporation of metal nanoparticles, have significantly expanded their utility. This review delves into the innovative strategies for encapsulating metal nanoparticles within zeolite matrices, enhancing catalytic reactions' efficiency, selectivity, and durability. Challenges such as nanoparticle agglomeration and catalyst deactivation are addressed through hierarchical zeolite encapsulation, which provides a novel route for the development of multifunctional materials. By examining methods ranging from in situ encapsulation to post-synthetic recrystallization, this review highlights the versatility and potential of metal@zeolite catalysts in various applications, including organic synthesis, pollutant treatment, and energy conversion. The review underscores the importance of optimizing the interaction between metal nanoparticles and the zeolite framework to achieve superior catalytic performance, offering new directions for research in catalytic science and industrial process optimization.
Collapse
Affiliation(s)
- Xingxu Liu
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| | - Shufang Zhao
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| | - Wenjie Yang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Xie Y, Fan H, Che M, Liu Y, Liu C, Hu X, Teng B. Hydrophobicity and Pore Structure: Unraveling the Critical Factors of Alcohol and Acid Adsorption in Zeolites. Molecules 2024; 29:5251. [PMID: 39598641 PMCID: PMC11596546 DOI: 10.3390/molecules29225251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Adsorbing and recycling alcohols and acids from industrial wastewater is of great significance in wastewater treatment; establishing the possible quantitative relationship of alcohol-acid adsorption capacity with the struct0ures of adsorbents and exploring the key factors determining their adsorption performance is very important and challenging in environment science. To solve this difficult problem, the adsorption of C1-5 alcohols, C2-4 acids, and Fischer-Tropsch synthesis (FTS) wastewater on zeolites with similar hydrophobicity and pore structures (β and MFI), similar hydrophilicity but different pore structures (Y and MOR), and similar pore structures but significant differences in hydrophobicity (MOR vs. β and MFI) was systematically investigated. It was found that: (1) For materials with similar pore structures, increased hydrophobicity correlates with enhanced adsorption capacities for alcohols and acids. (2) For materials with similar hydrophobicity, a higher content of ultramicropores leads to increased adsorption of alcohols and acids. (3) Between pore structure and hydrophobicity, it is hydrophobicity that ultimately plays a decisive role in adsorption capacities. The adsorption behavior of zeolites in FTS wastewater exhibits a consistent trend, with β-zeolite demonstrating the highest hydrophobicity (contact angle of 105°) and the greatest adsorption capacity in FTS wastewater, achieving 103 mg/g. Following five adsorption-desorption cycles, the zeolites retained their adsorption capacity without significant degradation, indicating their excellent stability and reusability. The findings identify the critical factors determining adsorption performance and provide a solid foundation for the design and development of high-performance adsorbents for alcohol-acid adsorption.
Collapse
Affiliation(s)
- Yangyang Xie
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.X.); (H.F.)
| | - Honglei Fan
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.X.); (H.F.)
| | - Mingyang Che
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China; (M.C.); (Y.L.)
| | - Ya Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China; (M.C.); (Y.L.)
| | - Chunjing Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.X.); (H.F.)
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China; (M.C.); (Y.L.)
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.X.); (H.F.)
| |
Collapse
|
4
|
Zhou SZ, Li WC, He B, Xie YD, Wang H, Liu X, Chen L, Wei J, Lu AH. An Active and Regenerable Nanometric High-Entropy Catalyst for Efficient Propane Dehydrogenation. Angew Chem Int Ed Engl 2024; 63:e202410835. [PMID: 39044707 DOI: 10.1002/anie.202410835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Propane dehydrogenation (PDH) is crucial for propylene production, but commercially employed Pt-based catalysts face susceptibility to deactivation due to the Pt sintering during reaction and regeneration steps. Here, we report a SiO2 supported nanometric (MnCoCuZnPt) high-entropy PDH catalyst with high activity and stability. The catalyst exhibited a super high propane conversion of 56.6 % with 94 % selectivity of propylene at 600 °C. The propylene productivity reached 68.5 molC3H6 ⋅ gPt -1 ⋅ h-1, nearly three times that of Pt/SiO2 (23.5 molC3H6 ⋅ gPt -1 ⋅ h-1) under a weight hourly space velocity of 60 h-1. In a high-entropy nanoparticle, Pt atoms were atomically dispersed through coordination with other metals and exhibited a positive charge, thereby showcasing remarkable catalytic activity. The high-entropy effect contributes to the catalyst a superior stability with a low deactivation constant of 0.0004 h-1 during 200 hours of reaction under the industrial gas composition at 550 °C. Such high-entropy PDH catalyst is easy regenerated through simple air combustion of deposited coke. After the fourth consecutive regeneration cycle, satisfactory catalytic stability was observed, and the element distribution of spent catalysts almost returned to their initial state, with no detectable Pt sintering. This work provides new insights into designing active, stable, and regenerable novel PDH catalysts.
Collapse
Affiliation(s)
- Shu-Zhen Zhou
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wen-Cui Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bowen He
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ya-Dong Xie
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Haowei Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiake Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116024, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
5
|
Liu H, Li J, Liang X, Ren H, Yin H, Wang L, Yang D, Wang D, Li Y. Encapsulation of Pd Single-Atom Sites in Zeolite for Highly Efficient Semihydrogenation of Alkynes. J Am Chem Soc 2024; 146:24033-24041. [PMID: 39146528 DOI: 10.1021/jacs.4c07674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Palladium (Pd)-based single-atom catalysts (SACs) have shown outstanding selectivity for semihydrogenation of alkynes, but most Pd single sites coordinated with highly electronegative atoms (such as N, O, and S) of supports will result in a decrease in the electron density of Pd sites, thereby weakening the adsorption of reactants and reducing catalytic performance. Constructing a rich outer-shell electron environment of Pd single-atom sites by changing the coordination structure offers a novel opportunity to enhance the catalytic efficiency with excellent alkene selectivity. Therefore, in this work, we first propose the in situ preparation of isolated Pd sites encapsulated within Al/Si-rich ZSM-5 structure using the one-pot seed-assisted growth method. Pd1@ZSM-5 features Pd-O-Al/Si bonds, which can boost the domination of d-electron near the Fermi level, thereby promoting the adsorption of substrates on Pd sites and reducing the energy barrier for the semihydrogenation of alkynes. In semihydrogenation of phenylacetylene, Pd1@ZSM-5 catalyst performs the highest turnover frequency (TOF) value of 33582 molC═C/molPd/h with 96% selectivity of styrene among the reported heterogeneous catalysts and nearly 17-fold higher than that of the commercial Lindlar catalyst (1992 molC═C/molPd/h). This remarkable catalytic performance can be retained even after 6 cycles of usage. Particularly, the zeolitic confinement structure of Pd1@ZSM-5 enables precise shape-selective catalysis for alkyne reactants with a size less than 4.3 Å.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jialu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hongyuan Ren
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hang Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Ligang Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Da Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
6
|
Wei G, Zhou L, Luo J, Yu B, Ding F, Song J, Shi Y, Zhang J, Feng X, Liu N. Insight into the Catalytic Oxidation Mechanism of Hydrogen Isotopes by Pt Clusters Confined by Silicalite-1. Inorg Chem 2024; 63:14171-14182. [PMID: 39001852 DOI: 10.1021/acs.inorgchem.4c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Highly efficient removal of low concentrations of hydrogen isotope gas in air is crucial for the safe operation of nuclear energy plants. Herein, silicalite-1-confined Pt cluster catalysts were used for the catalytic oxidation of hydrogen isotopes, and the related catalytic mechanism was revealed. Increased temperature in direct hydrogen reduction treatment slightly increased the size of Pt clusters from 1.6 nm at 400 °C to 1.8 nm at 600 °C. The catalyst reduced at 600 °C exhibited excellent performance (99%) in hydrogen isotope oxidation at 75 °C, as well as high stability and catalytic efficiency in continuous and intermittent operation for 7200 min. X-ray absorbance spectroscopy confirmed the existence of Pt clusters in the catalysts, and the theoretical results showed that the total net charge was -0.07 e, indicating a slight charge transfer from the zeolite to the Pt atoms. The metal-support interaction thermally stabilized Pt clusters and altered the metal electronic structure, which enhanced the catalytic activity following a hydroperoxyl (OOH)-mediated route. Based on the low reaction temperature, efficient hydrogen conversion rate, and high stability, the silicalite-1-confined Pt cluster catalyst is expected to be used in hydrogen isotope oxidation treatment to achieve nuclear safety.
Collapse
Affiliation(s)
- Guilin Wei
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Linsen Zhou
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Junhong Luo
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Bin Yu
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Fengyun Ding
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Jiangfeng Song
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Yan Shi
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Jianqiao Zhang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Xingwen Feng
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
7
|
Liu H, Wang Y, Xu W, Yang Y, Yang J, Li C, Zhu T. Unraveling the Synergistic Mechanism of Ir Species with Various Electron Densities over an Ir/ZSM-5 Catalyst Enables High-Efficiency NO Reduction by CO. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12082-12090. [PMID: 38888120 DOI: 10.1021/acs.est.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Selective catalytic reduction using CO as a reducing agent (CO-SCR) has exhibited its application potential in coal-fired, steel, and other industrial sectors. In comparison to NH3-SCR, CO-SCR can achieve synergistic control of CO and NO pollutants, making it a powerful denitrification technology that treats waste with waste. Unfortunately, the competitive adsorption of O2 and NO on CO-SCR catalysts inhibits efficient conversion of NOx under O2-containing conditions. In this work, we obtained two Ir sites with different electron densities, Ir1 single atoms in the oxidized Irδ+ state and Ir0 nanoparticles in the metallic state, by controlled pretreatment of the Ir/ZSM-5 catalyst with H2 at 200 °C. The coexistence of Ir1 single atoms and Ir0 nanoparticles on ZSM-5 creates a synergistic effect, which facilitates the reduction of NO through CO in the presence of O2, following the Langmuir-Hinshelwood mechanism. The ONNO dimer is formed on the Ir1 single atom sites and then spills over to the neighboring Ir0 nanoparticles for subsequent reduction to N2 by CO. Specifically, this tandem reaction enables 83% NO conversion and 100% CO conversion on an Ir-based catalyst at 250 °C under 3% O2.
Collapse
Affiliation(s)
- Huixian Liu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yixi Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenqing Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Yang Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jun Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chaoqun Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tingyu Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
8
|
Chaipornchalerm P, Nunthakitgoson W, Mano P, Kidkhunthod P, Montoya A, Namuangruk S, Wattanakit C. Rational Design of Fe Single Sites Supported on Hierarchical Zeolites via Atomic Layer Deposition for Few-Walled Carbon Nanotube Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33590-33600. [PMID: 38899403 DOI: 10.1021/acsami.4c06105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Metal single-site catalysts have recently played an essential role in catalysis due to their enhanced activity, selectivity, and precise reaction control compared to those of conventional metal cluster catalysts. However, the rational design and catalytic application of metal single-site catalysts are still in the early stages of development. In this contribution, we report the rational design of Fe single sites incorporated in a hierarchical ZSM-5 via atomic layer deposition (ALD). The designer catalysts demonstrated highly dispersed Fe species, predominantly stabilized by oxygen atoms in the zeolite framework at terminal, isolated, and vicinal silanol groups within the micropores and external surfaces of the zeolite. The successful incorporation of highly thermally stable and uniform Fe single sites into hierarchical zeolite through ALD represents a significant advancement in few-walled carbon nanotube production. The inner and outer diameters of produced CNTs are approximately 4.4 ± 2.4 and 8.6 ± 1.8 nm, respectively, notably smaller than those produced via traditional impregnated catalysts. This example emphasizes the concept of rational design of a single Fe site dispersed on a hierarchical ZSM-5 surface, which is anticipated to be a promising catalyst for advancing catalytic applications.
Collapse
Affiliation(s)
- Peeranat Chaipornchalerm
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Watinee Nunthakitgoson
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Poobodin Mano
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Alejandro Montoya
- School of Chemical and Bimolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Supawadee Namuangruk
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chularat Wattanakit
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
9
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
10
|
Zheng XQ, Zhang K, Wang Y, Liu Y, Peng SS, Shao XB, Kou J, Sun LB. Construction of Nickel Single Atoms by Using the Inherent Confined Space in Template-Occupied Mesoporous Silica. Inorg Chem 2024; 63:8312-8319. [PMID: 38651966 DOI: 10.1021/acs.inorgchem.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Due to their maximum atomic use of metal sites, single-atom catalysts (SACs) exhibit excellent catalytic activity in a variety of reactions. Although many techniques have been reported for the production of SACs, the construction of single atoms through a convenient strategy is still challenging. Here, we provide a facile method to prepare nickel SACs by utilizing the inherent confined space between the template and silica walls in template-occupied mesoporous silica KIT-6 (TOK). After the introduction of nickel-containing precursors into the inherent confined space of the TOK by solid-phase grinding, Ni SACs can be produced promptly during calcination. Single Ni atoms create a covalent Ni-O-Si structure in the TOK, as indicated by density functional theory (DFT) calculations and experimental data. This synthetic approach is easy to scale up, and 10 g of sample can be effortlessly synthesized using ball milling. The resultant Ni SACs were applied to the oxygen evolution reaction and exhibited higher catalytic activity and stability than the comparative sample synthesized in the absence of confined space.
Collapse
Affiliation(s)
- Xiao-Qin Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Kai Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Song-Song Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Bin Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
11
|
Wu X, Wang X, Zhang L, Wang X, Song S, Zhang H. Polyethylene Upgrading to Liquid Fuels Boosted by Atomic Ce Promoters. Angew Chem Int Ed Engl 2024; 63:e202317594. [PMID: 38183405 DOI: 10.1002/anie.202317594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
Hydrocracking catalysis is a key route to plastic waste upgrading, but the acid site-driven C-C cleavage step is relatively sluggish in conventional bifunctional catalysts, dramatically effecting the overall efficiency. We demonstrate here a facile and efficient way to boost the reactivity of acid sites by introducing Ce promoters into Pt/HY catalysts, thus achieving a better metal-acid balance. Remarkably, 100 % of low-density polyethylene (LDPE) can be converted with 80.9 % selectivity of liquid fuels over the obtained Pt/5Ce-HY catalysts at 300 °C in 2 h. For comparison, Pt/HY only gives 38.8 % of LDPE conversion with 21.3 % selectivity of liquid fuels. Through multiple experimental studies on the structure-performance relationship, the Ce species occupied in the supercage are identified as the actual active sites, which possess remarkably-improved adsorption capability towards short-chain intermediates.
Collapse
Affiliation(s)
- Xueting Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaomei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Liu H, Zhu P, Yang D, Zhong C, Li J, Liang X, Wang L, Yin H, Wang D, Li Y. Pd-Mn/NC Dual Single-Atomic Sites with Hollow Mesopores for the Highly Efficient Semihydrogenation of Phenylacetylene. J Am Chem Soc 2024; 146:2132-2140. [PMID: 38226630 DOI: 10.1021/jacs.3c11632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The direct pyrolysis of metal-zeolite imidazolate frameworks (M-ZIFs) has been widely recognized as the predominant approach for synthesizing atomically dispersed metal-nitrogen-carbon single-atom catalysts (M/NC-SACs), which have exhibited exceptional activity and selectivity in the semihydrogenation of acetylene. However, due to weak adsorption of reactants on the single site and restricted molecular diffusion, the semihydrogenation of large organic molecules (e.g., phenylacetylene) was greatly limited for M/NC-SACs. In this work, a dual single-atom catalyst (h-Pd-Mn/NC) with hollow mesopores was designed and prepared using a general host-guest strategy. Taking the semihydrogenation of phenylacetylene as an example, this catalyst exhibited ultrahigh activity and selectivity, which achieved a turnover frequency of 218 molC═CmolPd-1 min-1, 16-fold higher than that of the commercial Lindlar catalyst. The catalyst maintained high activity and selectivity even after 5 cycles of usage. The superior activity of h-Pd-Mn/NC was attributed to the 4.0 nm mesopore interface of the catalyst, which enhanced the diffusion of macromolecular reactants and products. Particularly, the introduction of atomically dispersed Mn with weak electronegativity in h-Pd-Mn/NC could drive the electron transfer from Mn to adjacent Pd sites and regulate the electronic structure of Pd sites. Meanwhile, the strong electronic coupling in Pd-Mn pairs enhanced the d-electron domination near the Fermi level and promoted the adsorption of phenylacetylene and H2 on Pd active sites, thereby reducing the energy barrier for the semihydrogenation of phenylacetylene.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Peng Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Da Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Congkun Zhong
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Jialu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ligang Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hang Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
13
|
Haider SNUZ, Qureshi WA, Ali RN, Shaosheng R, Naveed A, Ali A, Yaseen M, Liu Q, Yang J. Contemporary advances in photocatalytic CO 2 reduction using single-atom catalysts supported on carbon-based materials. Adv Colloid Interface Sci 2024; 323:103068. [PMID: 38101149 DOI: 10.1016/j.cis.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/18/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The persistent issue of CO2 emissions and their subsequent impact on the Earth's atmosphere can be effectively addressed through the utilization of efficient photocatalysts. Employing a sustainable carbon cycle via photocatalysis presents a promising technology for simultaneously managing the greenhouse effect and the energy dilemma. However, the efficiency of energy conversion encounters limitations due to inadequate carrier utilization and a deficiency of reactive sites. Single-atom catalysts (SACs) have demonstrated exceptional performance in efficiently addressing the aforementioned challenges. This review article commences with an overview of SAC types, structures, fundamentals, synthesis strategies, and characterizations, providing a logical foundation for the design and properties of SACs based on the correlation between their structure and efficiency. Additionally, we delve into the general mechanism and the role of SACs in photocatalytic CO2 reduction. Furthermore, we furnish a comprehensive survey of the latest advancements in SACs concerning their capacity to enhance efficiency, long-term stability, and selectivity in CO2 reduction. Carbon-structured support materials such as covalent organic frameworks (COFs), graphitic carbon nitride (g-C3N4), metal-organic frameworks (MOFs), covalent triazine frameworks (CTFs), and graphene-based photocatalysts have garnered significant attention due to their substantial surface area, superior conductivity, and chemical stability. These carbon-based materials are frequently chosen as support matrices for anchoring single metal atoms, thereby enhancing catalytic activity and selectivity. The motivation behind this review article lies in evaluating recent developments in photocatalytic CO2 reduction employing SACs supported on carbon substrates. In conclusion, we highlight critical issues associated with SACs, potential prospects in photocatalytic CO2 reduction, and existing challenges. This review article is dedicated to providing a comprehensive and organized compilation of recent research findings on carbon support materials for SACs in photocatalytic CO2 reduction, with a specific focus on materials that are environmentally friendly, readily accessible, cost-effective, and exceptionally efficient. This work offers a critical assessment and serves as a systematic reference for the development of SACs supported on MOFs, COFs, g-C3N4, graphene, and CTFs support materials to enhance photocatalytic CO2 conversion.
Collapse
Affiliation(s)
| | - Waqar Ahmad Qureshi
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Rai Nauman Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Rao Shaosheng
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ahmad Naveed
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Amjad Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-600, Poland
| | - Maria Yaseen
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
14
|
Zhang K, Wang N, Meng Y, Zhang T, Zhao P, Sun Q, Yu J. Highly dispersed Pd-based pseudo-single atoms in zeolites for hydrogen generation and pollutant disposal. Chem Sci 2023; 15:379-388. [PMID: 38131096 PMCID: PMC10732228 DOI: 10.1039/d3sc05851d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Atomically dispersed metal catalysts with excellent activity and stability are highly desired in heterogeneous catalysis. Herein, we synthesized zeolite-encaged Pd-based pseudo-single atoms via a facile and energy-efficient ligand-protected direct H2 reduction method. Cs-corrected scanning transmission electron microscopy, extended X-ray absorption, and pair distribution function measurements reveal that the metal species are close to atomic-level dispersion and completely confined within the intersectional channels of silicalite-1 (S-1) zeolite with the MFI framework. The Pd@S-1-H exhibits excellent activity and stability in methane combustion reactions with a complete combustion temperature of 390 °C, and no deactivation is observed even after 100 h on stream. The optimized bimetallic 0.8Pd0.2Ni(OH)2@S-1-H catalyst exhibits an excellent H2 generation rate from FA decomposition without any additives, affording a superhigh turnover frequency up to 9308 h-1 at 333 K, which represents the top activity among all of the best heterogeneous catalysts under similar conditions. Significantly, zeolite-encaged metal catalysts are first used for Cr(vi) reduction coupled with formic acid (FA) dehydrogenation and show a superhigh turnover number of 2980 mol(Cr2O72-) mol(Pd)-1 at 323 K, surpassing all of the previously reported catalysts. This work demonstrates that zeolite-encaged pseudo-single atom catalysts are promising in efficient hydrogen storage and pollutant disposal applications.
Collapse
Affiliation(s)
- Kai Zhang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Ning Wang
- Institute of Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 P. R. China
| | - Yali Meng
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Hebei University Baoding 071002 P. R. China
| | - Pu Zhao
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Suzhou 215123 Jiangsu P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
15
|
Tesana S, Kennedy JV, Yip ACK, Golovko VB. In Situ Incorporation of Atomically Precise Au Nanoclusters within Zeolites for Ambient Temperature CO Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3120. [PMID: 38133017 PMCID: PMC10745642 DOI: 10.3390/nano13243120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Preserving ultrasmall sizes of metal particles is a key challenge in the study of heterogeneous metal-based catalysis. Confining the ultrasmall metal clusters in a well-defined crystalline porous zeolite has emerged as a promising approach to stabilize these metal species. Successful encapsulation can be achieved by the addition of ligated metal complexes to zeolite synthesis gel before hydrothermal synthesis. However, controlling the metal particle size during post-reduction treatment remains a major challenge in this approach. Herein, an in situ incorporation strategy of pre-made atomically precise gold clusters within Na-LTA zeolite was established for the first time. With the assistance of mercaptosilane ligands, the gold clusters were successfully incorporated within the Na-LTA without premature precipitation and metal aggregation during the synthesis. We have demonstrated that the confinement of gold clusters within the zeolite framework offers high stability against sintering, leading to superior CO oxidation catalytic performance (up to 12 h at 30 °C, with a space velocity of 3000 mL g-1 h-1).
Collapse
Affiliation(s)
- Siriluck Tesana
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand;
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand;
- National Isotope Centre, GNS Science, Lower Hutt 5010, New Zealand
| | - John V. Kennedy
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand;
- National Isotope Centre, GNS Science, Lower Hutt 5010, New Zealand
| | - Alex C. K. Yip
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand;
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand
| | - Vladimir B. Golovko
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand;
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand;
| |
Collapse
|
16
|
Di Z, Zhang R, Guo X, Shen H, Li Y, Jia J, Wei Y. Principle on Selecting the Coordination Ligands of Palladium Precursors Encapsulated by Zeolite for an Efficient Purification of Formaldehyde at Ambient Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16641-16652. [PMID: 37734047 DOI: 10.1021/acs.est.3c05190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
High-performance zeolite-supported noble metal catalysts with low loading and high dispersion of active components are the most promising materials for achieving the complete oxidation of formaldehyde (HCHO) at room temperature. In this work, palladium nanoparticles (Pd NPs) with different sizes were successfully encapsulated inside the silicalite-1 (S-1) zeolite framework by using diverse stabling ligands via the one-pot method. Thereafter, the rule on selecting the coordinative ligands for palladium was clarified: more N atoms, a short carbon chain, a smaller branch chain, and bidentate coordination are characteristics of an ideal ligand. Accordingly, the best-performing 0.2Pd@S-1(Ethylenediamine) catalyst exhibited outstanding performance for HCHO oxidation, achieving 100% conversion even at room temperature. High-resolution high-angle annular dark-field scanning transmission electron microscopy (HR HAADF-STEM) and density functional theory (DFT) calculations indicate that the chelate is formed by complexation of Pd2+ ions with ethylenediamine, displaying the smallest spatial site resistance simultaneously with the zeolite synthesis, resulting in Pd located mostly within the 5-membered ring (5-MR) channels of S-1 after calcination, thus limiting the growth of Pd clusters and promoting their dispersion.
Collapse
Affiliation(s)
- Zhaoying Di
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaonan Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanxiao Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingbo Jia
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Qu H, Ma Y, Li X, Duan Y, Li Y, Liu F, Yu B, Tian M, Li Z, Yu Y, Li B, Lv Z, Wang L. Ternary alloy (FeCoNi) nanoparticles supported on hollow porous carbon with defects for enhanced oxygen evolution reaction. J Colloid Interface Sci 2023; 645:107-114. [PMID: 37146374 DOI: 10.1016/j.jcis.2023.04.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Low-cost non-noble metal nanoparticles are promising electrocatalysts that can catalyze oxygen evolution reaction (OER). Various factors such as poor activity and stability hinder the practical applications of these materials. The electroactivity and durability of the electrocatalysts can be improved by optimizing the morphology and composition of the materials. Herein, we report the successful synthesis of hollow porous carbon (HPC) catalysts loaded with ternary alloy (FeCoNi) nanoparticles (HPC-FeCoNi) for efficient OER. HPC is firstly synthesized by a facile carbon deposition method using the hierarchical porous zeolite ZSM-5 as the hard template. Numerous defects are generated on the carbon shell during the removal of zeolite template. Subsequently, FeCoNi alloy nanoparticles are supported on HPC by a sequence of impregnation and H2 reduction processes. The synergistic effect between carbon defects and FeCoNi alloy nanoparticles endows the catalyst with an excellent OER performance (low overpotential of 219 mV; Tafel slope of 60.1 mV dec-1) in a solution of KOH (1 M). A stable potential is maintained during the continuous operation over 72 h. The designed HPC-FeCoNi presents a platform for the development of electrocatalysts that can be potentially applied for industrial OER.
Collapse
Affiliation(s)
- Huiqi Qu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yiru Ma
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao, Shandong 266042, PR China
| | - Xiaolong Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuhao Duan
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao, Shandong 266042, PR China
| | - Yuan Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Feng Liu
- Biomedical Sensing Engineering Technology Research Center, Shandong University, Jinan 250100, PR China
| | - Bin Yu
- Biomedical Sensing Engineering Technology Research Center, Shandong University, Jinan 250100, PR China
| | - Minge Tian
- Scientific Green (Shandong) Environmental Technology Co. Ltd, Jining Economic Development Zone, Shandong Province 272499, PR China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yueqin Yu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao, Shandong 266042, PR China
| | - Bin Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Zhiguo Lv
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
18
|
Gu MX, Gao LP, Peng SS, Qi SC, Shao XB, Liu XQ, Sun LB. Transition Metal Single Atoms Constructed by Using Inherent Confined Space. ACS NANO 2023; 17:5025-5032. [PMID: 36825801 DOI: 10.1021/acsnano.2c12817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-atom catalysts (SACs) show expressively enhanced activity toward diverse reactions due to maximized atomic utilization of metal sites, while their facile, universal, and massive preparation remains a pronounced challenge. Here we report a facile strategy for the preparation of SACs by use of the inherent confined space between the template and silica walls in template-occupied mesoporous silica SBA-15 (TOS). Different transition metal precursors can be introduced into the confined space readily by grinding, and during succeeding calcination single atoms are constructed in the form of M-O-Si (M = Cu, Co, Ni, and Zn). In addition to the generality, the present strategy is easy to scale up and can allow the synthesis of 10 g of SACs in one pot through ball milling. The Cu SAC has been applied for CO2 cycloaddition of epichlorohydrin, and the activity is obviously higher than the counterpart prepared without confined space and various reported Cu-containing catalysts.
Collapse
Affiliation(s)
- Meng-Xuan Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Le-Ping Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Song-Song Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Shi-Chao Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Bin Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
19
|
Liu H, Zhou J, Chen T, Hu P, Xiong C, Sun Q, Chen S, Lo TWB, Ji H. Isolated Pt Species Anchored by Hierarchical-like Heteroatomic Fe-Silicalite-1 Catalyze Propane Dehydrogenation near the Thermodynamic Limit. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Hao Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Zhou
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianxiang Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, China
| | - Peng Hu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingdi Sun
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shenwei Chen
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tsz Woon Benedict Lo
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Huizhou Research Institute, Sun Yat-sen University, Huizhou 516081, China
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
20
|
Catalytic-Level Identification of Prepared Pt/HY, Pt-Zn/HY, and Pt-Rh/HY Nanocatalysts on the Reforming Reactions of N-Heptane. Processes (Basel) 2023. [DOI: 10.3390/pr11010270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The operation of reforming catalysts in a fixed bed reactor undergoes a high level of interaction between the operating parameters and the reaction mechanism. Understanding such an interaction reduces the catalyst deactivation rate. In the present work, three kinds of nanocatalysts (i.e., Pt/HY, Pt-Zn/HY, and Pt-Rh/HY) were synthesized. The catalysts’ performances were evaluated for n-heptane reactions in the fixed bed reactor. The operating conditions applied were the following: 1 bar pressure, WHSV of 4, hydrogen/n-heptane ratio of 4, and the reaction temperatures of 425, 450, 475, 500, and 525 °C. The optimal reaction temperature for all three types of nanocatalysts to produce high-quality isomers and aromatic hydrocarbons was 500 °C. Accordingly, the nanocatalyst Pt-Zn/HY provided the highest catalytic selectivity for the desired hydrocarbons. Moreover, the Pt-Zn/HY-nanocatalyst showed more resistance against catalyst deactivation in comparison with the other two types of nanocatalysts (Pt/HY and Pt-Rh/HY). This work offers more understanding for the application of nanocatalysts in the reforming process in petroleum refineries with high performance and economic feasibility.
Collapse
|
21
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
22
|
Li H, Shen Y, Xiao X, Jiang H, Gu Q, Zhang Y, Lin L, Luo W, Zhou S, Zhao J, Wang A, Zhang T, Yang B. Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hong Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Yuebo Shen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Xia Xiao
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang110034, China
| | - Hong Jiang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Yafeng Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Lu Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
23
|
Size effect of encapsulated metal within zeolite: Biomass, CO2 and Methane utilization. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Zhang Y, Ma P, Fu H, Qu X, Zheng S. Effective catalytic hydrodechlorination removal of chloroanisole odorants in water using palladium catalyst confined in zeolite Y. CHEMOSPHERE 2022; 309:136551. [PMID: 36152833 DOI: 10.1016/j.chemosphere.2022.136551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Chloroanisoles is a class of odorous pollutants commonly identified in drinking water. In the present study, we confined noble metal palladium (Pd) in the micropores of zeolite Y (ie-Pd@Y) using an ion exchange method, and applied it for the catalytic hydrodechlorination removal of chloroanisoles (represented by 2,4,6-trichloroanisole/TCA) in water. Pd supported on zeolite Y surface (im-Pd/Y, prepared by conventional impregnation method) was used as the benchmarking catalyst. The characterization results revealed that ie-Pd@Y had smaller Pd particle size and higher Pdn+/Pd0 ratio than im-Pd/Y. The catalytic hydrodechlorination of TCA followed a concerted dechlorination pathway and the Langmuir-Hinshelwood model. The ie-Pd@Y catalysts with different Pd loadings exhibit excellent catalytic activities with more than 95% of TCA removed within 30 min, which is far superior to the im-Pd/Y catalysts (27-70%). Moreover, due to the confinement effect of zeolite Y, ie-Pd@Y displayed enhanced catalytic stability as compared with im-Pd/Y. The initial activity of ie-Pd@Y was more than 20 times higher than that of im-Pd/Y after five reaction cycles. Additionally, with the assistance of sieving effect, ie-Pd@Y displayed much stronger capability against the interference from dissolved organic matter than im-Pd/Y. The present results demonstrate that the confined catalysts ie-Pd@Y can be applied in liquid phase catalytic hydrogenation to effectively eliminate halogenated odorants in waters.
Collapse
Affiliation(s)
- Yufan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Pu Ma
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| |
Collapse
|
25
|
Wang Y, Wang M. Recent progresses on single-atom catalysts for the removal of air pollutants. Front Chem 2022; 10:1039874. [DOI: 10.3389/fchem.2022.1039874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The booming industrialization has aggravated emission of air pollutants, inflicting serious harm on environment and human health. Supported noble-metals are one of the most popular catalysts for the oxidation removal of air pollutants. Unfortunately, the high price and large consumption restrict their development and practical application. Single-atom catalysts (SACs) emerge and offer an optimizing approach to address this issue. Due to maximal atom utilization, tunable coordination and electron environment and strong metal-support interaction, SACs have shown remarkable catalytic performance on many reactions. Over the last decade, great potential of SACs has been witnessed in the elimination of air pollutants. In this review, we first briefly summarize the synthesis methods and modulation strategies together with the characterization techniques of SACs. Next, we highlight the application of SACs in the abatement of air pollutants including CO, volatile organic compounds (VOCs) and NOx, unveiling the related catalytic mechanism of SACs. Finally, we propose the remaining challenges and future perspectives of SACs in fundamental research and practical application in the field of air pollutant removal.
Collapse
|
26
|
Zhang T, Weng S, Wang X, Zhang Z, Gao Y, Lin T, Zhu Y, Zhang W, Sun C. Platinum atomic clusters embedded in polyoxometalates-carbon black as an efficient and durable catalyst for hydrogen evolution reaction. J Colloid Interface Sci 2022; 624:704-712. [PMID: 35696788 DOI: 10.1016/j.jcis.2022.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022]
Abstract
Platinum-based catalysts are regarded as the Holy Grail of hydrogen evolution reaction (HER). As a benchmark catalyst for HER, the commercial Pt/C catalyst has low Pt utilization efficiency and high cost, which hinders its commercialization. Atomic clusters-based catalysts show high efficiency of atom utilization and high performance toward electrocatalysis. Herein, an environmentally friendly preparation strategy is proposed to construct Pt atomic clusters on the polyoxometalates-carbon black (Pt-POMs-CB) support. Density functional theory (DFT) calculations reveal that the Pt clusters can be stably anchored on the surface with the driving force arising from the charge transfer from Pt atoms to O atoms of the POMs. Benefiting from metal-support interaction, Pt atomic clusters embedded in silicotungstic acid-carbon black (Pt-STA-CB) exhibit excellent HER activity with an overpotential of 33.8 mV at 10 mA cm-2, and high mass activity is 1.62 A mg-1Pt at 33.8 mV, which is 5.4 times that of the commercial Pt/C. In addition, the catalyst displays high stability of 800 h at current density of 500 mA cm-2. It provides a platform for facile and low-cost preparation of stable Pt-based catalysts, which is crucial for their large-scale production and practical application in the industry.
Collapse
Affiliation(s)
- Tongrui Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Suting Weng
- Institute of Physics, Chinese Academy of Sciences; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefeng Wang
- Institute of Physics, Chinese Academy of Sciences; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; Tianmu Lake Institute of Advanced Energy Storage Technologies Co. Ltd., Liyang 213300, Jiangsu, China
| | - Zhijun Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Yaling Gao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Ting Lin
- Institute of Physics, Chinese Academy of Sciences; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanqin Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Wei Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Chunwen Sun
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
27
|
Patel JR, Patel AU. Pd single-atom-site stabilized by supported phosphomolybdic acid: design, characterizations and tandem Suzuki-Miyaura cross coupling/nitro hydrogenation reaction. NANOSCALE ADVANCES 2022; 4:4321-4334. [PMID: 36321158 PMCID: PMC9552875 DOI: 10.1039/d2na00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Herein, a single-metal (Pd) site with high surface energy was stabilized and dispersed on a support (zirconia) via a stabilizing agent (phosphomolybdic acid) using a wet chemistry method. HRTEM and HAADF-STEM showed a highly uniform dispersion of Pd SASc on PMA/ZrO2. The Pd SASc showed superior catalytic activity (>99% conversion) for the Suzuki-Miyaura cross-coupling reaction, which was further feasible for catalyzing mechanistically different nitro hydrogenation reactions in tandem fusion under mild reaction conditions. This catalyst showed outstanding activity (100% conversion and 99% selectivity) with a substrate/catalyst ratio of 927 and TON of 918 using a very low amount of Pd (0.94 × 10-3 mmol) for the tandem Suzuki-Miyaura cross-coupling/nitro hydrogenation reaction. It also exhibited superior stability and reusability for up to three cycles without any change in its activity.
Collapse
Affiliation(s)
- Jay R Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science. The Maharaja Sayajirao University of Baroda Vadodara Gujarat India
| | - Anjali U Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science. The Maharaja Sayajirao University of Baroda Vadodara Gujarat India
| |
Collapse
|
28
|
Yu R, Tan Y, Yao H, Xu Y, Huang J, Zhao B, Du Y, Hua Z, Li J, Shi J. Toward n-Alkane Hydroisomerization Reactions: High-Performance Pt-Al 2O 3/SAPO-11 Single-Atom Catalysts with Nanoscale Separated Metal-Acid Centers and Ultralow Platinum Content. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44377-44388. [PMID: 36153976 DOI: 10.1021/acsami.2c11607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Long-chain n-alkane hydroisomerization reaction plays a vital role in petrochemical and coal chemical industries, which could produce high-quality hydrocarbon fuels and lubricant base oils for modern transportation and mechanical drive. However, minimizing precious metal usage while maintaining the catalyst performance remains a great challenge. Herein, a novel bifunctional catalyst toward n-alkane hydroisomerization reactions, Pt-Al2O3/SAPO-11 (Pt-A/S11) featuring nanoscale separated metal-acid active centers has been synthesized via a simple two-step procedure. In detail, Pt species was first loaded on the nanometer-sized alumina matrices through an incipient wetness impregnation method and then mixed with SAPO-11 molecular sieve to form the composite catalyst. Importantly, 0.015Pt-A/S11 catalyst with the ever-reported lowest Pt loading amount of 0.015 wt % exhibits an extraordinarily high isomer yield of 85.8% compared to previous published results and the traditional Pt-SAPO-11/Al2O3 (Pt-S11/A) catalyst accompanying with the direct contact between metal and acid sites (65.6%). It has been confirmed that the Pt species in 0.015Pt-A/S11 samples exist in single-atom form, leading to an excellent hydroisomerization performance. The possible reaction processes have been discussed to elucidate the exemplary catalytic performance of the synthesized Pt-A/S11 catalysts with nanoscale intimacy of metal-acid sites.
Collapse
Affiliation(s)
- Rui Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Yangchun Tan
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Yanhui Xu
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China
| | - Jian Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Bin Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Yanyan Du
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China
| | - Zile Hua
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Jiusheng Li
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| |
Collapse
|
29
|
Liang X, Fu N, Yao S, Li Z, Li Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J Am Chem Soc 2022; 144:18155-18174. [PMID: 36175359 DOI: 10.1021/jacs.1c12642] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom-site catalysts (SASCs) featuring maximized atom utilization and isolated active sites have progressed tremendously in recent years as a highly prosperous branch of catalysis research. Varieties of SASCs have been developed that show excellent performance in many catalytic applications. The major goal of SASC research is to establish feasible synthetic strategies for the preparation of high-performance catalysts, to achieve an in-depth understanding of the active-site structures and catalytic mechanisms, and to develop practical catalysts with industrial value. This Perspective describes the up-to-date development of SASCs and related catalysts, such as dual-atom-site catalysts (DASCs) and nano-single-atom-site catalysts (NSASCs), analyzes the current challenges encountered by these catalysts for industrial applications, and proposes their possible future development path.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ninghua Fu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shuangchao Yao
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.,Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
30
|
Ligand-coordination effects on the selective hydrogenation of acetylene in single-site Pd-ligand supported catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Precise control of Pt encapsulation in zeolite-based catalysts for a stable low-temperature CO oxidation reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Chen Q, Peng P, Yang G, Li Y, Han M, Tan Y, Zhang C, Chen J, Jiang K, Liu L, Ye C, Xing E. Template‐Guided Regioselective Encaging of Platinum Single Atoms into Y Zeolite: Enhanced Selectivity in Semihydrogenation and Resistance to Poisoning. Angew Chem Int Ed Engl 2022; 61:e202205978. [DOI: 10.1002/anie.202205978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Qiang Chen
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Pai Peng
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Ganjun Yang
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yanzhi Li
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Mengxi Han
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yaozong Tan
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Chengxi Zhang
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Junwen Chen
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Chenliang Ye
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Enhui Xing
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| |
Collapse
|
33
|
Synthesis of Nitrogen-doped Carbon Supported Cerium Single Atom Catalyst by Ball Milling for Selective Oxidation of Ethylbenzene. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Liu F, Tang Y, Zhao J, Bai Y, Chen J, Tian L, Shah SSA, Bao SJ. Carbon dots-induced carbon-coated Ni and Mo2N nanosheets for efficient hydrogen production. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Lu M, Liu M, Xu C, Yin Y, Shi L, Wu H, Yuan A, Ren XM, Wang S, Sun H. Location and size regulation of manganese oxides within mesoporous silica for enhanced antibiotic degradation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
36
|
Chen Q, Peng P, Yang G, Li Y, Han M, Tan Y, Zhang C, Chen J, Jiang K, Liu L, Ye C, Xing E. Template‐Guided Regioselective Encaging of Platinum Single Atoms into Y Zeolite: Enhanced Selectivity in Semihydrogenation and Resistance to Poisoning. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Chen
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Pai Peng
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Ganjun Yang
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yanzhi Li
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Mengxi Han
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yaozong Tan
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Chengxi Zhang
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Junwen Chen
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Chenliang Ye
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Enhui Xing
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| |
Collapse
|
37
|
Felvey N, Guo J, Rana R, Xu L, Bare SR, Gates BC, Katz A, Kulkarni AR, Runnebaum RC, Kronawitter CX. Interconversion of Atomically Dispersed Platinum Cations and Platinum Clusters in Zeolite ZSM-5 and Formation of Platinum gem-Dicarbonyls. J Am Chem Soc 2022; 144:13874-13887. [PMID: 35854402 DOI: 10.1021/jacs.2c05386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Catalysts composed of platinum dispersed on zeolite supports are widely applied in industry, and coking and sintering of platinum during operation under reactive conditions require their oxidative regeneration, with the platinum cycling between clusters and cations. The intermediate platinum species have remained only incompletely understood. Here, we report an experimental and theoretical investigation of the structure, bonding, and local environment of cationic platinum species in zeolite ZSM-5, which are key intermediates in this cycling. Upon exposure of platinum clusters to O2 at 700 °C, oxidative fragmentation occurs, and Pt2+ ions are stabilized at six-membered rings in the zeolite that contain paired aluminum sites. When exposed to CO under mild conditions, these Pt2+ ions form highly uniform platinum gem-dicarbonyls, which can be converted in H2 to Ptδ+ monocarbonyls. This conversion, which weakens the platinum-zeolite bonding, is a first step toward platinum migration and aggregation into clusters. X-ray absorption and infrared spectra provide evidence of the reductive and oxidative transformations in various gas environments. The chemistry is general, as shown by the observation of platinum gem-dicarbonyls in several commercially used zeolites (ZSM-5, Beta, mordenite, and Y).
Collapse
Affiliation(s)
- Noah Felvey
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jiawei Guo
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Le Xu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ron C Runnebaum
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
38
|
Sun Q, Jia C, Zhao Y, Zhao C. Single atom-based catalysts for electrochemical CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64000-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
40
|
Lin H, Wang W, Kikhtyanin OV, Kubicka D, Feng Z, Guo C, Bai X, Xiao L, Wu W. Highly effective Pd/ZSM-12 bifunctional catalysts by in-situ glow discharge plasma reduction: the effect of metal function on the catalytic performance for n-hexadecane hydroisomerization. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Zhang W, Xia Y, Chen S, Hu Y, Yang S, Tie Z, Jin Z. Single-Atom Metal Anchored Zr 6-Cluster-Porphyrin Framework Hollow Nanocapsules with Ultrahigh Active-Center Density for Electrocatalytic CO 2 Reduction. NANO LETTERS 2022; 22:3340-3348. [PMID: 35412833 DOI: 10.1021/acs.nanolett.2c00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing earth-abundant electrocatalysts toward highly efficient CO2 reduction has significant importance to decrease the global emission of greenhouse gas. Herein, we propose an efficient strategy to anchor non-noble metal single atoms on Zr6-cluster-porphyrin framework hollow nanocapsules with well-defined and abundant metal-N4 porphyrin sites for efficient electrochemical CO2 reduction. Among different transition metal single atoms (Mn, Fe, Co, Ni, and Cu), Co single-atom anchored Zr6-cluster-porphyrin framework hollow nanocapsules demonstrated the highest activity and selectivity for CO production. The rich Co-N4 active centers and hierarchical porous structure contribute to enhanced CO2 adsorption capability and moderate binding strength of reaction intermediates, thus facilitating *CO desorption and CO2-to-CO conversion. The Co-anchored nanocapsules maintain high efficiency and well-preserved stability during long-term electrocatalysis tests. Moreover, the Co-anchored nanocapsules exhibit a remarkable solar-to-CO energy conversion efficiency of 12.5% in an integrated solar-driven CO2 reduction/O2 evolution electrolysis system when powered by a custom large-area [Cs0.05(FA0.85MA0.15)0.95]Pb0.9(I0.85Br0.15)3-based perovskite solar cell.
Collapse
Affiliation(s)
- Wenjun Zhang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuren Xia
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience, University of Science and Technology of China Hefei, Hefei, Anhui 230029, China
| | - Yi Hu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| | - Songyuan Yang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| | - Zuoxiu Tie
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| |
Collapse
|
42
|
Wang W, Wu Y, Liu T, Zhao Y, Qu Y, Yang R, Xue Z, Wang Z, Zhou F, Long J, Yang Z, Han X, Lin Y, Chen M, Zheng L, Zhou H, Lin X, Wu F, Wang H, Yang Y, Li Y, Dai Y, Wu Y. Single Co Sites in Ordered SiO2 Channels for Boosting Nonoxidative Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenyu Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Yafei Zhao
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunteng Qu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhenggang Xue
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiyuan Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangyao Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangping Long
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengkun Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiao Han
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Lin
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Chen
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lirong Zheng
- Institute of High Energy Physics, Beijing 100049, China
| | - Huang Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingen Lin
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Yihu Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuen Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
43
|
Rathi A, Barman S, Basu S, Arya RK. Post-fabrication structural changes and enhanced photodegradation activity of semiconductors@zeolite composites towards noxious contaminants. CHEMOSPHERE 2022; 288:132609. [PMID: 34687683 DOI: 10.1016/j.chemosphere.2021.132609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
This review article provides the recent progress in semiconductor-based zeolite photoactive materials for the application of noxious contaminants removal. The rapidly expanding industrialization and globalization cause serious threats to the environment or water bodies. The semiconductor@zeolite photocatalysts were implemented for water quality management/sustainment. The exclusive properties of zeolite material have been elaborated with their role in the photocatalysis process. The photoactive material's properties like single-atom catalysts (SACs), distribution of metal in the zeolite crystal were elaborated along with their role in catalytic reactions. Differently prepared semiconductor@zeolite composites such as TiO2@zeolite, binary and ternary composites, Fe/Ag/bismuth-modified/ZnO/ZnS/NiO/g-C3N4/core-shell/quantum dots modified zeolite composites, were systematically summarized. The research progress in morphologies, structural effect, degradation mechanism were recapitulated and tabulated form of % degradation with their optimal parameters such as catalyst dose, pollutant concentrations, pH, light source intensities were also provided. The significance of zeolite frameworks, the structural properties of semiconductor@zeolite photoactive materials to enhance the degradation efficiencies was explored. Analysis of the intermediate products of Norfloxacin, TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), TCDF (2,3,7,8-tetrachlorodibenzofuran), diclofenac contaminants were systematically represented and structurally identified by GC-MS/HPLC-MS techniques.
Collapse
Affiliation(s)
- Aanchal Rathi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, India
| | - Sanghamitra Barman
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, India.
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
44
|
Hai X, Xi S, Mitchell S, Harrath K, Xu H, Akl DF, Kong D, Li J, Li Z, Sun T, Yang H, Cui Y, Su C, Zhao X, Li J, Pérez-Ramírez J, Lu J. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. NATURE NANOTECHNOLOGY 2022; 17:174-181. [PMID: 34824400 DOI: 10.1038/s41565-021-01022-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/29/2021] [Indexed: 05/15/2023]
Abstract
The stabilization of transition metals as isolated centres with high areal density on suitably tailored carriers is crucial for maximizing the industrial potential of single-atom heterogeneous catalysts. However, achieving single-atom dispersions at metal contents above 2 wt% remains challenging. Here we introduce a versatile approach combining impregnation and two-step annealing to synthesize ultra-high-density single-atom catalysts with metal contents up to 23 wt% for 15 metals on chemically distinct carriers. Translation to a standardized, automated protocol demonstrates the robustness of our method and provides a path to explore virtually unlimited libraries of mono- or multimetallic catalysts. At the molecular level, characterization of the synthesis mechanism through experiments and simulations shows that controlling the bonding of metal precursors with the carrier via stepwise ligand removal prevents their thermally induced aggregation into nanoparticles. The drastically enhanced reactivity with increasing metal content exemplifies the need to optimize the surface metal density for a given application. Moreover, the loading-dependent site-specific activity observed in three distinct catalytic systems reflects the well-known complexity in heterogeneous catalyst design, which now can be tackled with a library of single-atom catalysts with widely tunable metal loadings.
Collapse
Affiliation(s)
- Xiao Hai
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Karim Harrath
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, China
| | - Haomin Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Debin Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jing Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zejun Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Tao Sun
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Huimin Yang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yige Cui
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Chenliang Su
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, China.
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore.
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
45
|
Shen R, Hao L, Ng YH, Zhang P, Arramel A, Li Y, Li X. Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Wang J, Liu C, Zhu P, Liu H, Zhang X. Mercaptosilane-assisted synthesis of highly dispersed and stable Pt nanoparticles on HL zeolites for enhancing hydroisomerization of n-hexane. NEW J CHEM 2022. [DOI: 10.1039/d1nj05774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt/HL-SH catalysts were synthesized by a facile mercaptosilane-assisted in situ synthesis approach and exhibited better catalytic performance in n-hexane hydroisomerization.
Collapse
Affiliation(s)
- Jinshan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Cun Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Peng Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Haiou Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
47
|
Hou D, Heard CJ. Migration of zeolite-encapsulated Pt and Au under reducing environments. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02270a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Simulations reveal accelerated migration of Pt@zeolite by reducing adsorbates and the importance of PtCO in early stages of particle growth.
Collapse
Affiliation(s)
- Dianwei Hou
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| |
Collapse
|
48
|
Fu N, Liang X, Li Z, Li Y. Single Atom Sites Catalysts based on High Specific Surface Area Supports. Phys Chem Chem Phys 2022; 24:17417-17438. [DOI: 10.1039/d2cp00736c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalysis is the heart of modern chemical industry. Supports with high specific surface area are crucial for the fabrication of efficient catalysts with elevated metal dispersion. Single atom sites catalysts...
Collapse
|
49
|
Yang Y, Liu X, Lyu Y, Liu Y, Zhan W, Yu Z, Fan L, Yan Z. Enhanced dispersion of nickel nanoparticles on SAPO-5 for boosting hydroisomerization of n-hexane. J Colloid Interface Sci 2021; 604:727-736. [PMID: 34284176 DOI: 10.1016/j.jcis.2021.07.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
The nickel based bifunctional catalyst with enhanced hydroisomerization performance was developed using an in-situ solid synthesis method. It was achieved to stabilize smaller Ni active sites on SAPO-5 using ethylenediaminetetraacetic acid (EDTA) ligands. The role of EDTA ligands was clarified by controlling the molar ratio of EDTA to Ni2+ (EDTA/Ni2+) over Ni/SAPO-5 catalysts. EDTA ligands inhibited the formation of nickel aluminate spinel and aggregation of NiO species during calcination, which dispersed Ni nanoparticles in a mean size of 4.7 nm on SAPO-5. The size of Ni nanoparticles could be controlled by regulating EDTA/Ni2+ ratio in [Ni-EDTA]2- complex. The prepared catalyst exhibited high yield of isomers (54.0%) and di-branched isomers selectivity (18.0%) in the n-hexane hydroisomerization, which was approximately 2 times higher than that of the Ni/SAPO-5 catalyst without EDTA ligands at similar conversion. These results are important to propose a facile approach for the preparation of highly dispersed non-noble metal based bifunctional catalysts at a high loading.
Collapse
Affiliation(s)
- Ye Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Xinmei Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China.
| | - Yuchao Lyu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Yuxiang Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China; State Key Laboratory Base of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266555, China
| | - Weilong Zhan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Zhumo Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Lei Fan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| |
Collapse
|
50
|
Alonso G, López E, Huarte-Larrañaga F, Sayós R, Prats H, Gamallo P. Zeolite-encapsulated single-atom catalysts for efficient CO2 conversion. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|