1
|
Wu Q, Xu W, Shang J, Li J, Liu X, Wang F, Li J. Autocatalytic DNA circuitries. Chem Soc Rev 2024; 53:10878-10899. [PMID: 39400237 DOI: 10.1039/d4cs00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Autocatalysis, a self-sustained replication process where at least one of the products functions as a catalyst, plays a pivotal role in life's evolution, from genome duplication to the emergence of autocatalytic subnetworks in cell division and metabolism. Leveraging their programmability, controllability, and rich functionalities, DNA molecules have become a cornerstone for engineering autocatalytic circuits, driving diverse technological applications. In this tutorial review, we offer a comprehensive survey of recent advances in engineering autocatalytic DNA circuits and their practical implementations. We delve into the fundamental principles underlying the construction of these circuits, highlighting their reliance on DNAzyme biocatalysis, enzymatic catalysis, and dynamic hybridization assembly. The discussed autocatalytic DNA circuitry techniques have revolutionized ultrasensitive sensing of biologically significant molecules, encompassing genomic DNAs, RNAs, viruses, and proteins. Furthermore, the amplicons produced by these circuits serve as building blocks for higher-order DNA nanostructures, facilitating biomimetic behaviors such as high-performance intracellular bioimaging and precise algorithmic assembly. We summarize these applications and extensively address the current challenges, potential solutions, and future trajectories of autocatalytic DNA circuits. This review promises novel insights into the advancement and practical utilization of autocatalytic DNA circuits across bioanalysis, biomedicine, and biomimetics.
Collapse
Affiliation(s)
- Qiong Wu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jiajing Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
2
|
Ams MR, McAuliffe JR, Semenick RS, Zeller M. Self-Replication Without Hydrogen-Bonds: An Exobiotic Design. Chemistry 2024; 30:e202401446. [PMID: 38958604 DOI: 10.1002/chem.202401446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Life on Earth uses DNA as the central template for self-replication, genetic encoding, and information transfer. However, there are no physical laws precluding life's existence elsewhere in space, and alternative life forms may not need DNA. In the search for exobiology, knowing what to look for as a biosignature remains a challenge - especially if it is not from the obvious list of biologic building blocks. Clues from chemicals recently discovered on Mars and in the Taurus Molecular Cloud 1 (TMC-1), show that intriguing organic compounds exist beyond Earth, which could provide a starting point for unconventional exobiotic designs. Here we present a new potential self-replicating system with structural similarities to recently discovered compounds on Mars and TMC-1. Rather than using DNA's hydrogen-bonding motif for reliable base-paring, our design employs sulfur-nitrogen interactions to selectively template unique benzothiadiazole units in sequence. We synthesized and studied two versions of this system, one reversible and the other irreversible, and found experimental evidence of self-replication in d-chloroform solvent. These results are part of a larger pursuit in our lab for developing a basis for a potential exobiological system using starting blocks closely related to these cosmic compounds.
Collapse
Affiliation(s)
- Mark R Ams
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM, 87801, USA
| | - Joseph R McAuliffe
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, PA, 16335, USA
| | - Raina S Semenick
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, PA, 16335, USA
| | - Matt Zeller
- X-ray Crystallography, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Markovitch O, Wu J, Otto S. Binding of Precursors to Replicator Assemblies Can Improve Replication Fidelity and Mediate Error Correction. Angew Chem Int Ed Engl 2024; 63:e202317997. [PMID: 38380789 DOI: 10.1002/anie.202317997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Copying information is vital for life's propagation. Current life forms maintain a low error rate in replication, using complex machinery to prevent and correct errors. However, primitive life had to deal with higher error rates, limiting its ability to evolve. Discovering mechanisms to reduce errors would alleviate this constraint. Here, we introduce a new mechanism that decreases error rates and corrects errors in synthetic self-replicating systems driven by self-assembly. Previous work showed that macrocycle replication occurs through the accumulation of precursor material on the sides of the fibrous replicator assemblies. Stochastic simulations now reveal that selective precursor binding to the fiber surface enhances replication fidelity and error correction. Centrifugation experiments show that replicator fibers can exhibit the necessary selectivity in precursor binding. Our results suggest that synthetic replicator systems are more evolvable than previously thought, encouraging further evolution-focused experiments.
Collapse
Affiliation(s)
- Omer Markovitch
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Groningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Juntian Wu
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Groningen, The Netherlands
| | - Sijbren Otto
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Sevim İ. Design of Subreplicating Systems from an Existing Self-Replicating Diels-Alder Reaction System by Isosteric Replacement. J Org Chem 2021; 86:14964-14973. [PMID: 34633828 DOI: 10.1021/acs.joc.1c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The key feature of non-enzymatic self-replicating systems is the formation of catalytically active ternary complexes in which product templates direct precursors into spatial proximity to allow the formation of new covalent bonds. It is possible to create new replicating species by simply evaluating the ternary active complex of an existing replicating system and applying proper isosteric replacements. In this study, we have evaluated the formerly reported self-replicating Diels-Alder reaction having 61 and 33% selectivity for two diastereomeric replicators. An isosteric replacement on the spacer part connecting recognition and reactive sites of the maleimide component was applied by considering the symmetry of catalytically active ternary complexes, and it was shown that self-replication was conserved. Analysis of the new system showed 77 and 21% diastereoselectivity for the two new replicating species. Seeding experiments indicated autocatalytic activity of both replicators. In other words, both replicators compete with each other by catalyzing their own formation from the same reagent source. Another modification was applied by aiming selective blocking of the autocatalytic cycle of the competing diastereomer. The new system showed a diastereoselectivity of about 94% for the favored replicator. The kinetic data of both systems were analyzed by modeling with SimFit simulations.
Collapse
Affiliation(s)
- İlhan Sevim
- Lehrstuhl für Organische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| |
Collapse
|
5
|
Feng Y, Philp D. A Molecular Replication Process Drives Supramolecular Polymerization. J Am Chem Soc 2021; 143:17029-17039. [PMID: 34617739 DOI: 10.1021/jacs.1c06404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supramolecular polymers are materials in which the connections between monomers in the polymer main chain are non-covalent bonds. This area has seen rapid expansion in the last two decades and has been exploited in several applications. However, suitable contiguous hydrogen-bond arrays can be difficult to synthesize, placing some limitations on the deployment of supramolecular polymers. We have designed a hydrogen-bonded polymer assembled from a bifunctional monomer composed of two replicating templates separated by a rigid spacer. This design allows the autocatalytic formation of the polymer main chain through the self-templating properties of the replicators and drives the synthesis of the bifunctional monomer from its constituent components in solution. The template-directed 1,3-dipolar cycloaddition reaction between nitrone and maleimide proceeds with high diastereoselectivity, affording the bifunctional monomer. The high binding affinity between the self-complementary replicating templates that allows the bifunctional monomer to polymerize in solution is derived from the positive cooperativity associated with this binding process. The assembly of the polymer in solution has been investigated by diffusion-ordered NMR spectroscopy. Both microcrystalline and thin films of the polymeric material can be prepared readily and have been characterized by powder X-ray diffraction and scanning electron microscopy. These results demonstrate that the approach described here is a valid one for the construction of supramolecular polymers and can be extended to systems where the rigid spacer between the replicating templates is replaced by one carrying additional function.
Collapse
Affiliation(s)
- Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Douglas Philp
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
6
|
Primitive selection of the fittest emerging through functional synergy in nucleopeptide networks. Proc Natl Acad Sci U S A 2021; 118:2015285118. [PMID: 33622789 DOI: 10.1073/pnas.2015285118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many fundamental cellular and viral functions, including replication and translation, involve complex ensembles hosting synergistic activity between nucleic acids and proteins/peptides. There is ample evidence indicating that the chemical precursors of both nucleic acids and peptides could be efficiently formed in the prebiotic environment. Yet, studies on nonenzymatic replication, a central mechanism driving early chemical evolution, have focused largely on the activity of each class of these molecules separately. We show here that short nucleopeptide chimeras can replicate through autocatalytic and cross-catalytic processes, governed synergistically by the hybridization of the nucleobase motifs and the assembly propensity of the peptide segments. Unequal assembly-dependent replication induces clear selectivity toward the formation of a certain species within small networks of complementary nucleopeptides. The selectivity pattern may be influenced and indeed maximized to the point of almost extinction of the weakest replicator when the system is studied far from equilibrium and manipulated through changes in the physical (flow) and chemical (template and inhibition) conditions. We postulate that similar processes may have led to the emergence of the first functional nucleic-acid-peptide assemblies prior to the origin of life. Furthermore, spontaneous formation of related replicating complexes could potentially mark the initiation point for information transfer and rapid progression in complexity within primitive environments, which would have facilitated the development of a variety of functions found in extant biological assemblies.
Collapse
|
7
|
Pogodaev AA, Lap TT, Huck WTS. The Dynamics of an Oscillating Enzymatic Reaction Network is Crucially Determined by Side Reactions. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aleksandr A. Pogodaev
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
| | - Tijs T. Lap
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
| |
Collapse
|
8
|
Hanopolskyi AI, Smaliak VA, Novichkov AI, Semenov SN. Autocatalysis: Kinetics, Mechanisms and Design. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anton I. Hanopolskyi
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Viktoryia A. Smaliak
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Alexander I. Novichkov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Sergey N. Semenov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| |
Collapse
|
9
|
Sevim İ, Pankau WM, von Kiedrowski G. Re-Evaluation of a Fulvene-Based Self-Replicating Diels-Alder Reaction System. Chemistry 2020; 26:9032-9035. [PMID: 32638430 DOI: 10.1002/chem.201905594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Indexed: 11/06/2022]
Abstract
We re-evaluate our claim of a high diastereoselectivity in the self-relicating Diels-Alder reaction between maleimide 1 and fulvene 3. It was shown that the system has a diastereoselectivity of 1.8:1 for NN-4:NX-4, which is contrary to the 16:1 ratio claimed by Dieckmann et al. The analysis of 1 H NMR monitoring of the reaction revealed that both replicators show sigmoidal growth which is typical for auto-catalytic systems.
Collapse
Affiliation(s)
- İlhan Sevim
- Lehrstuhl für Organische Chemie I, Bioorganische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Wolf Matthias Pankau
- Lehrstuhl für Organische Chemie I, Bioorganische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Günter von Kiedrowski
- Lehrstuhl für Organische Chemie I, Bioorganische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| |
Collapse
|
10
|
Robertson CC, Kosikova T, Philp D. Encoding Multiple Reactivity Modes within a Single Synthetic Replicator. J Am Chem Soc 2020; 142:11139-11152. [PMID: 32414236 DOI: 10.1021/jacs.0c03527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Establishing programmable and self-sustaining replication networks in pools of chemical reagents is a key challenge in systems chemistry. Self-replicating templates are formed from two constituent components with complementary recognition and reactive sites via a slow bimolecular pathway and a fast template-directed pathway. Here, we re-engineer one of the components of a synthetic replicator to encode an additional recognition function, permitting the assembly of a binary complex between the components that mediates replicator formation through a template-independent pathway, which achieves maximum rate acceleration at early time points in the replication process. The complementarity between recognition sites creates a key conformational equilibrium between the catalytically inert product, formed via the template-independent pathway, and the catalytically active replicator that mediates the template-directed pathway. Consequently, the rapid formation of the catalytically inert isomer kick-starts replication through the template-directed pathway. Through kinetic analyses, we demonstrate that the presence of the two recognition-mediated reactivity modes results in enhanced template formation in comparison to that of systems capable of exploiting only a single recognition-mediated pathway. Finally, kinetic simulations reveal that the conformational equilibrium and both the relative and absolute efficiencies of the recognition-mediated pathways affect the extent to which self-replicating systems can benefit from this additional template-independent reactivity mode. These results allow us to formulate the rules that govern the coupling of replication processes to alternative recognition-mediated reactivity modes. The interplay between template-directed and template-independent pathways for replicator formation has significant relevance to ongoing efforts to design programmable and adaptable replicator networks.
Collapse
Affiliation(s)
- Craig C Robertson
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Douglas Philp
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|