1
|
Yang ZX, Albalawi S, Zhao S, Li YG, Zhang H, Zou YL, Hou S, Chen LC, Shi J, Yang Y, Wu Q, Lambert C, Hong W. Single-Molecule Cross-Plane Conductance of Polycyclic Aromatic Hydrocarbon Derivatives. Chemistry 2024; 30:e202402095. [PMID: 38943462 DOI: 10.1002/chem.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
In the cross-plane single-molecule junctions, the correlation between molecular aromaticity and conductance remained puzzling. Cross-plane break junction (XPBJ) provides new insight into understanding the role of aromaticity and conjugation to molecules on charge transport through the planar molecules. In this work, we investigated the modulation of cross-plane charge transport in pyrene derivatives by hydrogenation and substituents based on the XPBJ method that differs from those used in-plane transport. We measured the electrical conductance of the hydrogenated derivatives of the pyrenes and found that hydrogenation reduces conductance, and the fully hydrogenated molecule has the lowest conductance. Conductance of pyrene derivatives increased after substitution by both electron-donating and electron-withdrawing groups. By calculating, the trend in decreased conductance of hydrogenated pyrene was found to be consistent with the change in aromaticity. Electron-withdrawing substituents reduce the aromaticity of the molecule and narrow the HOMO-LUMO gap, while electron-donating groups increase the aromaticity but also narrow the gap. Our work reveals the potential of fine-tuning the structure of the pyrene molecule to control the cross-plane charge transport through the single-molecule junctions.
Collapse
Affiliation(s)
- Zi-Xian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Shadiah Albalawi
- Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk, Saudi Arabia
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yao-Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Songjun Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Li-Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Colin Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China
| |
Collapse
|
2
|
Batzinger K, Zhou Q, Ye X, Borguet E, Xiao S, Smeu M. Steric Effects on Single-Molecule Conductance in Flat-Lying Phenanthrene. Chemistry 2024; 30:e202400422. [PMID: 38629897 DOI: 10.1002/chem.202400422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 05/23/2024]
Abstract
A previous combined experimental and theoretical study found that the position of anchoring groups on a phenanthrene (PHE) backbone played a large role in determining the single-molecule conductance of the PHE derivative. However, a consistent 0.1 G0 feature was found across all PHE derivatives. To understand this, the previously investigated PHE derivatives were placed flat on a simulated Au substrate with a scanning tunneling microscope (STM) tip over PHE and conductance was calculated using the non-equilibrium Green's function technique in conjunction with density functional theory (NEGF-DFT). The location of the tip was varied to find the most conductive and most energetically favorable arrangements, which did not coincide. Furthermore, the variation in conductance found in erect junctions was not present when PHE derivatives were lying flat, with all derivatives calculated to have conductance values around 0.1 G0.
Collapse
Affiliation(s)
- Kevin Batzinger
- Department of Physics, Binghamton University, Vestal, NY, USA
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiang Ye
- Mathematics and Science College, Shanghai Normal University, Shanghai, 200234, China
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Manuel Smeu
- Department of Physics, Binghamton University, Vestal, NY, USA
| |
Collapse
|
3
|
Yang J, Li Y, Zhang Z, Li H. A bias voltage controlled electrode-molecule interface in single-molecule junctions. Chem Commun (Camb) 2024; 60:5980-5983. [PMID: 38769815 DOI: 10.1039/d4cc01143k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Tuning the electrode-molecule interface stands at the heart of functional single-molecule devices. Herein, we report that the electrode-molecule interface of difluoro-substituted benzothiadiazole (FBTZ)-based single-molecule junctions can be modulated by the bias voltage. At low bias voltage (100 mV), the dative Au-N linkage is formed and at high bias voltage (600 mV), a covalent Au-C linkage is constructed. These junctions show distinct conductance. Interestingly, dominant charge carriers in Au-N- and Au-C-based junctions are different, as evidenced by dft calculations. These results provide a new strategy for regulating the electrode-molecule interface, which will advance the development of molecular electronics.
Collapse
Affiliation(s)
- Jiawei Yang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Zekai Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
4
|
Yasini P, Shepard S, Smeu M, Borguet E. Modulation of Charge Transport through Single Molecules Induced by Solvent-Stabilized Intramolecular Charge Transfer. J Phys Chem B 2023; 127:9771-9780. [PMID: 37933172 DOI: 10.1021/acs.jpcb.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The modulation of charge transport through single molecules can be established by using the intrinsic characteristics of molecules and the physical properties of their environment. Therefore, the impact of the solvent on the electronic properties of molecules in the junction and their charge transport behavior are of great interest. Here, for the first time, we focused on charge transport through dimethylaminobenzonitrile (DMABN). This molecule shows unique behavior, specifically noticeable electronic structure modulations in bulk solvents, e.g., dual fluorescence in a polar environment. Using the scanning tunneling microscopy break junction (STM-BJ) technique, we find an order of magnitude increase in conductance along with a second conductance value in polar solvents over nonpolar solvents. Inspired by the twisted intramolecular charge transfer (TICT) explanation of the famous dual fluorescence of DMABN in polar solvents, we hypothesize stabilization of twisted DMABN molecules in the junction in more polar solvents. Ab initio molecular dynamics (AIMD) simulations using density functional theory (DFT) show that DMABN can twist in the junction and have a larger dipole moment compared to planar DMABN junction geometries, supporting the hypothesis. The nonequilibrium Green's function with the DFT approach (NEGF-DFT) is used to calculate the conductance throughout the AIMD trajectory, finding a significant change in the frontier orbitals and transmission function at large internal twisting angles, which can explain the dual conductance in polar solvents in STM-BJ experiments.
Collapse
Affiliation(s)
- Parisa Yasini
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Stuart Shepard
- Department of Physics, Binghamton University, Binghamton, New York 13902, United States
| | - Manuel Smeu
- Department of Physics, Binghamton University, Binghamton, New York 13902, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
5
|
Order beyond a monolayer: The story of two self-assembled 4,4′-bipyridine layers on the Sb(111) | ionic liquid interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Yu Z, Li JQ, Wang YH, Su JQ, Fu JY, Zou JW, Zheng JF, Shao Y, Zhou XS. Visualizing an Electrochemically Induced Radical Cation of Bipyridine at Au(111)/Ionic Liquid Interfaces toward a Single-Molecule Switch. Anal Chem 2022; 94:1823-1830. [PMID: 35020360 DOI: 10.1021/acs.analchem.1c04707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Room-temperature ionic liquids (RTILs) emerged as ideal solvents, and bipyridine as one of the most used ligands have been widely employed in surface science, catalysis, and molecular electronics. Herein, in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and STM break junction (STM-BJ) technique has been employed to probe the electrochemical process of bipyridine at Au(111)/IL interfaces. It is interestingly found that these molecules undertake a redox process with a pair of well-defined reversible peaks in cyclic voltammograms (CVs). The spectroscopic evidence shows a radical cation generated with rising new Raman peaks related to parallel CC stretching of a positively charged pyridyl ring. Furthermore, these electrochemically charged bipyridine is also confirmed by electrochemical STM-BJ at the single-molecule level, which displays a binary conductance switch ratio of about 400% at the redox potentials. This present work offers a molecular-level insight into the pyridine-mediated reaction process and electron transport in RTILs.
Collapse
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jie-Qiong Li
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jun-Qing Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Ying Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Wei Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
7
|
Li JJ, Chen ZB, Wang YH, Zhou XS, Xie LQ, Shi Z, Liu JX, Yan JW, Mao BW. Single-molecule anisotropic magnetoresistance at room temperature: Influence of molecular structure. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Nováková Lachmanová Š, Kolivoška V, Šebera J, Gasior J, Mészáros G, Dupeyre G, Lainé PP, Hromadová M. Environmental Control of Single-Molecule Junction Evolution and Conductance: A Case Study of Expanded Pyridinium Wiring. Angew Chem Int Ed Engl 2021; 60:4732-4739. [PMID: 33205862 PMCID: PMC7986070 DOI: 10.1002/anie.202013882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Indexed: 02/03/2023]
Abstract
Environmental control of single-molecule junction evolution and conductance was demonstrated for expanded pyridinium molecules by scanning tunneling microscopy break junction method and interpreted by quantum transport calculations including solvent molecules explicitly. Fully extended and highly conducting molecular junctions prevail in water environment as opposed to short and less conducting junctions formed in non-solvating mesitylene. A theoretical approach correctly models single-molecule conductance values considering the experimental junction length. Most pronounced difference in the molecular junction formation and conductance was identified for a molecule with the highest stabilization energy on the gold substrate confirming the importance of molecule-electrode interactions. Presented concept of tuning conductance through molecule-electrode interactions in the solvent-driven junctions can be used in the development of new molecular electronic devices.
Collapse
Affiliation(s)
- Štěpánka Nováková Lachmanová
- Department of Electrochemistry at NanoscaleJ. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesDolejškova 3182 23Prague 8Czech Republic
| | - Viliam Kolivoška
- Department of Electrochemistry at NanoscaleJ. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesDolejškova 3182 23Prague 8Czech Republic
| | - Jakub Šebera
- Department of Electrochemistry at NanoscaleJ. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesDolejškova 3182 23Prague 8Czech Republic
| | - Jindřich Gasior
- Department of Electrochemistry at NanoscaleJ. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesDolejškova 3182 23Prague 8Czech Republic
| | - Gábor Mészáros
- Research Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok krt. 21117BudapestHungary
| | | | | | - Magdaléna Hromadová
- Department of Electrochemistry at NanoscaleJ. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesDolejškova 3182 23Prague 8Czech Republic
| |
Collapse
|
9
|
Nováková Lachmanová Š, Kolivoška V, Šebera J, Gasior J, Mészáros G, Dupeyre G, Lainé PP, Hromadová M. Environmental Control of Single‐Molecule Junction Evolution and Conductance: A Case Study of Expanded Pyridinium Wiring. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Štěpánka Nováková Lachmanová
- Department of Electrochemistry at Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| | - Viliam Kolivoška
- Department of Electrochemistry at Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| | - Jakub Šebera
- Department of Electrochemistry at Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| | - Jindřich Gasior
- Department of Electrochemistry at Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| | - Gábor Mészáros
- Research Centre for Natural Sciences Hungarian Academy of Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | | | | | - Magdaléna Hromadová
- Department of Electrochemistry at Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 182 23 Prague 8 Czech Republic
| |
Collapse
|
10
|
Zhang Y, Su P, Mu Y, Zhang G, Luo Y, Jiang J, Hu W. Mechanism Study of Molecular Deformation of 2,2',5',2″-Tetramethylated p-Terphenyl-4,4″-dithiol Trapped in Gold Junctions. J Phys Chem Lett 2020; 11:4456-4461. [PMID: 32419469 DOI: 10.1021/acs.jpclett.0c01102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular junctions hold great potential for future microelectronics, while the practical utilization has long been limited by the problem of conformational deformation during charge transport. Here we present a first-principles theoretical study on the surface-enhanced Raman spectroscopy (SERS) characterization of the p-terphenyl-4,4″-dithiol molecule and its 2,2',5',2″-tetramethylated analogue in gold junctions to investigate the molecular deformation mechanism. The effects of charge injection and external electric field were examined, both of which could change π-conjugation by varying the dihedral angle between the central and ending rings (DIPT). The induced significant structural deformations then change SERS responses. Only the SERS responses under an external electric field can account for the experimentally observed Raman spectra, and those of charge injections cannot. Moreover, applying a strong electric field could enlarge the conductivities of the two molecular junctions, agreeing well with experiments. This information not only elaborates that the electric field effect constitutes one important mechanism for molecular deformation but also provides useful insights for the control of charge transport in molecular junctions.
Collapse
Affiliation(s)
- Yujin Zhang
- School of Electronic and Information Engineering (Department of Physics), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P.R. China
| | - Pingping Su
- School of Electronic and Information Engineering (Department of Physics), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P.R. China
| | - Yanqi Mu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Guangping Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, Stockholm S-106 91, Sweden
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Wei Hu
- School of Electronic and Information Engineering (Department of Physics), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P.R. China
| |
Collapse
|
11
|
Chen H, Li Y, Chang S. Hybrid Molecular-Junction Mapping Technique for Simultaneous Measurements of Single-Molecule Electronic Conductance and Its Corresponding Binding Geometry in a Tunneling Junction. Anal Chem 2020; 92:6423-6429. [DOI: 10.1021/acs.analchem.9b05549] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Haijian Chen
- The State Key Laboratory of Refractories and Metallurgy, The Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Yunchuan Li
- The State Key Laboratory of Refractories and Metallurgy, The Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, The Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| |
Collapse
|
12
|
Improving Gating Efficiency of Electron Transport through Redox‐Active Molecular Junctions with Conjugated Chains. ChemElectroChem 2020. [DOI: 10.1002/celc.201902076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Leasor C, Goshinsky K, Chen KH, Li Z. Probing Molecular Nanostructures of Aromatic Terephthalic Acids Triggered by Intermolecular Hydrogen Bonds and Electrochemical Potential. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13259-13267. [PMID: 31580684 DOI: 10.1021/acs.langmuir.9b02130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly provides unique routes to create supramolecular nanostructures at well-defined surfaces. In the present work, we employed scanning tunneling microscopy (STM) in combination with electrochemical techniques to explore the adsorption and phase formation of a series of aromatic carboxylic acids (ACAs) at Au(111)/0.1 M HClO4. Specific goals are to elucidate the roles of electrochemical potential and directional hydrogen-bonding on the structures and orientation of individual ACAs that form nanoarchitectures. ACAs are prototype materials for supramolecular self-assemblies via stereospecific hydrogen bonds between neighboring molecules. In this study, we mainly focus on a special ACA, terephthalic acid (TPA), which is almost insoluble in water, making the assembly of this molecule from aqueous solution challenging. Depending on the applied electric field, TPA molecules form distinctly different, highly ordered adlayers on Au(111) triggered by directional intermolecular hydrogen bonds. At low electrochemical potentials, TPA molecules are planar oriented, forming a potentially infinite hydrogen-bonded adlayer without any observed domain boundaries. The increase of the electrode potential triggers the deprotonation of one carboxylic acid functional group of TPA; additionally, this is accompanied by an orientation change of molecules from planar to perpendicular. In contrast, structural "defects" and multiple domain boundaries were found at this positively charged surface. The assembled nanostructures of TPA are compared with other ACAs (trimesic acid, benzoic acid, and isophthalic acid), and corresponding adsorption models were built for all molecular adlayers, showing that intermolecular hydrogen-bonding plays a determining role in the formation of two-dimensional ACA nanostructures.
Collapse
Affiliation(s)
- Cody Leasor
- Department of Chemistry , Ball State University , Muncie , Indiana 47306 , United States
| | - Kelsi Goshinsky
- Department of Chemistry , Ball State University , Muncie , Indiana 47306 , United States
| | - Kuo-Hao Chen
- Department of Chemistry , Ball State University , Muncie , Indiana 47306 , United States
| | - Zhihai Li
- Department of Chemistry , Ball State University , Muncie , Indiana 47306 , United States
| |
Collapse
|