1
|
Colachis M, Lilly JL, Trigg E, Kucharzyk KH. Analytical tools to assess polymer biodegradation: A critical review and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176920. [PMID: 39461538 DOI: 10.1016/j.scitotenv.2024.176920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Many petroleum-derived plastic materials are highly recalcitrant and persistent in the environment, posing significant threats to human and ecological receptors due to their accumulation in ecosystems. In recent years, research efforts have focused on advancing biological methods for polymer degradation. Enzymatic depolymerization has emerged as particularly relevant for biobased plastic recycling, potentially scalable for industrial use. Biodegradation involves adsorption to the plastic solid surface, followed by an interfacial reaction, resulting in cleavage of bonds of polymer chains exposed on the surface. Here, widely varying substrate-specific kinetics are observed, with the polymer's properties possessing a significant impact on the rate of this interfacial catalysis. Thus, there is a critical need for sensitive and accurate characterization of the material surface during and after interfacial depolymerization to fully understand the reaction mechanisms. Here, we provide a critical review of a range of techniques used in the analysis of material surfaces to characterize the chemical, topological, and morphological features relevant to the study of enzymatic biocatalysis, including microscopy techniques, spectroscopic techniques (e.g., X-ray diffraction analysis, Fourier transform infrared attenuated total reflectance spectroscopy, and mass spectrometry detection of analytes associated with degradation). Techniques for evaluation of surface energy and topology in their relevancy for sensitive detection of biological surface modifications are also discussed. In addition, this paper provides an overview of the strengths of these techniques and compares their performance in both sensitivity and throughput, including emerging techniques, which can be useful, particularly for the rapid analysis of the surface properties of polymeric materials in high-throughput screening of candidate biocatalysts. This research serves as a starting point in selecting and applying appropriate methodologies that provide direct evidence to the ongoing biotic degradation of polymeric materials.
Collapse
Affiliation(s)
- Matthew Colachis
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Jacob L Lilly
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Edward Trigg
- Cambium Biomaterials, 626 Bancroft Way, Suite A, Berkeley, California 94710, United States
| | | |
Collapse
|
2
|
Bae S, Noack MM, Yager KG. Surface enrichment dictates block copolymer orientation. NANOSCALE 2023; 15:6901-6912. [PMID: 36876525 DOI: 10.1039/d3nr00095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Orientation of block copolymer (BCP) morphology in thin films is critical to applications as nanostructured coatings. Despite being well-studied, the ability to control BCP orientation across all possible block constituents remains challenging. Here, we deploy coarse-grained molecular dynamics simulations to study diblock copolymer ordering in thin films, focusing on chain makeup, substrate surface energy, and surface tension disparity between the two constituent blocks. We explore the multi-dimensional parameter space of ordering using a machine-learning approach, where an autonomous loop using a Gaussian process (GP) control algorithm iteratively selects high-value simulations to compute. The GP kernel was engineered to capture known symmetries. The trained GP model serves as both a complete map of system response, and a robust means of extracting material knowledge. We demonstrate that the vertical orientation of BCP phases depends on several counter-balancing energetic contributions, including entropic and enthalpic material enrichment at interfaces, distortion of morphological objects through the film depth, and of course interfacial energies. BCP lamellae are found more resistant to these effects, and thus more robustly form vertical orientations across a broad range of conditions; while BCP cylinders are found to be highly sensitive to surface tension disparity.
Collapse
Affiliation(s)
- Suwon Bae
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - Marcus M Noack
- The Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
| |
Collapse
|
3
|
Zhu C, Pedretti BJ, Kuehster L, Ganesan V, Sanoja GE, Lynd NA. Ionic Conductivity, Salt Partitioning, and Phase Separation in High-Dielectric Contrast Polyether Blends and Block Polymer Electrolytes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Congzhi Zhu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin J. Pedretti
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Louise Kuehster
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gabriel E. Sanoja
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Ion Correlations and Partial Ionicities in the Lamellar Phases of Block Copolymeric Ionic Liquids. ACS Macro Lett 2022; 11:1265-1271. [DOI: 10.1021/acsmacrolett.2c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Fan M, Shen KH, Hall LM. Effect of Tethering Anions in Block Copolymer Electrolytes via Molecular Dynamics Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Zhu Z, Paddison SJ. Perspective: Morphology and ion transport in ion-containing polymers from multiscale modeling and simulations. Front Chem 2022; 10:981508. [PMID: 36059884 PMCID: PMC9437359 DOI: 10.3389/fchem.2022.981508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
Ion-containing polymers are soft materials composed of polymeric chains and mobile ions. Over the past several decades they have been the focus of considerable research and development for their use as the electrolyte in energy conversion and storage devices. Recent and significant results obtained from multiscale simulations and modeling for proton exchange membranes (PEMs), anion exchange membranes (AEMs), and polymerized ionic liquids (polyILs) are reviewed. The interplay of morphology and ion transport is emphasized. We discuss the influences of polymer architecture, tethered ionic groups, rigidity of the backbone, solvents, and additives on both morphology and ion transport in terms of specific interactions. Novel design strategies are highlighted including precisely controlling molecular conformations to design highly ordered morphologies; tuning the solvation structure of hydronium or hydroxide ions in hydrated ion exchange membranes; turning negative ion-ion correlations to positive correlations to improve ionic conductivity in polyILs; and balancing the strength of noncovalent interactions. The design of single-ion conductors, well-defined supramolecular architectures with enhanced one-dimensional ion transport, and the understanding of the hierarchy of the specific interactions continue as challenges but promising goals for future research.
Collapse
Affiliation(s)
| | - Stephen J. Paddison
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
7
|
Pedretti BJ, Czarnecki NJ, Zhu C, Imbrogno J, Rivers F, Freeman BD, Ganesan V, Lynd NA. Structure–Property Relationships for Polyether-Based Electrolytes in the High-Dielectric-Constant Regime. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin J. Pedretti
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Natalie J. Czarnecki
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Congzhi Zhu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer Imbrogno
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Frederick Rivers
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Abstract
Ion-containing polymers have continued to be an important research focus for several decades due to their use as an electrolyte in energy storage and conversion devices. Elucidation of connections between the mesoscopic structure and multiscale dynamics of the ions and solvent remains incompletely understood. Coarse-grained modeling provides an efficient approach for exploring the structural and dynamical properties of these soft materials. The unique physicochemical properties of such polymers are of broad interest. In this review, we summarize the current development and understanding of the structure-property relationship of ion-containing polymers and provide insights into the design of such materials determined from coarse-grained modeling and simulations accompanying significant advances in experimental strategies. We specifically concentrate on three types of ion-containing polymers: proton exchange membranes (PEMs), anion exchange membranes (AEMs), and polymerized ionic liquids (polyILs). We posit that insight into the similarities and differences in these materials will lead to guidance in the rational design of high-performance novel materials with improved properties for various power source technologies.
Collapse
Affiliation(s)
- Zhenghao Zhu
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xubo Luo
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Stephen J Paddison
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Lin C, Wei H, Li H, Duan X. Structures of cationic and anionic polyelectrolytes in aqueous solutions: the sign effect. SOFT MATTER 2022; 18:1603-1616. [PMID: 35080232 DOI: 10.1039/d1sm01700d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we use molecular dynamics simulation to explore the structures of anionic and cationic polyelectrolytes in aqueous solutions. We first confirm the significantly stronger solvation effects of single anions compared to cations in water at the fixed ion radii, due to the reversal orientations of asymmetric dipolar H2O molecules around the ions. Based on this, we demonstrate that the solvation discrepancy of cations/anions and electrostatic correlations of ionic species can synergistically cause the nontrivial structural difference between single anionic and cationic polyelectrolytes. The cationic polyelectrolyte shows an extended structure whereas the anionic polyelectrolyte exhibits a collapsed structure, and their structural differences decline with increasing the counterion size. Furthermore, we corroborate that multiple cationic polyelectrolytes or multiple anionic polyelectrolytes can exhibit largely differential molecular architectures in aqueous solutions. In the solvation dominant regime, the polyelectrolyte solutions exhibit uniform structures; whereas, in the electrostatic correlation dominant regime, the polyelectrolyte solutions exhibit heterogeneous structures, in which the likely charged chains microscopically aggregate through counterion condensations. Increasing the intrinsic chain rigidity causes polyelectrolyte extension and hence moderately weakens the inter-chain clustering. Our work highlights the various, unique structures and molecular architectures of polyelectrolytes in solutions caused by the multi-body correlations between polyelectrolytes, counterions and asymmetric dipolar solvent molecules, which provides insights into the fundamental understanding of ion-containing polymers.
Collapse
Affiliation(s)
- Chengjiang Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hao Wei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
10
|
Dan L, Zhang K, Huang Z, Wang F, Wang Q, Li J. Molecular-level evaluation of ionic transport under external electric fields in biological dielectric liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Xu H, Mahanthappa MK. Ionic Conductivities of Broad Dispersity Lithium Salt-Doped Polystyrene/Poly(ethylene oxide) Triblock Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongyun Xu
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| | - Mahesh K. Mahanthappa
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Genier FS, Hosein ID. Effect of Coordination Behavior in Polymer Electrolytes for Sodium-Ion Conduction: A Molecular Dynamics Study of Poly(ethylene oxide) and Poly(tetrahydrofuran). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francielli S. Genier
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Ian D. Hosein
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
13
|
Imbrogno J, Maruyama K, Rivers F, Baltzegar JR, Zhang Z, Meyer PW, Ganesan V, Aoshima S, Lynd NA. Relationship between Ionic Conductivity, Glass Transition Temperature, and Dielectric Constant in Poly(vinyl ether) Lithium Electrolytes. ACS Macro Lett 2021; 10:1002-1007. [PMID: 35549112 DOI: 10.1021/acsmacrolett.1c00305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a partial elucidation of the relationship between polymer polarity and ionic conductivity in polymer electrolyte mixtures comprising a homologous series of nine poly(vinyl ether)s (PVEs) and lithium bis(trifluoromethylsulfonyl)imide. Recent simulation studies have suggested that low dielectric polymer hosts with glass transition temperatures far below ambient conditions are expected to have ionic conductivity limited by salt solubility and dissociation. In contrast, high dielectric hosts are expected to have the potential for high ion solubility but slow segmental dynamics due to strong polymer-polymer and polymer-ion interactions. We report results for PVEs in the low polarity regime with dielectric constants of about 1.3 to 9.0. Ionic conductivity measured for the PVE and salt mixtures ranged from about 10-10 to 10-3 S/cm. In agreement with the predictions from computer simulations, the ionic conductivity increased with dielectric constant and plateaued as the dielectric approached 9.0, comparable to the dielectric constant of the widely used poly(ethylene oxide).
Collapse
Affiliation(s)
| | - Kazuya Maruyama
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | |
Collapse
|
14
|
Ketkar PM, Shen KH, Fan M, Hall LM, Epps TH. Quantifying the Effects of Monomer Segment Distributions on Ion Transport in Tapered Block Polymer Electrolytes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Priyanka M. Ketkar
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas H. Epps
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Research in Soft matter & Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Liang J, Wei H, Yu K, Lin C, Li H, Ding M, Duan X. Structure and dynamics of ions in dipolar solvents: a coarse-grained simulation study. SOFT MATTER 2021; 17:6305-6314. [PMID: 34132314 DOI: 10.1039/d1sm00583a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We employ the coarse-grained molecular dynamics simulation to investigate the fundamental structural and dynamic properties of the ionic solution with and without the application of an external electric field. Our simulations, in which the solvent molecules are treated as Stockmayer fluids and the ions are modeled as spheres, can effectively account for the multi-body correlations between ion-ion, ion-dipole, and dipole-dipole interactions, which are often ignored by the mean-field theories or coarse-grained simulations based on a dielectric continuum. By focusing on the coupling between effects of ion solvation, electrostatic correlations and applied electric field, we highlight some nontrivial microscopic molecular features of the systems, such as the reorganization of the dipolar solvent, clustering of the ions, and diffusions of ions and dipolar solvent molecules. Particularly, our simulation indicates the nonmonotonic dependence of the ionic clustering and ion diffusion rates on the dipolar nature of the solvent molecules, as well as the amplification of these tendencies caused by the electric field application. This work provides insights into the fundamental understanding of physicochemical properties for ion-containing liquids and contributes to the design and development of ion-containing materials.
Collapse
Affiliation(s)
- Jicai Liang
- Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130025, China.
| | - Hao Wei
- Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130025, China. and State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Kaifeng Yu
- Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130025, China.
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
16
|
Zhang Z, Krajniak J, Ganesan V. A Multiscale Simulation Study of Influence of Morphology on Ion Transport in Block Copolymeric Ionic Liquids. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jakub Krajniak
- Independent researcher, os. Kosmonautow 13/56, 61-631 Poznan, Poland
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Zhou T, Wu Z, Chilukoti HK, Müller-Plathe F. Sequence-Engineering Polyethylene-Polypropylene Copolymers with High Thermal Conductivity Using a Molecular-Dynamics-Based Genetic Algorithm. J Chem Theory Comput 2021; 17:3772-3782. [PMID: 33949863 DOI: 10.1021/acs.jctc.1c00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polymer sequence engineering is emerging as a potential tool to modulate material properties. Here, we employ a combination of a genetic algorithm (GA) and atomistic molecular dynamics (MD) simulation to design polyethylene-polypropylene (PE-PP) copolymers with the aim of identifying a specific sequence with high thermal conductivity. PE-PP copolymers with various sequences at the same monomer ratio are found to have a broad distribution of thermal conductivities. This indicates that the monomer sequence has a crucial effect on thermal energy transport of the copolymers. A non-periodic and non-intuitive optimal sequence is indeed identified by the GA, which gives the highest thermal conductivity compared with any regular block copolymers, for example, diblock, triblock, and hexablock. In comparison to the bulk density, chain conformations, and vibrational density of states, the monomer sequence has the strongest impact on the efficiency of thermal energy transport via inter- and intra-molecular interactions. Our work highlights polymer sequence engineering as a promising approach for tuning the thermal conductivity of copolymers, and it provides an example application of integrating atomistic MD modeling with the GA for computational material design.
Collapse
Affiliation(s)
- Tianhang Zhou
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Street 8, 64287 Darmstadt, Germany
| | - Zhenghao Wu
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Street 8, 64287 Darmstadt, Germany
| | - Hari Krishna Chilukoti
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Street 8, 64287 Darmstadt, Germany.,Department of Mechanical Engineering, National Institute of Technology Warangal, Warangal, 506004 Telangana, India
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Street 8, 64287 Darmstadt, Germany
| |
Collapse
|
18
|
Choi YK, Park SJ, Park S, Kim S, Kern NR, Lee J, Im W. CHARMM-GUI Polymer Builder for Modeling and Simulation of Synthetic Polymers. J Chem Theory Comput 2021; 17:2431-2443. [PMID: 33797913 PMCID: PMC8078172 DOI: 10.1021/acs.jctc.1c00169] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular modeling and simulations are invaluable tools for polymer science and engineering, which predict physicochemical properties of polymers and provide molecular-level insight into the underlying mechanisms. However, building realistic polymer systems is challenging and requires considerable experience because of great variations in structures as well as length and time scales. This work describes Polymer Builder in CHARMM-GUI (http://www.charmm-gui.org/input/polymer), a web-based infrastructure that provides a generalized and automated process to build a relaxed polymer system. Polymer Builder not only provides versatile modeling methods to build complex polymer structures, but also generates realistic polymer melt and solution systems through the built-in coarse-grained model and all-atom replacement. The coarse-grained model parametrization is generalized and extensively validated with various experimental data and all-atom simulations. In addition, the capability of Polymer Builder for generating relaxed polymer systems is demonstrated by density calculations of 34 homopolymer melt systems, characteristic ratio calculations of 170 homopolymer melt systems, a morphology diagram of poly(styrene-b-methyl methacrylate) block copolymers, and self-assembly behavior of amphiphilic poly(ethylene oxide-b-ethylethane) block copolymers in water. We hope that Polymer Builder is useful to carry out innovative and novel polymer modeling and simulation research to acquire insight into structures, dynamics, and underlying mechanisms of complex polymer-containing systems.
Collapse
Affiliation(s)
- Yeol Kyo Choi
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Soohyung Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Seonghoon Kim
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Nathan R. Kern
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Jumin Lee
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
19
|
Sharon D, Bennington P, Webb MA, Deng C, de Pablo JJ, Patel SN, Nealey PF. Molecular Level Differences in Ionic Solvation and Transport Behavior in Ethylene Oxide-Based Homopolymer and Block Copolymer Electrolytes. J Am Chem Soc 2021; 143:3180-3190. [DOI: 10.1021/jacs.0c12538] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Sharon
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Peter Bennington
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Michael A. Webb
- Department of Chemical and Biological Engineering, Princeton University, 41 Olden St, Princeton, New Jersey 08540, United States
| | - Chuting Deng
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Shrayesh N. Patel
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
20
|
Shen KH, Fan M, Hall LM. Molecular Dynamics Simulations of Ion-Containing Polymers Using Generic Coarse-Grained Models. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02557] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Li W, Carrillo JMY, Sumpter BG, Kumar R. Modulating Microphase Separation of Lamellae-Forming Diblock Copolymers via Ionic Junctions. ACS Macro Lett 2020; 9:1667-1673. [PMID: 35617068 DOI: 10.1021/acsmacrolett.0c00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a molecular dynamics simulation study investigating the phase behavior of lamellae-forming diblock copolymers with a single ionic junction on the backbone. Our results show qualitative agreement with experimental findings regarding enhanced microphase separation with the introduction of an ionic junction at the conjunction point, while further revealing nonmonotonic changes in domain spacing and order-disorder transition as a function of the electrostatic interaction strength. This highlights the dominant roles of entropic and binding effects of counterions under weak and strong ionic correlations, respectively. The location of the ionic junction is found to effectively modulate the charge distribution and chain conformation in the ordered domains; its presence in the middle of a block promotes folding of the block, leading to a smaller domain size. These findings demonstrate the interplay of ionic coupling with steric hindrance and chain end effects, which enhances our understanding of the delicate control over the microphase domain features.
Collapse
Affiliation(s)
- Wei Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
22
|
Shen KH, Hall LM. Effects of Ion Size and Dielectric Constant on Ion Transport and Transference Number in Polymer Electrolytes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Wheatle BK, Fuentes EF, Lynd NA, Ganesan V. Design of Polymer Blend Electrolytes through a Machine Learning Approach. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01547] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bill K. Wheatle
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, Texas, United States
| | - Erick F. Fuentes
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, Texas, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, Texas, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, Texas, United States
| |
Collapse
|
24
|
Abstract
Solid-state polymer electrolytes and high-concentration liquid electrolytes, such as water-in-salt electrolytes and ionic liquids, are emerging materials to replace the flammable organic electrolytes widely used in industrial lithium-ion batteries. Extensive efforts have been made to understand the ion transport mechanisms and optimize the ion transport properties. This perspective reviews the current understanding of the ion transport and polymer dynamics in liquid and polymer electrolytes, comparing the similarities and differences in the two types of electrolytes. Combining recent experimental and theoretical findings, we attempt to connect and explain ion transport mechanisms in different types of small-molecule and polymer electrolytes from a theoretical perspective, linking the macroscopic transport coefficients to the microscopic, molecular properties such as the solvation environment of the ions, salt concentration, solvent/polymer molecular weight, ion pairing, and correlated ion motion. We emphasize universal features in the ion transport and polymer dynamics by highlighting the relevant time and length scales. Several outstanding questions and anticipated developments for electrolyte design are discussed, including the negative transference number, control of ion transport through precision synthesis, and development of predictive multiscale modeling approaches.
Collapse
Affiliation(s)
- Chang Yun Son
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
25
|
Loo WS, Faraone A, Grundy LS, Gao KW, Balsara NP. Polymer Dynamics in Block Copolymer Electrolytes Detected by Neutron Spin Echo. ACS Macro Lett 2020; 9:639-645. [PMID: 35648570 DOI: 10.1021/acsmacrolett.0c00236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polymer chain dynamics of a nanostructured block copolymer electrolyte, polystyrene-block-poly(ethylene oxide) (SEO) mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, are investigated by neutron spin echo (NSE) spectroscopy on the 0.1-100 ns time scale and analyzed using the Rouse model at short times (t ≤ 10 ns) and the reptation tube model at long times (t ≥ 50 ns). In the Rouse regime, the monomeric friction coefficient increases with increasing salt concentration, as seen previously in homopolymer electrolytes. In the reptation regime, the tube diameters, which represent entanglement constraints, decrease with increasing salt concentration. The normalized longest molecular relaxation time, calculated from the NSE results, increases with increasing salt concentration. We argue that quantifying chain motion in the presence of ions is essential for predicting the behavior of polymer-electrolyte-based batteries operating at large currents.
Collapse
Affiliation(s)
- Whitney S. Loo
- Department of Chemical and Biomolecular Engineering, University of California−Berkeley, Berkeley, California 94720, United States
| | - Antonio Faraone
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Lorena S. Grundy
- Department of Chemical and Biomolecular Engineering, University of California−Berkeley, Berkeley, California 94720, United States
| | - Kevin W. Gao
- Department of Chemical and Biomolecular Engineering, University of California−Berkeley, Berkeley, California 94720, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California−Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Shen KH, Hall LM. Ion Conductivity and Correlations in Model Salt-Doped Polymers: Effects of Interaction Strength and Concentration. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00216] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Hou KJ, Loo WS, Balsara NP, Qin J. Comparing Experimental Phase Behavior of Ion-Doped Block Copolymers with Theoretical Predictions Based on Selective Ion Solvation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00559] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kevin J. Hou
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Whitney S. Loo
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California—Berkeley, Berkeley, California 94720, United States
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
28
|
Galluzzo MD, Loo WS, Wang AA, Walton A, Maslyn JA, Balsara NP. Measurement of Three Transport Coefficients and the Thermodynamic Factor in Block Copolymer Electrolytes with Different Morphologies. J Phys Chem B 2020; 124:921-935. [DOI: 10.1021/acs.jpcb.9b11066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael D. Galluzzo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Andrew A. Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Amber Walton
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Jacqueline A. Maslyn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|