1
|
Lee S, Watanabe T, Ross FM, Park JH. Temperature Dependent Growth Kinetics of Pd Nanocrystals: Insights from Liquid Cell Transmission Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403969. [PMID: 39109568 DOI: 10.1002/smll.202403969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Indexed: 12/20/2024]
Abstract
Quantifying the role of experimental parameters on the growth of metal nanocrystals is crucial when designing synthesis protocols that yield specific structures. Here, the effect of temperature on the growth kinetics of radiolytically-formed branched palladium (Pd) nanocrystals is investigated by tracking their evolution using liquid cell transmission electron microscopy (TEM) and applying a temperature-dependent radiolysis model. At early times, kinetics consistent with growth limited is measured by the surface reaction rate, and it is found that the growth rate increases with temperature. After a transition time, kinetics consistent with growth limited by Pd atom supply is measured, which depends on the diffusion rate of Pd ions and atoms and the formation rate of Pd atoms by reduction of Pd ions by hydrated electrons. Growth in this regime is not strongly temperature-dependent, which is attributed to a balance between changes in the reducing agent concentration and the Pd ion diffusion rate. The observations suggest that branched rough surfaces, generally attributed to diffusion-limited growth, can form under surface reaction-limited kinetics. It is further shown that the combination of liquid cell TEM and radiolysis calculations can help identify the processes that determine crystal growth, with prospects for strategies for control during the synthesis of complex nanocrystals.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeung Hun Park
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Information Sciences Institute, University of Southern California, Marina Del Rey, CA, 90292, USA
| |
Collapse
|
2
|
Rafique MA. Exploiting Temporal Features in Calculating Automated Morphological Properties of Spiky Nanoparticles Using Deep Learning. SENSORS (BASEL, SWITZERLAND) 2024; 24:6541. [PMID: 39460021 PMCID: PMC11511305 DOI: 10.3390/s24206541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Object segmentation in images is typically spatial and focuses on the spatial coherence of pixels. Nanoparticles in electron microscopy images are also segmented frame by frame, with subsequent morphological analysis. However, morphological analysis is inherently sequential, and a temporal regularity is evident in the process. In this study, we extend the spatially focused morphological analysis by incorporating a fusion of hard and soft inductive bias from sequential machine learning techniques to account for temporal relationships. Previously, spiky Au nanoparticles (Au-SNPs) in electron microscopy images were analyzed, and their morphological properties were automatically generated using a hourglass convolutional neural network architecture. In this study, recurrent layers are integrated to capture the natural, sequential growth of the particles. The network is trained with a spike-focused loss function. Continuous segmentation of the images explores the regressive relationships among natural growth features, generating morphological statistics of the nanoparticles. This study comprehensively evaluates the proposed approach by comparing the results of segmentation and morphological properties analysis, demonstrating its superiority over earlier methods.
Collapse
Affiliation(s)
- Muhammad Aasim Rafique
- Department of Information Systems, College of Computer Sciences & Information Technology, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
Hussain M, Rafique MA, Jung WG, Kim BJ, Jeon M. Segmentation and Morphology Computation of a Spiky Nanoparticle Using the Hourglass Neural Network. ACS OMEGA 2023; 8:17834-17840. [PMID: 37251121 PMCID: PMC10210197 DOI: 10.1021/acsomega.3c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Morphological measurements of nanoparticles in electron microscopy images are tedious, laborious, and often succumb to human errors. Deep learning methods in artificial intelligence (AI) paved the way for automated image understanding. This work proposes a deep neural network (DNN) for the automated segmentation of a Au spiky nanoparticle (SNP) in electron microscopic images, and the network is trained with a spike-focused loss function. The segmented images are used for the growth measurement of the Au SNP. The auxiliary loss function captures the spikes of the nanoparticle, which prioritizes the detection of spikes in the border regions. The growth of the particles measured by the proposed DNN is as good as the measurement in manually segmented images of the particles. The proposed DNN composition with the training methodology meticulously segments the particle and consequently provides accurate morphological analysis. Furthermore, the proposed network is tested on an embedded system for integration with the microscope hardware for real-time morphological analysis.
Collapse
Affiliation(s)
- Muhammad
Ishfaq Hussain
- School
of Electrical Engineering and Computer Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Muhammad Aasim Rafique
- Department
of Information Systems, College of Computer Sciences and Information
Technology, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Wan-Gil Jung
- Korea
Basic Science Institute, Gwangju Center, Gwangju 61186, Republic of Korea
| | - Bong-Joong Kim
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Moongu Jeon
- School
of Electrical Engineering and Computer Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| |
Collapse
|
4
|
Singh N, Kumar A, Ghatak A. Studying kinetics of a surface reaction using elastocapillary effect. J Colloid Interface Sci 2023; 645:266-275. [PMID: 37150000 DOI: 10.1016/j.jcis.2023.04.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
HYPOTHESIS When a liquid is inserted inside a microfluidic channel, embedded within a soft elastomeric layer, e.g. poly(dimethylsiloxane) (PDMS), the thin wall of the channel deforms, due to change in solid-liquid interfacial energy. This phenomenon is known as Elastocapillary effect. The evolution of a new species at this interface too alters the interfacial energy and consequently the extent of deformation. Hence, it should be possible to monitor dynamics of physical and chemical events occurring near to the solid-liquid interface by measuring this deformation by a suitable method, e.g., optical profilometer. EXPERIMENTS Aqueous solution of a metal salt inserted into these channels reacts with Silicon-hydride present in PDMS, yielding metallic nanoparticles at the channel surface. The kinetics of this reaction was captured in real time, by measuring the wall deformation. Similarly, physical adsorption of a protein: Bovine Serum Albumin, on PDMS surface too was monitored. FINDING The rate of change in deformation can be related to rate of these processes to extract the respective reaction rate constant. These results show that Elastocapillary effect can be a viable analytical tool for in-situ monitoring of many physical and chemical processes for which, the reaction site is inaccessible to conventional analytical methods.
Collapse
Affiliation(s)
- Nitish Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Ajeet Kumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Animangsu Ghatak
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, 208016, India.
| |
Collapse
|
5
|
Lee S, Schneider NM, Tan SF, Ross FM. Temperature Dependent Nanochemistry and Growth Kinetics Using Liquid Cell Transmission Electron Microscopy. ACS NANO 2023; 17:5609-5619. [PMID: 36881385 DOI: 10.1021/acsnano.2c11477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid cell transmission electron microscopy has become a powerful and increasingly accessible technique for in situ studies of nanoscale processes in liquid and solution phase. Exploring reaction mechanisms in electrochemical or crystal growth processes requires precise control over experimental conditions, with temperature being one of the most critical factors. Here we carry out a series of crystal growth experiments and simulations at different temperatures in the well-studied system of Ag nanocrystal growth driven by the changes in redox environment caused by the electron beam. Liquid cell experiments show strong changes in both morphology and growth rate with temperature. We develop a kinetic model to predict the temperature-dependent solution composition, and we discuss how the combined effect of temperature-dependent chemistry, diffusion, and the balance between nucleation and growth rates affect the morphology. We discuss how this work may provide guidance in interpreting liquid cell TEM and potentially larger-scale synthesis experiments for systems controlled by temperature.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Shu Fen Tan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Sun Q, Boddapati L, Wang L, Li J, Deepak FL. In Situ Observations Reveal the Five-fold Twin-Involved Growth of Gold Nanorods by Particle Attachment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:796. [PMID: 36903675 PMCID: PMC10005194 DOI: 10.3390/nano13050796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Crystallization plays a critical role in determining crystal size, purity and morphology. Therefore, uncovering the growth dynamics of nanoparticles (NPs) atomically is important for the controllable fabrication of nanocrystals with desired geometry and properties. Herein, we conducted in situ atomic-scale observations on the growth of Au nanorods (NRs) by particle attachment within an aberration-corrected transmission electron microscope (AC-TEM). The results show that the attachment of spherical colloidal Au NPs with a size of about 10 nm involves the formation and growth of neck-like (NL) structures, followed by five-fold twin intermediate states and total atomic rearrangement. The statistical analyses show that the length and diameter of Au NRs can be well regulated by the number of tip-to-tip Au NPs and the size of colloidal Au NPs, respectively. The results highlight five-fold twin-involved particle attachment in spherical Au NPs with a size of 3-14 nm, and provide insights into the fabrication of Au NRs using irradiation chemistry.
Collapse
Affiliation(s)
- Qi Sun
- School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China
| | - Loukya Boddapati
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Linan Wang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China
| | - Junjie Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
7
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
8
|
Bultema LA, Bücker R, Schulz EC, Tellkamp F, Gonschior J, Miller RD, Kassier GH. The effect of secondary electrons on radiolysis as observed by in liquid TEM: The role of window material and electrical bias. Ultramicroscopy 2022; 240:113579. [DOI: 10.1016/j.ultramic.2022.113579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
|
9
|
Fritsch B, Zech TS, Bruns MP, Körner A, Khadivianazar S, Wu M, Zargar Talebi N, Virtanen S, Unruh T, Jank MPM, Spiecker E, Hutzler A. Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202803. [PMID: 35780494 PMCID: PMC9443456 DOI: 10.1002/advs.202202803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Indexed: 05/20/2023]
Abstract
Utilizing ionizing radiation for in situ studies in liquid media enables unique insights into nanostructure formation dynamics. As radiolysis interferes with observations, kinetic simulations are employed to understand and exploit beam-liquid interactions. By introducing an intuitive tool to simulate arbitrary kinetic models for radiation chemistry, it is demonstrated that these models provide a holistic understanding of reaction mechanisms. This is shown for irradiated HAuCl4 solutions allowing for quantitative prediction and tailoring of redox processes in liquid-phase transmission electron microscopy (LP-TEM). Moreover, it is demonstrated that kinetic modeling of radiation chemistry is applicable to investigations utilizing X-rays such as X-ray diffraction (XRD). This emphasizes that beam-sample interactions must be considered during XRD in liquid media and shows that reaction kinetics do not provide a threshold dose rate for gold nucleation relevant to LP-TEM and XRD. Furthermore, it is unveiled that oxidative etching of gold nanoparticles depends on both, precursor concentration, and dose rate. This dependency is exploited to probe the electron beam-induced shift in Gibbs free energy landscape by analyzing critical radii of gold nanoparticles.
Collapse
Affiliation(s)
- Birk Fritsch
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Tobias S. Zech
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Mark P. Bruns
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Andreas Körner
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| | - Saba Khadivianazar
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Mingjian Wu
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Neda Zargar Talebi
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Sannakaisa Virtanen
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Michael P. M. Jank
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Fraunhofer Institute for Integrated Systems and Device Technology IISBSchottkystraße 1091058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Andreas Hutzler
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| |
Collapse
|
10
|
Yang F. Modeling analysis of the growth of a cubic crystal in a finite space. Phys Chem Chem Phys 2022; 24:9411-9417. [PMID: 35388384 DOI: 10.1039/d2cp00260d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The applications of semiconductor nanocrystals in optoelectronics are based on the unique characteristic of quantum confinement. There is great interest to tailor the performance of optoelectronic nanodevices and systems through the control of the sizes of nanocrystals. In this work, we develop a general mathematical formulation for the growth of a crystal/particle in a liquid solution, which takes account of the combinational effect of diffusion-limited growth and reaction-limited growth, and formulate the growth equations for the size of a cubic crystal grown under three different scenarios - isothermal and isochoric conditions, isothermal growth with the evaporation and/or extraction of the solvent and isochoric growth with continuous change in temperature. For the growth of a cubic crystal under isothermal and isochoric conditions, there are three growth stages - linear growth, nonlinear growth and plateau, and the growth rate in the stage of linear growth and the final size of the cubic crystal are dependent on the degree of supersaturation. For the growth of multi-crystals with a Gaussian distribution of crystal sizes, the change of the monomer concentration in a liquid solution is dependent on the change rates of average size and the standard deviation of the crystal sizes.
Collapse
Affiliation(s)
- Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
11
|
Völkl A, Klupp Taylor RN. Investigation and mitigation of reagent ageing during the continuous flow synthesis of patchy particles. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Yamashita Y, Tashiro S, Ishii Y, Uchihashi T, Matsushita N, Kubota R, Shionoya M. Shape-selective one-step synthesis of branched gold nanoparticles on the crystal surface of redox-active Pd II-macrocycles. Dalton Trans 2022; 51:1318-1324. [PMID: 34985075 DOI: 10.1039/d1dt03973c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of branched gold nanoparticles (AuNPs) with shape- and size-specific optical properties requires effective control of the particle formation mechanism using appropriate reducing agents and protective agents that prevent particle aggregation in solution. In this context, the heterogeneous synthesis of AuNPs using solid surfaces of graphene oxides and metal-organic frameworks has attracted much attention. These materials are characterized by their ability to immobilize and stabilize the particles grown on the surface without the need for additional protective agents. However, the shape- and size-selective synthesis of AuNPs using solid surfaces remains challenging. Herein, we report the shape-selective one-step synthesis of monodisperse branched AuNPs using a metal-macrocycle framework (MMF), a porous molecular crystal of PdII3-tris(phenylenediamine) macrocycle. Konpeito-Shaped branched AuNPs with uniform size were obtained on the surface of MMF by mixing HAuCl4·4H2O, L-ascorbic acid and MMF microcrystals. Spectroscopic and microscopic observations confirmed that MMF promoted the reduction of gold by its reductive activity as well as acted as a solid support to electrostatically immobilize the pseudo-seed particles for further growth on the crystal surface. In addition, the MMF also served as a substrate for in situ high-speed AFM imaging due to the effective immobilization of AuNPs on the surface, allowing direct visualization of the particle growth. Since the chemical structural features of MMF allow the growth of branched AuNPs via pseudo-seeding, this approach would provide new synthetic methods for obtaining a variety of gold nanostructures.
Collapse
Affiliation(s)
- Yutaro Yamashita
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yoshiki Ishii
- Department of Physics, Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Nobuyuki Matsushita
- Department of Chemistry, College of Science and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Ryou Kubota
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
13
|
Khelfa A, Nelayah J, Amara H, Wang G, Ricolleau C, Alloyeau D. Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102514. [PMID: 34338365 DOI: 10.1002/adma.202102514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Understanding temperature effects in nanochemistry requires real-time in situ measurements because this key parameter of wet-chemical synthesis simultaneously influences the kinetics of chemical reactions and the thermodynamic equilibrium of nanomaterials in solution. Here, temperature-controlled liquid cell transmission electron microscopy is exploited to directly image the radiolysis-driven formation of gold nanoparticles between 25 °C and 85 °C and provide a deeper understanding of the atomic-scale processes determining the size and shape of gold colloids. By quantitatively comparing the nucleation and growth rates of colloidal assemblies with classical models for nanocrystal formation, it is shown that the increase of the molecular diffusion and the solubility of gold governs the drastic changes in the formation dynamics of nanostructures in solution with temperature. In contraction with the common view of coarsening processes in solution, it is also demonstrated that the dissolution of nanoparticles and thus the Ostwald ripening is not only driven by size effects. Furthermore, visualizing thermal effects on faceting processes at the single nanoparticle level reveals how the competition between the growth speed and the surface diffusion dictates the final shape of nanocrystals.
Collapse
Affiliation(s)
- Abdelali Khelfa
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Jaysen Nelayah
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Hakim Amara
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
- Laboratoire d'Études des Microstructures, ONERA - CNRS - Université Paris Saclay, Chatillon, 92320, France
| | - Guillaume Wang
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Christian Ricolleau
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| |
Collapse
|
14
|
Yang F. Diffusion-Limited Growth of a Spherical Nanocrystal in a Finite Space. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3912-3921. [PMID: 33751884 DOI: 10.1021/acs.langmuir.1c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reason for the work: The potential applications of nanoscale materials in nanophotonics, nanoelectronics, bioimaging, and biosensing have stimulated the research in the synthesis of nanocrystals, nanowires, and so forth. There is a great need to understand the spatiotemporal evolution of nanocrystals in the solution-route synthesis in order to better design advanced synthesis techniques for the manufacturing of monodisperse nanocrystals of high quality. Most significant results: We analyze the size effect on the diffusion-limited growth of a spherical nanoparticle in a finite space (spherical cavity) on the basis of the Gibbs-Thomson relation and obtain an analytical formulation of the monomer concentration in the finite space in an implicit form and an integro-differential equation for the growth rate of the spherical nanoparticle. The monomer concentration in the finite space decreases slower than that with a stationary nanoparticle. The growth of the spherical nanoparticle consists of two stages-an initially linear growth stage and a later power-law stage. The result from the infinite space with a stationary nanoparticle is inapplicable to the analysis of the growth of spherical nanoparticles in a finite space. Conclusions: There exists a size effect on the growth of nanocrystals in a finite space. The dependence of the growth behavior of nanocrystals on the growth time and temperature needs to be investigated in order to experimentally determine the fundamental mechanisms controlling the growth of nanocrystals in the solution-route synthesis.
Collapse
Affiliation(s)
- Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington 40506, Kentucky, United States
| |
Collapse
|
15
|
Imaging the kinetics of anisotropic dissolution of bimetallic core-shell nanocubes using graphene liquid cells. Nat Commun 2020; 11:3041. [PMID: 32546723 PMCID: PMC7297726 DOI: 10.1038/s41467-020-16645-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
Chemical design of multicomponent nanocrystals requires atomic-level understanding of reaction kinetics. Here, we apply single-particle imaging coupled with atomistic simulation to study reaction pathways and rates of Pd@Au and Cu@Au core-shell nanocubes undergoing oxidative dissolution. Quantitative analysis of etching kinetics using in situ transmission electron microscopy (TEM) imaging reveals that the dissolution mechanism changes from predominantly edge-selective to layer-by-layer removal of Au atoms as the reaction progresses. Dissolution of the Au shell slows down when both metals are exposed, which we attribute to galvanic corrosion protection. Morphological transformations are determined by intrinsic anisotropy due to coordination-number-dependent atom removal rates and extrinsic anisotropy induced by the graphene window. Our work demonstrates that bimetallic core-shell nanocrystals are excellent probes for the local physicochemical conditions inside TEM liquid cells. Furthermore, single-particle TEM imaging and atomistic simulation of reaction trajectories can inform future design strategies for compositionally and architecturally sophisticated nanocrystals. Rational design of multicomponent nanocrystals requires atomic-level understanding of reaction kinetics. Here, the authors apply single-particle liquid-cell electron microscopy imaging coupled with atomistic simulations to understand pathways and rates of bimetallic core-shell nanocubes undergoing oxidative dissolution.
Collapse
|
16
|
Meng X, Dyer J, Huo Y, Jiang C. Greater SERS Activity of Ligand-Stabilized Gold Nanostars with Sharp Branches. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3558-3564. [PMID: 32176502 DOI: 10.1021/acs.langmuir.0c00079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sharp branches of gold nanostars are critical in tuning the plasmonic properties of these nanostars and maximizing the activities in surface-enhanced Raman scattering (SERS). The interaction between the capping ligands and nanostars plays an essential role in determining the morphology of the branches on the gold nanostars. In this Article, we show that 4-mercapto benzoic acid can effectively control the morphology of branched gold nanostars, and these gold nanostars can be used for the colloidal SERS detection of probe molecules at a nanomolar concentration. We also find that the sharp branches on gold nanostars will provide extra SERS activities as compared to the ones with a rough surface. Using the method of principal component analysis, we can easily distinguish the addition of 4-mercapto pyridine molecules at a concentration of 2 nM. Our work indicated the promising applications of these gold nanostars in colloidal SERS studies for various ultrasensitive chemical analyses.
Collapse
Affiliation(s)
- Xianghua Meng
- Department of Chemistry and Center for Fluorinated Functional Materials, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jacqueline Dyer
- Department of Chemistry and Center for Fluorinated Functional Materials, University of South Dakota, Vermillion, South Dakota 57069, United States
- Department of Chemistry, George Washington University, Washington, D.C. 20052, United States
| | - Yifeng Huo
- Department of Chemistry and Center for Fluorinated Functional Materials, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Chaoyang Jiang
- Department of Chemistry and Center for Fluorinated Functional Materials, University of South Dakota, Vermillion, South Dakota 57069, United States
| |
Collapse
|