1
|
Onaka Y, Sakai R, Fukunaga TM, Ikemoto K, Isobe H. Bayesian Inference for Model Analyses of Supramolecular Complexes: A Case Study with Nanocarbon Hosts. Angew Chem Int Ed Engl 2024; 63:e202405388. [PMID: 38580617 DOI: 10.1002/anie.202405388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
A 126 π-electron nanobowl molecule, phenine tridehydrosumanene, was synthesized in 12 steps through the development of a polygon cyclization strategy that assembled the polygonal precursors by Ni-mediated macrocyclization. The bowl-shaped structure accommodated C70 as a guest at the concave site, and the ball-in-bowl structure was determined by X-ray crystallography. The host-guest equilibrium in solution was studied with titration experiments using isothermal calorimetry, which provided an interesting test case for studying the host-guest stoichiometry. Bayesian inference was introduced for stoichiometric analyses of the equilibrium, and a procedure to estimate the volume of prior probability in the parameter space was developed. The Bayesian procedure functioned as Occam's razor and provided quantitative support for a specific stoichiometry. The method was examined with five host-guest examples comprising nanocarbon hosts, which suggested the versatility of Bayesian inference for studies of supramolecular complexes.
Collapse
Affiliation(s)
- Yuzuka Onaka
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Renki Sakai
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiya M Fukunaga
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koki Ikemoto
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Tang B, Pauls M, Bannwarth C, Hecht S. Photoswitchable Quadruple Hydrogen-Bonding Motif. J Am Chem Soc 2024; 146:45-50. [PMID: 38033296 DOI: 10.1021/jacs.3c10401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Multiple hydrogen-bonding motifs serve as important building blocks for molecular recognition and self-assembly. Herein, a photoswitchable quadruple hydrogen-bonding motif featuring near-complete, reversible, and thermostable conversion between DADA and AADD arrays associated with an alteration of their dimerization constants by over 3 orders of magnitude is reported. The system is based on a diarylethene featuring a ureidopyrimidin-4-ol moiety, which upon photoinduced ring closure and associated loss of aromaticity undergoes enol-keto tautomerization to a ureidopyrimidinone moiety. The latter causes a transformation of the hydrogen-bonding arrays and significantly weakens the free energy of dimerization in the case of the closed isomer. This photoswitchable quadruple hydrogen-bonding motif should allow us to spatially and temporarily direct self-assembly and supramolecular polymerization processes by light.
Collapse
Affiliation(s)
- Bohan Tang
- DWI-Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Mike Pauls
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Bannwarth
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Department of Chemistry and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
3
|
Construction of photoswitchable urea-based multiple H-bonding motifs. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Sobiech TA, Zhong Y, Miller DP, McGrath JK, Scalzo CT, Redington MC, Zurek E, Gong B. Ultra-Tight Host-Guest Binding with Exceptionally Strong Positive Cooperativity. Angew Chem Int Ed Engl 2022; 61:e202213467. [PMID: 36259360 DOI: 10.1002/anie.202213467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Cooperativity plays a critical role in self-assembly and molecular recognition. A rigid aromatic oligoamide macrocycle with a cyclodirectional backbone binds with DABCO-based cationic guests in a 2 : 1 ratio in high affinities (Ktotal ≈1013 M-2 ) in the highly polar DMF. The host-guest binding also exhibits exceptionally strong positive cooperativity quantified by interaction factors α that are among the largest for synthetic host-guest systems. The unusually strong positive cooperativity, revealed by isothermal titration calorimetry (ITC) and fully corroborated by mass spectrometry, NMR and computational studies, is driven by guest-induced stacking of the macrocycles and stabilization from the alkyl end chains of the guests, interactions that appear upon binding the second macrocycle. With its tight binding driven by extraordinary positive cooperativity, this host-guest system provides a tunable platform for studying molecular interactions and for constructing stable supramolecular assemblies.
Collapse
Affiliation(s)
- Thomas A Sobiech
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yulong Zhong
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Daniel P Miller
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Jillian K McGrath
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Christina T Scalzo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Morgan C Redington
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Eva Zurek
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Bing Gong
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
5
|
Asghar S, Hameed S, Tahir MN, Naseer MM. Molecular duplexes featuring NH···N, CH···O and CH···π interactions in solid-state self-assembly of triazine-based compounds. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220603. [PMID: 36397969 PMCID: PMC9626258 DOI: 10.1098/rsos.220603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Synthetic supramolecular structures constructed through the cooperative action of numerous non-covalent forces are highly desirable as models to unravel and understand the complexity of systems created in nature via self-assembly. Taking advantage of the low cost of 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride) and the sequential nucleophilic substitution reactions with almost all types of nucleophiles, a series of six structurally related novel s-triazine derivatives 1-6 were synthesized and structurally characterized based on their physical, spectral and crystallographic data. The solid-state structures of all the six compounds showed intriguing and unique molecular duplexes featuring NH···N, CH···O and CH···π interactions. Careful analysis of different geometric parameters of the involved H-bonds indicates that they are linear, significant and are therefore responsible for guiding the three-dimensional structure of these compounds in the solid state. The prevalence of sextuple hydrogen bond array-driven molecular duplexes and the possibility of structural modifications on the s-triazine ring render these novel triazine derivatives 1-6 attractive as a platform to create heteroduplex constructs and their subsequent utility in the field of supramolecular chemistry and crystal engineering.
Collapse
Affiliation(s)
- Shazia Asghar
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | | |
Collapse
|
6
|
Enhancing Mechanical Performance of a Polymer Material by Incorporating Pillar[5]arene-Based Host–Guest Interactions. Gels 2022; 8:gels8080475. [PMID: 36005076 PMCID: PMC9407059 DOI: 10.3390/gels8080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Polymer gels have been widely used in the field for tissue engineering, sensing, and drug delivery due to their excellent biocompatibility, hydrophilicity, and degradability. However, common polymer gels are easily deformed on account of their relatively weak mechanical properties, thereby hindering their application fields, as well as shortening their service life. The incorporation of reversible non-covalent bonds is capable of improving the mechanical properties of polymer gels. Thus, here, a poly(methyl methacrylate) polymer network was prepared by introducing host–guest interactions between pillar[5]arene and pyridine cation. Owing to the incorporated host–guest interactions, the modified polymer gels exhibited extraordinary mechanical properties according to the results of the tensile tests. In addition, the influence of the host–guest interaction on the mechanical properties of the gels was also proved by rheological experiments and swelling experiments.
Collapse
|
7
|
Han ST, Duan HY, Chen LY, Zhan TG, Liu LJ, Kong LC, Zhang KD. Photo-Controlled Macroscopic Self-Assembly Based on Photo-Switchable Hetero-Complementary Quadruple Hydrogen Bonds. Chem Asian J 2021; 16:3886-3889. [PMID: 34591366 DOI: 10.1002/asia.202101076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Indexed: 01/19/2023]
Abstract
A photo-switchable hetero-complementary quadruple H-bonding array, which consists of an azobenzene-derived ureidopyrimidinone (UPy) module (Azo-UPy) and a nonphotoactive diamidonaphthyridine (DAN) derivative (Napy-1), is constructed based on a reversible photo-locking approach. Upon UV (390 nm)/Vis (460 nm) light irradiations, photo-switchable quadruple H-bonded dimerization between Azo-UPy and Napy-1 can be achieved with exhibiting 4.8×104 -fold differences in binding strength (ON/OFF ratios). Furthermore, smart polymeric gels with unique photo-controlled macroscopic self-assembly behavior can be fabricated by introducing such quadruple H-bonding array as photo-regulable noncovalent interfacial connections.
Collapse
Affiliation(s)
- Shi-Tao Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Lan-Yun Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Li-Chun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
8
|
Synergistic regulation of nonbinary molecular switches by protonation and light. Proc Natl Acad Sci U S A 2021; 118:2112973118. [PMID: 34789566 DOI: 10.1073/pnas.2112973118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
We report a molecular switching ensemble whose states may be regulated in synergistic fashion by both protonation and photoirradiation. This allows hierarchical control in both a kinetic and thermodynamic sense. These pseudorotaxane-based molecular devices exploit the so-called Texas-sized molecular box (cyclo[2]-(2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene); 14+, studied as its tetrakis-PF6 - salt) as the wheel component. Anions of azobenzene-4,4'-dicarboxylic acid (2H+•2) or 4,4'-stilbenedicarboxylic acid (2H+•3) serve as the threading rod elements. The various forms of 2 and 3 (neutral, monoprotonated, and diprotonated) interact differently with 14+, as do the photoinduced cis or trans forms of these classic photoactive guests. The net result is a multimodal molecular switch that can be regulated in synergistic fashion through protonation/deprotonation and photoirradiation. The degree of guest protonation is the dominating control factor, with light acting as a secondary regulatory stimulus. The present dual input strategy provides a complement to more traditional orthogonal stimulus-based approaches to molecular switching and allows for the creation of nonbinary stimulus-responsive functional materials.
Collapse
|
9
|
Autocatalytic and oscillatory reaction networks that form guanidines and products of their cyclization. Nat Commun 2021; 12:2994. [PMID: 34016981 PMCID: PMC8138026 DOI: 10.1038/s41467-021-23206-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/26/2021] [Indexed: 11/08/2022] Open
Abstract
Autocatalytic and oscillatory networks of organic reactions are important for designing life-inspired materials and for better understanding the emergence of life on Earth; however, the diversity of the chemistries of these reactions is limited. In this work, we present the thiol-assisted formation of guanidines, which has a mechanism analogous to that of native chemical ligation. Using this reaction, we designed autocatalytic and oscillatory reaction networks that form substituted guanidines from thiouronium salts. The thiouronium salt-based oscillator show good stability of oscillations within a broad range of experimental conditions. By using nitrile-containing starting materials, we constructed an oscillator where the concentration of a bicyclic derivative of dihydropyrimidine oscillates. Moreover, the mixed thioester and thiouronium salt-based oscillator show unique responsiveness to chemical cues. The reactions developed in this work expand our toolbox for designing out-of-equilibrium chemical systems and link autocatalytic and oscillatory chemistry to the synthesis of guanidinium derivatives and the products of their transformations including analogs of nucleobases. So far, only a few chemical oscillators based on organic reactions have been developed. Here, the authors report both autocatalytic and oscillatory reaction networks that form substituted guanidines from thiouronium salts; when coupled to cascade cyclization, this reaction network produces oscillations in the production of pyrimidine-based heterocycles.
Collapse
|
10
|
Wei L, Han ST, Jin TT, Zhan TG, Liu LJ, Cui J, Zhang KD. Towards photoswitchable quadruple hydrogen bonds via a reversible "photolocking" strategy for photocontrolled self-assembly. Chem Sci 2020; 12:1762-1771. [PMID: 34163937 PMCID: PMC8179285 DOI: 10.1039/d0sc06141g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Developing new photoswitchable noncovalent interaction motifs with controllable bonding affinity is crucial for the construction of photoresponsive supramolecular systems and materials. Here we describe a unique "photolocking" strategy for realizing photoswitchable control of quadruple hydrogen-bonding interactions on the basis of modifying the ureidopyrimidinone (UPy) module with an ortho-ester substituted azobenzene unit as the "photo-lock". Upon light irradiation, the obtained Azo-UPy motif is capable of unlocking/locking the partial H-bonding sites of the UPy unit, leading to photoswitching between homo- and heteroquadruple hydrogen-bonded dimers, which has been further applied for the fabrication of novel tunable hydrogen bonded supramolecular systems. This "photolocking" strategy appears to be broadly applicable in the rational design and construction of other H-bonding motifs with sufficiently photoswitchable noncovalent interactions.
Collapse
Affiliation(s)
- Lu Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| | - Shi-Tao Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| | - Ting-Ting Jin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| | - Jiecheng Cui
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| |
Collapse
|
11
|
Butler SM, Jolliffe KA. Molecular recognition and sensing of dicarboxylates and dicarboxylic acids. Org Biomol Chem 2020; 18:8236-8254. [PMID: 33001119 DOI: 10.1039/d0ob01761b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recognition and detection of dicarboxylic acids and dicarboxylates is of significance for a wide variety of applications, including medical diagnosis, monitoring of health and of environmental contaminants, and in industry. Hence small molecule receptors and sensors for dicarboxylic acids and dicarboxylates have great potential for applications in these fields. This review outlines the challenges faced in the recognition and detection of these species, strategies that have been used to obtain effective and observable interactions with dicarboxylic acids and dicarboxylates, and progress made in this field in the period from 2014 to 2020.
Collapse
Affiliation(s)
- Stephen M Butler
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW 2006, Australia. and The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Choi H, Baek K, Toenjes ST, Gustafson JL, Smith DK. Redox-Responsive H-Bonding: Amplifying the Effect of Electron Transfer Using Proton-Coupled Electron Transfer. J Am Chem Soc 2020; 142:17271-17276. [PMID: 32981317 DOI: 10.1021/jacs.0c07841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new strategy to create highly redox-responsive H-bond dimers based on proton-coupled electron transfer is proposed that capitalizes on the importance of secondary H-bonds in determining overall binding strength in H-bond dimers. Electron transfer induced proton transfer across a H-bond can be used to significantly strengthen the overall binding by both creating strong ionic H-bonds and changing the secondary H-bonds from unfavorable to favorable. The viability and potency of this approach are demonstrated with an electroactive DAD (A = H-acceptor, D = H-donor) array, H(MQ+)H, paired with an electroinactive ADA array, O(NH)O. NMR titration of H(MQ+)H with O(NH)O in 0.1 M NBu4PF6/CD2Cl2 gives a Kassoc of 500 M-1, typical of DAD-ADA dimers. However, upon two-electron reduction in 0.1 M NBu4PF6/CH2Cl2, cyclic voltammetry studies indicate a 1.8 × 105 increase in binding strength, corresponding to a very large Kassoc of 9 × 107 M-1. The latter value is typical of DDD-AAA H-bond dimers, consistent with proton transfer across the central H-bond upon reduction.
Collapse
Affiliation(s)
- Hyejeong Choi
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Kiyeol Baek
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Sean T Toenjes
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Jeffrey L Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Diane K Smith
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| |
Collapse
|
13
|
Zhang J, Qi S, Zhang C, Fan Z, Ding Q, Mao S, Dong Z. Controlling Keto–Enol Tautomerism of Ureidopyrimidinone to Generate a Single-Quadruple AADD-DDAA Dimeric Array. Org Lett 2020; 22:7305-7309. [DOI: 10.1021/acs.orglett.0c02644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shuaiwei Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chenyang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qinwen Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shizhong Mao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
14
|
Morisue M, Kusukawa T, Watase S. Dipyrrin Complexes of Borasiloxane Silanols with Adaptive Hydrogen‐Bonded Conformations in the Crystal and in Solution States. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mitsuhiko Morisue
- Faculty of Molecular Chemistry and Engineering Kyoto Institute of Technology Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Takahiro Kusukawa
- Faculty of Molecular Chemistry and Engineering Kyoto Institute of Technology Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Seiji Watase
- Osaka Research Institute of Industrial Science and Technology 1‐6‐50, Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| |
Collapse
|
15
|
Chen XL, Shen YJ, Gao C, Yang J, Sun X, Zhang X, Yang YD, Wei GP, Xiang JF, Sessler JL, Gong HY. Regulating the Structures of Self-Assembled Mechanically Interlocked Moleculecular Constructs via Dianion Precursor Substituent Effects. J Am Chem Soc 2020; 142:7443-7455. [PMID: 32216311 DOI: 10.1021/jacs.9b13473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Substituent effects play critical roles in both modulating reaction chemistry and supramolecular self-assembly processes. Using substituted terephthalate dianions (p-phthalic acid dianions; PTADAs), the effect of varying the type, number, and position of the substituents was explored in terms of their ability to regulate the inherent anion complexation features of a tetracationic macrocycle, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene) (referred to as the Texas-sized molecular box; 14+), in the form of its tetrakis-PF6- salt in DMSO. Several of the tested substituents, including 2-OH, 2,5-di(OH), 2,5-di(NH2), 2,5-di(Me), 2,5-di(Cl), 2,5-di(Br), and 2,5-di(I), were found to promote pseudorotaxane formation in contrast to what was seen for the parent PTADA system. Other derivatives of PTADA, including those with 2,3-di(OH), 2,6-di(OH), 2,5-di(OMe), 2,3,5,6-tetra(Cl), and 2,3,5,6-tetra(F) substituents, led only to so-called outside binding, where the anion interacts with 14+ on the outside of the macrocyclic cavity. The differing binding modes produced by the choice of PTADA derivative were found to regulate further supramolecular self-assembly when the reaction components included additional metal cations (M). Depending on the specific choice of PTADA derivatives and metal cations (M = Co2+, Ni2+, Zn2+, Cd2+, Gd3+, Nd3+, Eu3+, Sm3+, Tb3+), constructs involving one-dimensional polyrotaxanes, outside-type rotaxanated supramolecular organic frameworks (RSOFs), or two-dimensional metal-organic rotaxane frameworks (MORFs) could be stabilized. The presence and nature of the substituent were found to dictate which specific higher order self-assembled structure was obtained using a given cation. In the specific case of the 2,5-di(OH), 2,5-di(Cl), and 2,5-di(Br) PTADA derivatives and Eu3+, so-called MORFs with distinct fluorescence emission properties could be produced. The present work serves to illustrate how small changes in guest substitution patterns may be used to control structure well beyond the first interaction sphere.
Collapse
Affiliation(s)
- Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Yun-Jia Shen
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Chao Gao
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Jian Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Xin Sun
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Xin Zhang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Yu-Dong Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Gong-Ping Wei
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun-Feng Xiang
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jonathan L Sessler
- Department of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China.,Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| |
Collapse
|