1
|
Yang H, Zhao Y, Guo Y, Wu B, Ying Y, Sofer Z, Wang S. Surfactant-Mediated Crystalline Structure Evolution Enabling the Ultrafast Green Synthesis of Bismuth-MOF in Aqueous Condition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307484. [PMID: 38050936 DOI: 10.1002/smll.202307484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Indexed: 12/07/2023]
Abstract
Green synthesis of stable metal-organic frameworks (MOFs) with permanent and highly ordered porosity at room temperature without needing toxic and harmful solvents and long-term high-temperature reactions is crucial for sustainable production. Herein, a rapid and environmentally friendly synthesis strategy is reported to synthesize the complex topological bismuth-based-MOFs (Bi-MOFs), [Bi9(C9H3O6)9(H2O)9] (denoted CAU-17), in water under ambient conditions by surfactant-mediated sonochemical approach, which could also be applicable to other MOFs. This strategy explores using cetyltrimethylammonium bromide (CTAB) amphiphilic molecules as structure-inducing agents to control the removal of non-coordinated water (dehydration) and enhance the degree of deprotonation of the ligands, thereby regulating the coordination and crystallization in aqueous solutions. In addition, another two new strategies for synthesizing CAU-17 by crystal reconstruction and one-step synthesis in binary solvents are provided, and the solvent-induced synthesis mechanism of CAU-17 is studied. The as-prepared CAU-17 presents a competitive iodine capture capability and effective delivery of the antiarrhythmic drug procainamide (PA) for enteropatia due to the broad pH tolerance and the unique phosphate-responsive destruction in the intestine. The findings will provide valuable ideas for the follow-up study of surfactant-assisted aqueous synthesis of MOFs and their potential applications.
Collapse
Affiliation(s)
- Haowei Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yu Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yi Guo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Bing Wu
- University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zdenek Sofer
- University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
2
|
Lee G, Kwon H, Lee S, Oh M. Structural Compromise Between Conflicted Spatial-Arrangements of Two Linkers in Metal-Organic Frameworks. SMALL METHODS 2023; 7:e2201586. [PMID: 36802140 DOI: 10.1002/smtd.202201586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Indexed: 06/09/2023]
Abstract
The structural control of metal-organic frameworks (MOFs) is essential for the development of superlative MOFs because the structural features of MOFs and their components play a critical role in determining their properties, and ultimately, their applications. The best components to endow the desired properties for MOFs are available via the appropriate choice from many existing chemicals or synthesizing new ones. However, to date, considerably less information exists regarding fine-tuning the MOF structures. Herein, a strategy for tuning MOF structures by merging two MOF structures into a single MOF, is demonstrated. Depending on the incorporated amounts and relative contributions of the two coexisting organic linkers, benzene-1,4-dicarboxylate (BDC2- ) and naphthalene-1,4-dicarboxylate (NDC2- ), which have conflicting spatial-arrangement preferences within an MOF structure, MOFs are rationally designed to have a Kagomé or rhombic lattice. In particular, MOFs with rhombic lattices are constructed to have specific lattice angles by compromising the optimal structural arrangements between the two mixed linkers. The relative contributions of the two linkers during MOF construction determine the final MOF structures, and the competitive influence between BDC2- and NDC2- is effectively regulated to produce specific MOF structures with controlled lattices.
Collapse
Affiliation(s)
- Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Haejin Kwon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Yin Y, Wu L, Chen C, Zheng B, Xiong WW. A facile strategy for engineering heterostructures of Pd nanoparticle-loaded metal-organic framework nanosheets as active hydrogenation catalysts. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Pamei M, Kumar S, Achumi AG, Puzari A. Supercapacitive amino-functionalized cobalt and copper metal-organic frameworks with varying surface morphologies for energy storage. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Chai L, Ju Y, Xing J, Ma X, Zhao X, Tan Y. Nanographene Metallaprisms: Structure, Stimulated Transformation, and Emission Enhancement. Angew Chem Int Ed Engl 2022; 61:e202210268. [DOI: 10.1002/anie.202210268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ling Chai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yang‐Yang Ju
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jiang‐Feng Xing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiao‐Hui Ma
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yuan‐Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
6
|
Chai L, Ju YY, Xing JF, Ma XH, Zhao XJ, Tan YZ. Nanographene Metallaprisms: Structure, Stimulated Transformation, and Emission Enhancement. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | - Yuan-Zhi Tan
- Xiamen University Department of Chemistry Siminnan Road 422 361005 Xiamen CHINA
| |
Collapse
|
7
|
Hölzel H, Haines P, Kaur R, Lungerich D, Jux N, Guldi DM. Probing Charge Management across the π-Systems of Nanographenes in Regioisomeric Electron Donor-Acceptor Architectures. J Am Chem Soc 2022; 144:8977-8986. [PMID: 35543627 DOI: 10.1021/jacs.2c00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by light-induced processes in nature to mimic the primary events in the photosynthetic reaction centers, novel functional materials combine electron donors and acceptors, i.e., (metallo)porphyrins (ZnP) and fullerenes (C60), respectively, with emerging materials, i.e., nanographenes. We utilized hexa-peri-hexabenzocoronene (HBC) due to its versatility regarding functionalization and physicochemical properties, to construct three regioisomeric ZnP-HBC-C60 conjugates, which foster geometrical diversity by arranging ZnP and C60 in ortho-, meta-, and para-positions to each other. The corresponding hexaarylbenzene (HAB) motifs, with an interrupted π-system, were also prepared. Transient absorption measurements disclosed the fast population of charge transfer as well as singlet and triplet charge-separated states. With the help of density functional theory (DFT) calculations, we further conceive the communication across the HBCs and HABs. This work reveals the impact of both the geometrical arrangement with respect to through-space versus through-bond interactions and the structural rigidity/flexibility on the charge management across the different π-systems.
Collapse
Affiliation(s)
- Helen Hölzel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden.,Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM) Chair of Organic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Philipp Haines
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM) Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Ramandeep Kaur
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM) Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Dominik Lungerich
- Center for Nanomedicine, Institute for Basic Science (IBS), 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 03722 Seoul, Republic of Korea
| | - Norbert Jux
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM) Chair of Organic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM) Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Wang P, Kajiwara T, Otake KI, Yao MS, Ashitani H, Kubota Y, Kitagawa S. Xylene Recognition in Flexible Porous Coordination Polymer by Guest-Dependent Structural Transition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52144-52151. [PMID: 34347426 DOI: 10.1021/acsami.1c10061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xylene isomers are crucial chemical intermediates in great demand worldwide; the almost identical physicochemical properties render their current separation approach energy consuming. In this study, we utilized the soft porous coordination polymer (PCP)'s isomer-specific structural transformation, realizing o-xylene (oX) recognition/separation from the binary and ternary isomer mixtures. This PCP has a flexible structure that contains flexible aromatic pendant groups, which both work as recognition sites and induce structural flexibility of the global framework. The PCP exhibits guest-triggered "breathing"-type structural changes, which are accompanied by the rearrangement of the intraframework π-π interaction. By rebuilding π-π stacking with isomer species, the PCP discriminated oX from the other isomers by its specific guest-loading configuration and separated oX from the isomer mixture via selective adsorption. The xylene-selective property of the PCP is dependent on the solvent; in diluted hexane solution, the PCP favors p-xylene (pX) uptake. The separation results combined with crystallographic analyses revealed the effect of the isomer selectivity of the PCP on xylene isomer separation via structural transition and demonstrated its potential as a versatile selective adsorptive medium for challenging separations.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Kajiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hirotaka Ashitani
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Grau BW, Dill M, Hampel F, Kahnt A, Jux N, Tsogoeva SB. Four‐Step Domino Reaction Enables Fully Controlled Non‐Statistical Synthesis of Hexaarylbenzene with Six Different Aryl Groups**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Benedikt W. Grau
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus Fiebiger-Straße 10 91058 Erlangen Germany
| | - Maximilian Dill
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus Fiebiger-Straße 10 91058 Erlangen Germany
| | - Frank Hampel
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus Fiebiger-Straße 10 91058 Erlangen Germany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 04318 Leipzig Germany
| | - Norbert Jux
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus Fiebiger-Straße 10 91058 Erlangen Germany
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus Fiebiger-Straße 10 91058 Erlangen Germany
| |
Collapse
|
10
|
Grau BW, Dill M, Hampel F, Kahnt A, Jux N, Tsogoeva SB. Four-Step Domino Reaction Enables Fully Controlled Non-Statistical Synthesis of Hexaarylbenzene with Six Different Aryl Groups*. Angew Chem Int Ed Engl 2021; 60:22307-22314. [PMID: 34060211 PMCID: PMC8518863 DOI: 10.1002/anie.202104437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/30/2021] [Indexed: 12/11/2022]
Abstract
Hexaarylbenzene (HAB) derivatives are versatile aromatic systems playing a significant role as chromophores, liquid crystalline materials, molecular receptors, molecular-scale devices, organic light-emitting diodes and candidates for organic electronics. Statistical synthesis of simple symmetrical HABs is known via cyclotrimerization or Diels-Alder reactions. By contrast, the synthesis of more complex, asymmetrical systems, and without involvement of statistical steps, remains an unsolved problem. Here we present a generally applicable synthetic strategy to access asymmetrical HAB via an atom-economical and high-yielding metal-free four-step domino reaction using nitrostyrenes and α,α-dicyanoolefins as easily available starting materials. Resulting domino product-functionalized triarylbenzene (TAB)-can be used as a key starting compound to furnish asymmetrically substituted hexaarylbenzenes in high overall yield and without involvement of statistical steps. This straightforward domino process represents a distinct approach to create diverse and still unexplored HAB scaffolds, containing six different aromatic rings around central benzene core.
Collapse
Affiliation(s)
- Benedikt W. Grau
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University of Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| | - Maximilian Dill
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University of Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| | - Frank Hampel
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University of Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Norbert Jux
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University of Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University of Erlangen-NürnbergNikolaus Fiebiger-Straße 1091058ErlangenGermany
| |
Collapse
|
11
|
Wang Y. Extension and Quantification of the Fries Rule and Its Connection to Aromaticity: Large-Scale Validation by Wave-Function-Based Resonance Analysis. J Chem Inf Model 2021; 62:5136-5148. [PMID: 34428367 DOI: 10.1021/acs.jcim.1c00735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Fries rule is a simple, intuitive tool to predict the most dominant Kekulé structures of polycyclic aromatic hydrocarbons (PAHs), which is valuable for understanding the structure, stability, reactivity, and aromaticity of these conjugated compounds. However, it still remains an empirical hypothesis, with limited qualitative applications. Herein, we verify, generalize, and quantify the Fries rule based on the recently developed resonance analysis of the DFT wave functions of over 1500 PAH and fullerene molecules with over a billion Kekulé structures. The extended rules, counting the numbers of electrons within all rings (not just sextets), are able to rank the relative importance of all Kekulé structures for all considered systems. The statistically meaningful quantification also opens a way to evaluate ring aromaticity based on the resonance theory, which generally agrees well with conventional aromaticity descriptors. Furthermore, we propose a purely graph-based aromaticity indicator nicely applicable to PAHs and fullerenes, with no need of any quantum chemistry calculations, so that it can make valuable predictions for molecular properties that are related to local aromaticity.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
12
|
Wang P, Otake K, Hosono N, Kitagawa S. Crystal Flexibility Design through Local and Global Motility Cooperation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Ken‐ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Nobuhiko Hosono
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
13
|
Wang P, Otake K, Hosono N, Kitagawa S. Crystal Flexibility Design through Local and Global Motility Cooperation. Angew Chem Int Ed Engl 2021; 60:7030-7035. [DOI: 10.1002/anie.202015257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Ken‐ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Nobuhiko Hosono
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
14
|
Yamada M, Uemura F, Kunda UMR, Tanno T, Katagiri H, Hamada F. Alkane Shape- and Size-Recognized Selective Vapor Sorption in "Channel-Like" Crystals Based on Thiacalixarene Assemblies. Chemistry 2020; 26:8393-8399. [PMID: 32236981 DOI: 10.1002/chem.202000043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/25/2020] [Indexed: 01/17/2023]
Abstract
Alkanes composed of C-C and C-H show a low electric polarization, and therefore, there is only very weak interaction between alkanes and adsorbents. Thus, it is difficult to separate a specific alkane from a mixture of alkanes by adsorption. Here, two activated "channel-like" crystals generated from brominated thiacalix[4]arene propyl ethers, which adopt 1,3-alternate and partial cone conformations, recognize specific alkane vapors depending on alkane-shape and -size, sorting in three-type alkane guests such as linear, branched, and cyclic alkanes. Two activated crystals, which are prepared by removal of solvent upon heating under reduced pressure, incorporate branched and/or cyclic alkane vapors by a unique "gate-opening" mechanism via a crystal transformation in the process. Linear alkane vapors do not trigger gate opening and are not taken up by the activated crystals. The shape and size molecular-recognition properties of the activated crystals promises considerable usefulness for the separation of linear, branched, and cyclic alkanes.
Collapse
Affiliation(s)
- Manabu Yamada
- Research Center of Advanced Materials for Breakthrough Technology, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita, 010-8502, Japan
| | - Fumiya Uemura
- Applied Chemistry Course, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita, 010-8502, Japan
| | - Uma Maheswara Rao Kunda
- Research Center of Advanced Materials for Breakthrough Technology, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita, 010-8502, Japan
| | - Takenori Tanno
- Center for Regional Revitalization in Research and Education, Akita University, 1-1 Tegatagakuen-machi, Akita, 010-8502, Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Fumio Hamada
- Centre for Crystal Growth, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
| |
Collapse
|
15
|
Kiel GR, Bergman HM, Tilley TD. Site-selective [2 + 2 + n] cycloadditions for rapid, scalable access to alkynylated polycyclic aromatic hydrocarbons. Chem Sci 2020; 11:3028-3035. [PMID: 34122806 PMCID: PMC8157499 DOI: 10.1039/c9sc06102a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are attractive synthetic building blocks for more complex conjugated nanocarbons, but their use for this purpose requires appreciable quantities of a PAH with reactive functional groups. Despite tremendous recent advances, most synthetic methods cannot satisfy these demands. Here we present a general and scalable [2 + 2 + n] (n = 1 or 2) cycloaddition strategy to access PAHs that are decorated with synthetically versatile alkynyl groups and its application to seven structurally diverse PAH ring systems (thirteen new alkynylated PAHs in total). The critical discovery is the site-selectivity of an Ir-catalyzed [2 + 2 + 2] cycloaddition, which preferentially cyclizes tethered diyne units with preservation of other (peripheral) alkynyl groups. The potential for generalization of the site-selectivity to other [2 + 2 + n] reactions is demonstrated by identification of a Cp2Zr-mediated [2 + 2 + 1]/metallacycle transfer sequence for synthesis of an alkynylated, selenophene-annulated PAH. The new PAHs are excellent synthons for macrocyclic conjugated nanocarbons. As a proof of concept, four were subjected to alkyne metathesis catalysis to afford large, PAH-containing arylene ethylene macrocycles, which possess a range of cavity sizes reaching well into the nanometer regime. Notably, these high-yielding macrocyclizations establish that synthetically convenient pentynyl groups can be effective for metathesis since the 4-octyne byproduct is sequestered by 5 Å MS. Most importantly, this work is a demonstration of how site-selective reactions can be harnessed to rapidly build up structural complexity in a practical, scalable fashion. An orthogonal [2 + 2 + n] cycloaddition/alkyne metathesis reaction sequence enables streamlined access to conjugated macrocyclic nanocarbons.![]()
Collapse
Affiliation(s)
- Gavin R Kiel
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - Harrison M Bergman
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| |
Collapse
|
16
|
Kim J, Jo H, Yoon SW, Lee MH, Choi W, Choi K, Ok KM. Synthesis, Structure, and Characterization of Variable Chains in a Series of Transition Metal Coordination Compounds. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jungjoo Kim
- Department of Chemistry Chung‐Ang University 06974 Seoul Republic of Korea
| | - Hongil Jo
- Department of Chemistry Sogang University 04107 Seoul Republic of Korea
| | - Sung Won Yoon
- Department of Physics Chung‐Ang University 06974 Seoul Republic of Korea
| | - Min Hyung Lee
- Department of Chemistry University of Ulsan 44610 Ulsan Republic of Korea
| | - Woo‐Jae Choi
- Department of Emerging Materials Science DGIST 42988 Daegu Republic of Korea
| | - Kwang‐Yong Choi
- Department of Physics Chung‐Ang University 06974 Seoul Republic of Korea
| | - Kang Min Ok
- Department of Chemistry Sogang University 04107 Seoul Republic of Korea
| |
Collapse
|
17
|
Fuku K, Miyata M, Takaishi S, Yoshida T, Yamashita M, Hoshino N, Akutagawa T, Ohtsu H, Kawano M, Iguchi H. Emergence of electrical conductivity in a flexible coordination polymer by using chemical reduction. Chem Commun (Camb) 2020; 56:8619-8622. [DOI: 10.1039/d0cc03062g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Postsynthetic chemical reduction enhanced the electrical conductivity of a new flexible 1D coordination network with a naphthalenediimide (NDI)-based ligand.
Collapse
|
18
|
Mohanty A, Singh UP, Butcher RJ, Das N, Roy P. Synthesis of fluorescent MOFs: live-cell imaging and sensing of a herbicide. CrystEngComm 2020. [DOI: 10.1039/d0ce00490a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various metal–organic frameworks of Zn(ii) and Cd(ii) have been synthesized hydrothermally for the detection of herbicide (simazine) as well as nitro-aromatic compounds. Also these MOFs show live-cell imaging for MCF-7 cells.
Collapse
Affiliation(s)
- Aurobinda Mohanty
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - Udai P. Singh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - R. J. Butcher
- Department of Chemistry
- Howard University
- Washington
- USA
| | - Neeladrisingha Das
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| | - Partha Roy
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee – 247667
- India
| |
Collapse
|