1
|
Chen W, Xu H, Liu FX, Chen K, Zhou Z, Yi W. Chiral Osmium(II)/Salox Species Enabled Enantioselective γ-C(sp 3)-H Amidation: Integrated Experimental and Computational Validation For the Ligand Design and Reaction Development. Angew Chem Int Ed Engl 2024; 63:e202401498. [PMID: 38499469 DOI: 10.1002/anie.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Herein, multiple types of chiral Os(II) complexes have been designed to address the appealing yet challenging asymmetric C(sp3)-H functionalization, among which the Os(II)/Salox species is found to be the most efficient for precise stereocontrol in realizing the asymmetric C(sp3)-H amidation. As exemplified by the enantioenriched pyrrolidinone synthesis, such tailored Os(II)/Salox catalyst efficiently enables an intramolecular site-/enantioselective C(sp3)-H amidation in the γ-position of dioxazolone substrates, in which benzyl, propargyl and allyl groups bearing various substituted forms are well compatible, affording the corresponding chiral γ-lactam products with good er values (up to 99 : 1) and diverse functionality (>35 examples). The unique performance advantage of the developed chiral Os(II)/Salox system in terms of the catalytic energy profile and the chiral induction has been further clarified by integrated experimental and computational studies.
Collapse
Affiliation(s)
- Weijie Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Huiying Xu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fu-Xiaomin Liu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Kaifeng Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zhi Zhou
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Wei Yi
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| |
Collapse
|
2
|
Su S, Zhang Y, Liu P, Wink DJ, Lee D. Intramolecular Carboxyamidation of Alkyne-Tethered O-Acylhydroxamates through Formation of Fe(III)-Nitrenoids. Chemistry 2024; 30:e202303428. [PMID: 38050744 DOI: 10.1002/chem.202303428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
We developed intramolecular carboxyamidations of alkyne-tethered O-acylhydroxamates followed by either thermally induced spontaneous or 4-(dimethylamino)pyridine-catalyzed O→O or O→N acyl group migration. Under iron-catalyzed conditions, the carboxyamidation products were generated in high yield from both Z-alkene and arene-tethered substrates. DFT calculations indicate that the iron-catalyzed carboxyamidation proceeds via a stepwise mechanism involving iron-imidyl radical cyclization followed by intramolecular acyloxy transfer from the iron center to the alkenyl radical center to furnish the cis-carboxyamidation product. Upon treatment with 4-(dimethylamino)pyridine, the Z-alkene-tethered carboxyamidation products underwent selective O→O acyl migration to generate 2-acyloxy-5-acyl pyrroles. Thermal O→N acyl migration occurs during carboxyamidation if the Z-alkene linker contains an alkyl or an aryl substituent at the β-position of the carbonyl group. On the other hand, the arene linker-containing compounds selectively undergo O→N acyl migration to generate N-acyl-3-acylisoindolinones, and the corresponding O→O acyl migration forming isoindole derivatives was not observed.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| |
Collapse
|
3
|
Tufano E, Lee E, Barilli M, Casali E, Oštrek A, Jung H, Morana M, Kang J, Kim D, Chang S, Zanoni G. Iridium Acylnitrenoid-Initiated Biomimetic Cascade Cyclizations: Stereodefined Access to Polycyclic δ-Lactams. J Am Chem Soc 2023. [PMID: 37926946 DOI: 10.1021/jacs.3c08331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Ring-fused azacyclic compounds are important building units in the synthesis of biorelevant natural products, pharmaceutical agents, and molecular materials. Herein, we present a new approach to these condensed azacycles by a biomimetic cascade cyclization of arylalkenyl dioxazolones. This cascade reaction was found to proceed with excellent stereoselectivity and a high functional group tolerance. The substrate scope of arylalkenyl dioxazolones turned out to be highly flexible and extendable to additional terminating subunits, such as heteroaryl and alkynyl moieties. This biomimetic cyclization was elucidated to be initiated by an intramolecular transfer of the in situ generated electrophilic Ir-acylnitrenoid to the tethered olefinic double bond, leading to a key N-acylaziridine intermediate, which is in turn reacted with pendant (hetero)arenes or alkynes in a highly regio- and stereoselective manner to produce ring-fused azacyclic compounds.
Collapse
Affiliation(s)
- Eleonora Tufano
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Euijae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Matteo Barilli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Andraž Oštrek
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Marta Morana
- Department of Earth Science, University of Firenze, Via G. La Pira 4, 50121 Firenze, Italy
| | - Jihye Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
4
|
Nie X, Ritter CW, Hemming M, Ivlev SI, Xie X, Chen S, Meggers E. Nitrene-Mediated Enantioselective Intramolecular Olefin Oxyamination to Access Chiral γ-Aminomethyl-γ-Lactones. Angew Chem Int Ed Engl 2023:e202314398. [PMID: 37920926 DOI: 10.1002/anie.202314398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Attaching a nitrene precursor to an intramolecular nucleophile allows for a catalytic asymmetric intramolecular oxyamination of alkenes in which the nucleophile adds in an endocyclic position and the amine in an exocyclic fashion. Using chiral-at-ruthenium catalysts, chiral γ-aminomethyl-γ-lactones containing a quaternary carbon in γ-position are provided in high yields (up to 99 %) and with excellent enantioselectivities (up to 99 % ee). DFT calculations support the possibility of both a singlet (concerted oxyamination of the alkene) and triplet pathway (stepwise oxyamination) for the formation of the predominant stereoisomer. γ-Aminomethyl-γ-lactones are versatile chiral building blocks and can be converted to other heterocycles such as δ-lactams, 2-oxazolidinones, and tetrahydrofurans.
Collapse
Affiliation(s)
- Xin Nie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Clayton W Ritter
- College of Arts & Sciences, Oberlin College Science Center N381, 119 Woodland St., Oberlin, OH-44074, USA
| | - Marcel Hemming
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Shuming Chen
- College of Arts & Sciences, Oberlin College Science Center N381, 119 Woodland St., Oberlin, OH-44074, USA
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| |
Collapse
|
5
|
Jung H, Kweon J, Suh JM, Lim MH, Kim D, Chang S. Mechanistic snapshots of rhodium-catalyzed acylnitrene transfer reactions. Science 2023:eadh8753. [PMID: 37471480 DOI: 10.1126/science.adh8753] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Rhodium acylnitrene complexes are widely implicated in catalytic C-H amidation reactions but have eluded isolation and structural characterization. To overcome this challenge, we designed a chromophoric octahedral rhodium complex with a bidentate dioxazolone ligand, in which photoinduced metal-to-ligand charge transfer initiates catalytic C-H amidation. X-ray photocrystallographic analysis of the Rh-dioxazolone complex allowed structural elucidation of the targeted Rh-acylnitrenoid and provided firm evidence that the singlet nitrenoid species is primarily responsible for acylamino transfer reactions. We also monitored in crystallo reaction of a nucleophile with the in situ generated Rh-acylnitrenoid, providing a crystallographically traceable reaction system to capture mechanistic snapshots of nitrenoid transfer.
Collapse
Affiliation(s)
- Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jong-Min Suh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
6
|
Su S, Wu T, Xia Y, Wink DJ, Lee D. Cycloisomerization of Alkyne-Tethered N-Acyloxycarbamates to 2-(3H)Oxazolones through Nitrenoid-Mediated Carboxyamidation. Chemistry 2023; 29:e202203371. [PMID: 36628950 DOI: 10.1002/chem.202203371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
The cycloisomerization of alkyne-tethered N-benzoyloxycarbamates to 2-(3H)oxazolones is described. Two catalytic systems are tailored for intramolecular 5-exo-alkyne carboxyamidation and concomitant alkene isomerization. PtCl2 /CO (5 mol%, toluene, 100 °C) promotes both carboxyamidation and alkene isomerization but has a limited substrate scope. On the other hand, FeCl3 (5 mol%, CH3 CN, 100 °C) promotes carboxyamidation effectively but a cocatalyst is required for the exocyclic alkene isomerization. Thus, a two-step one-pot protocol has been developed for a broader reaction scope, which involves FeCl3 -catalyzed carboxyamidation and base-induced alkene isomerization. Crossover experiments suggest that these reactions proceed mainly through a mechanism involving acylnitrenoid intermediates rather than carbenoid intermediates.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Tongtong Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| |
Collapse
|
7
|
Chang ET, Green DB, Brereton KR. Microwave-assisted synthesis of pentamethylcyclopentadienyl iridium dihalide dimers. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Choi H, Lyu X, Kim D, Seo S, Chang S. Endo-Selective Intramolecular Alkyne Hydroamidation Enabled by NiH Catalysis Incorporating Alkenylnickel Isomerization. J Am Chem Soc 2022; 144:10064-10074. [PMID: 35621341 DOI: 10.1021/jacs.2c03777] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intramolecular alkyne hydroamidation represents a straightforward approach for the access to synthetically valuable cyclic enamides. Despite some advances made in this realm, the ability to attain a precise regiocontrol still remains challenging, especially for endo cyclization that leads to six-membered and larger azacyclic rings. Herein, we report a NiH-catalyzed intramolecular hydroamidation of alkynyl dioxazolones that allows for an excellent endo selectivity, thus affording a range of six- to eight-membered endocyclic enamides with a broad scope. Mechanistic investigations revealed that Ni(I) catalysis is operative in the current system, proceeding via regioselective syn-hydronickelation, alkenylnickel E/Z isomerization, and Ni-centered inner-sphere nitrenoid transfer. In particular, the key alkenylnickel isomerization step, which previously lacked mechanistic understandings, was found to take place through the η2-vinyl transition state. The synthetic value of this protocol was demonstrated by diastereoselective modifications of the obtained endocyclic enamides to highly functionalized δ-lactam scaffolds.
Collapse
Affiliation(s)
- Hoonchul Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Xiang Lyu
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
9
|
Zhou Z, Kweon J, Jung H, Kim D, Seo S, Chang S. Photoinduced Transition-Metal-Free Chan-Evans-Lam-Type Coupling: Dual Photoexcitation Mode with Halide Anion Effect. J Am Chem Soc 2022; 144:9161-9171. [PMID: 35549253 DOI: 10.1021/jacs.2c03343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a photoinduced transition-metal-free C(aryl)-N bond formation between 2,4,6-tri(aryl)boroxines or arylboronic acids as an aryl source and 1,4,2-dioxazol-5-ones (dioxazolones) as an amide coupling partner. Chloride anion, either generated in situ by photodissociation of chlorinated solvent molecules or added separately as an additive, was found to play a critical cooperative role, thereby giving convenient access to a wide range of synthetically versatile N-arylamides under mild photo conditions. The synthetic virtue of this transition-metal-free Chan-Evans-Lam-type coupling was demonstrated by large-scale reactions, synthesis of 15N-labeled arylamides, and applicability toward biologically relevant compounds. On the basis of mechanistic investigations, two distinctive photoexcitations are proposed to function in the current process, in which the first excitation involving chloro-boron adduct facilitates the transition-metal-free activation of dioxazolones by single electron transfer (SET), and the second one enables the otherwise-inoperative 1,2-aryl migration of the thus-formed N-chloroamido-borate adduct.
Collapse
Affiliation(s)
- Zijun Zhou
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
10
|
Ren M, Wang YC, Ren S, Huang K, Liu JB, Qiu G. Metal‐Enabled Romance of Nitrene with Alkyne: Beyond Gold Catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Miaofeng Ren
- JiangXi University of Science and Technology Chemistry CHINA
| | - Yu-Chao Wang
- JiangXi University of Science and Technology Chemistry CHINA
| | - Shangfeng Ren
- JiangXi University of Science and Technology Chemistry CHINA
| | - Keke Huang
- JiangXi University of Science and Technology Chemistry CHINA
| | - Jin-Biao Liu
- JiangXi University of Science and Technology faculty of Materials Metallurgy and Chemistry No.86,Hongqi Ave. 341000 Ganzhou CHINA
| | | |
Collapse
|
11
|
Kweon J, Kim D, Kang S, Chang S. Access to β-Lactams via Iron-Catalyzed Olefin Oxyamidation Enabled by the π-Accepting Phthalocyanine Ligand. J Am Chem Soc 2022; 144:1872-1880. [PMID: 35041409 DOI: 10.1021/jacs.1c12125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report the development of an iron-catalyzed olefin oxyamidation by utilizing tethered dioxazolones as the nitrenoid precursor to produce valuable β-lactam scaffolds. Mechanistic studies revealed that a relatively strong π-accepting ability of the phthalocyanine ligand is critical in generating the key triplet iron-imidyl radical intermediate to enable the 4-exo-trig-lactamization with the incorporation of oxygen nucleophiles in high diastereoselectivity. This cyclization approach was readily extended to the highly efficient γ-lactam synthesis (TON > 300).
Collapse
Affiliation(s)
- Jeonguk Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Seungju Kang
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
12
|
Hirose J, Wakikawa T, Satake S, Kojima M, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Cp*Rh III/Chiral Disulfonate/CuOAc Catalyst System for the Enantioselective Intramolecular Oxyamination of Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jumpei Hirose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takumi Wakikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shun Satake
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Manabu Hatano
- Graduate School of Pharmaceutical Sciences, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
13
|
Su S, Lee D. Regiodivergent alkene difunctionalizations. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Li JZ, Zhang WK, Ge GP, Zheng H, Wei WT. Recent progress in the radical α-C(sp 3)-H functionalization of ketones. Org Biomol Chem 2021; 19:7333-7347. [PMID: 34612358 DOI: 10.1039/d1ob01408k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direct use structurally simple ketones as α-ketone radical sources for α-C(sp3)-H functionalization is a sustainable and powerful approach for constructing complex and multifunctional chemical scaffolds with diverse applications. The reactions of α-ketone radicals with alkenes, alkynes, enynes, imides, and imidazo[1,2-a]pyridines have broadened the structural diversity and complexity of ketones. Through chosen illustrative examples, we outline the recent progress in the development of methods that enable the radical α-C(sp3)-H functionalization of ketones, with an emphasis on radical initiation systems and possible mechanisms of the transformations. The application of these strategies is illustrated by the synthesis of several biologically active molecules and drug molecules. Further subdivision is based on substrate type and reaction type.
Collapse
Affiliation(s)
- Jiao-Zhe Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | | | | | | | |
Collapse
|
15
|
Hong D, Liu Y, Wu L, Lo VK, Toy PH, Law S, Huang J, Che C. Ru
V
‐Acylimido Intermediate in [Ru
IV
(Por)Cl
2
]‐Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dan‐Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Yungen Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Vanessa Kar‐Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Patrick H. Toy
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Siu‐Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503–1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories Hong Kong SAR China
| |
Collapse
|
16
|
Hong SY, Hwang Y, Lee M, Chang S. Mechanism-Guided Development of Transition-Metal-Catalyzed C-N Bond-Forming Reactions Using Dioxazolones as the Versatile Amidating Source. Acc Chem Res 2021; 54:2683-2700. [PMID: 33979133 DOI: 10.1021/acs.accounts.1c00198] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Catalytic reactions that construct carbon-nitrogen bonds are one of central themes in both synthetic and medicinal chemistry since the obtainable nitrogen-containing motifs are commonly encountered in natural products and have also seen a growing prominence as key structural features in marketed drugs and preclinical candidates. Pd-catalyzed cross-couplings, such as Buchwald-Hartwig amination, are at the forefront of such synthetic methods in practical settings. However, they require prefunctionalized substrates such as (hetero)aryl halides that must be prepared independently, often by multiple operations. One emerging way to circumvent these preparatory steps and directly convert ubiquitous C-H bonds into valuable C-N bonds is catalytic C-H amination, which allows synthetic chemists to devise shorter and more efficient retrosynthetic schemes. The past two decades have witnessed considerable progress in expanding the repertoire of this strategy, especially by identifying effective amino group precursors. In this context, dioxazolones have experienced a dramatic resurgence in recent years as a versatile nitrogen source in combination with transition-metal catalyst systems that facilitate decarboxylation to access key metal-acylnitrenoid intermediates. In addition to their high robustness and easy accessibility from abundant carboxylic acids, the unique reactivity of the transient intermediates in the amido group transfer has led to a fruitful journey for mild and efficient C-H amidation reactions.This Account summarizes our recent contributions to the development of C-N bond-forming reactions using dioxazolones as effective nitrenoid precursors, which are categorized into two subsets according to their mechanistic differences: inner- versus outer-sphere pathways. The first section describes how we could unveil the synthetic potential of dioxazolones in the realm of the inner-sphere C-H amidation, where we demonstrated that dioxazolones serve not only as manageable alternatives to acyl azides but also as highly efficient reagents to significantly reduce the catalyst loading and temperature. Taking advantage of the mild conditions in combination with group 9 Cp*M complexes (M = Rh, Ir, Co) or isoelectronic Ru species, we have dramatically expanded the accessible synthetic scope. Mechanistic investigations revealed that the putative metal-nitrenoid species is involved as a key intermediate during catalysis, which leads to facile C-N bond formation. On the basis of the mechanistic underpinning, we have succeeded in developing novel catalytic platforms that harness the intermediacy of metal-nitrenoids to explore C-H insertion chemistry via an outer-sphere pathway. Indeed, the tailored catalysts were capable of suppressing the competitive Curtius-type decomposition, thus granting access to versatile lactam products. We have further repurposed the catalytic systems upon modification of chelating ligands and also the identity of the transition metal to achieve three goals: (i) addressing selectivity issues to control the regio-, chemo-, and enantioselectivities, (ii) developing sustainable catalysis by first-low metals, and (iii) navigating chemical space for (di)functionalization of alkenes/alkynes. Together with our own research efforts, highlighted herein are some important relevant advances by other groups. We finally conclude with a brief overview with an eye toward further developments.
Collapse
Affiliation(s)
- Seung Youn Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yeongyu Hwang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Minhan Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
17
|
Hong DY, Liu Y, Wu L, Lo VKY, Toy PH, Law SM, Huang JS, Che CM. Ru V -Acylimido Intermediate in [Ru IV (Por)Cl 2 ]-Catalyzed C-N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021; 60:18619-18629. [PMID: 33847064 DOI: 10.1002/anie.202100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Metal-catalyzed C-N bond formation reactions via acylnitrene transfer have recently attracted much attention, but direct detection of the proposed acylnitrenoid/acylimido M(NCOR) (R=aryl or alkyl) species in these reactions poses a formidable challenge. Herein, we report on Ru(NCOR) intermediates in C-N bond formation catalyzed by [RuIV (Por)Cl2 ]/N3 COR, a catalytic method applicable to aziridine/oxazoline formation from alkenes, amination of substituted indoles, α-amino ketone formation from silyl enol ethers, amination of C(sp3 )-H bonds, and functionalization of natural products and carbohydrate derivatives (up to 99 % yield). Experimental studies, including HR-ESI-MS and EPR measurements, coupled with DFT calculations, lend evidence for the formulation of the Ru(NCOR) acylnitrenoids as a RuV -imido species.
Collapse
Affiliation(s)
- Dan-Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Vanessa Kar-Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Patrick H Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Siu-Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
18
|
Kim S, Kim D, Hong SY, Chang S. Tuning Orbital Symmetry of Iridium Nitrenoid Enables Catalytic Diastereo- and Enantioselective Alkene Difunctionalizations. J Am Chem Soc 2021; 143:3993-4004. [DOI: 10.1021/jacs.1c00652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suhyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Seung Youn Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
19
|
Hong SY, Kim D, Chang S. Catalytic access to carbocation intermediates via nitrenoid transfer leading to allylic lactams. Nat Catal 2020. [DOI: 10.1038/s41929-020-00558-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Lee M, Jung H, Kim D, Park JW, Chang S. Modular Tuning of Electrophilic Reactivity of Iridium Nitrenoids for the Intermolecular Selective α-Amidation of β-Keto Esters. J Am Chem Soc 2020; 142:11999-12004. [DOI: 10.1021/jacs.0c04344] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Minhan Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jung-Woo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
21
|
van Vliet KM, de Bruin B. Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00961] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaj M. van Vliet
- Van ’t Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Van ’t Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
22
|
Li X, Ouyang W, Nie J, Ji S, Chen Q, Huo Y. Recent Development on Cp*Ir(III)‐Catalyzed C−H Bond Functionalization. ChemCatChem 2020. [DOI: 10.1002/cctc.201902150] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xianwei Li
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Wensen Ouyang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jianhong Nie
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
23
|
Ma R, Feng J, Zhang K, Zhang B, Du D. Photoredox β-thiol-α-carbonylation of enones accompanied by unexpected Csp 2–C(CO) bond cleavage. Org Biomol Chem 2020; 18:7549-7553. [DOI: 10.1039/d0ob01349h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An olefinic difunctionalization method of enones was presented here via aerobic visible-light catalysis.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Jie Feng
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Kuili Zhang
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Beichen Zhang
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P.R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines
- Department of Organic Chemistry
- China Pharmaceutical University
- Nanjing
- P.R. China
| |
Collapse
|
24
|
Lei H, Conway JH, Cook CC, Rovis T. Ligand Controlled Ir-Catalyzed Regiodivergent Oxyamination of Unactivated Alkenes. J Am Chem Soc 2019; 141:11864-11869. [PMID: 31310537 DOI: 10.1021/jacs.9b06366] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An intramolecular Ir(III)-catalyzed regiodivergent oxyamination of unactivated alkenes provides valuable γ-lactams, γ-lactones and δ-lactams. The regioselectivity is controlled by the electronically tunable cyclopentadienyl Ir(III)-complexes enabling oxyamination via either 5-exo or 6-endo pathways. With respect to the mechanism, we propose a highly reactive [3.1.0] bicycle intermediate derived from Ir(V) nitrene-mediated aziridination to be a key intermediate toward the synthesis of γ-lactams.
Collapse
Affiliation(s)
- Honghui Lei
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - John H Conway
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Caleb C Cook
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Tomislav Rovis
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
25
|
Yang J, Hu X, Liu Z, Li X, Dong Y, Liu G. Cp*CoIII-catalyzed formal [4+2] cycloaddition of benzamides to afford quinazolinone derivatives. Chem Commun (Camb) 2019; 55:13840-13843. [DOI: 10.1039/c9cc07173c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Cp*CoIII-catalyzed arene C–H bond amidation/annulation of benzamides was developed to afford quinazolinone derivatives in one-pot with high yields and broad substrate scope.
Collapse
Affiliation(s)
- Jingshu Yang
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Xiao Hu
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Zijie Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Xueyuan Li
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- China
| | - Gang Liu
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|