1
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
2
|
Correll CC, Rudloff U, Schmit JD, Ball DA, Karpova TS, Balzer E, Dundr M. Crossing boundaries of light microscopy resolution discerns novel assemblies in the nucleolus. Histochem Cell Biol 2024; 162:161-183. [PMID: 38758429 PMCID: PMC11330670 DOI: 10.1007/s00418-024-02297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The nucleolus is the largest membraneless organelle and nuclear body in mammalian cells. It is primarily involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and accounts for the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis. Despite the significance of this process, the substructural mechanistic principles of the nucleolar function in preribosome biogenesis have only recently begun to emerge. Here, we provide a new perspective using advanced super-resolution microscopy and single-molecule MINFLUX nanoscopy on the mechanistic principles governing ribosomal RNA-seeded nucleolar formation and the resulting tripartite suborganization of the nucleolus driven, in part, by liquid-liquid phase separation. With recent advances in the cryogenic electron microscopy (cryoEM) structural analysis of ribosome biogenesis intermediates, we highlight the current understanding of the step-wise assembly of preribosomal subunits in the nucleolus. Finally, we address how novel anticancer drug candidates target early steps in ribosome biogenesis to exploit these essential dependencies for growth arrest and tumor control.
Collapse
Affiliation(s)
- Carl C Correll
- Center for Proteomics and Molecular Therapeutics and Biochemistry and Molecular Biology, Chicago Medical School, Rosalind Franklin University of Medicine & Science, North Chicago, IL, 60064, USA
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Balzer
- Nikon Instruments Inc., Melville, NY, 11747, USA
| | - Miroslav Dundr
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Center for Cancer Cell Biology, Chicago Medical School, Rosalind Franklin University of Medicine & Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
3
|
Welles RM, Sojitra KA, Garabedian MV, Xia B, Wang W, Guan M, Regy RM, Gallagher ER, Hammer DA, Mittal J, Good MC. Determinants that enable disordered protein assembly into discrete condensed phases. Nat Chem 2024; 16:1062-1072. [PMID: 38316988 DOI: 10.1038/s41557-023-01423-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Cells harbour numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein- and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids, resulting in demixing via liquid-liquid phase separation. Proteins harbouring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modelling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.
Collapse
Affiliation(s)
- Rachel M Welles
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kandarp A Sojitra
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Mikael V Garabedian
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boao Xia
- Bioengineering Graduate Program, Rice University, Houston, TX, USA
| | - Wentao Wang
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Muyang Guan
- Chemical and Biomolecular Engineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Roshan M Regy
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Elizabeth R Gallagher
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Hammer
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
- Chemical and Biomolecular Engineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
- Chemical and Biomolecular Engineering Department, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Dar F, Cohen SR, Mitrea DM, Phillips AH, Nagy G, Leite WC, Stanley CB, Choi JM, Kriwacki RW, Pappu RV. Biomolecular condensates form spatially inhomogeneous network fluids. Nat Commun 2024; 15:3413. [PMID: 38649740 PMCID: PMC11035652 DOI: 10.1038/s41467-024-47602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.
Collapse
Affiliation(s)
- Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Samuel R Cohen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Diana M Mitrea
- Dewpoint Therapeutics Inc., 451 D Street, Boston, MA, 02210, USA
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington C Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Christopher B Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea.
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
5
|
Dar F, Cohen SR, Mitrea DM, Phillips AH, Nagy G, Leite WC, Stanley CB, Choi JM, Kriwacki RW, Pappu RV. Biomolecular condensates form spatially inhomogeneous network fluids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.07.561338. [PMID: 37873180 PMCID: PMC10592670 DOI: 10.1101/2023.10.07.561338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.
Collapse
|
6
|
Kim J, Qin S, Zhou HX, Rosen MK. Surface Charge Can Modulate Phase Separation of Multidomain Proteins. J Am Chem Soc 2024; 146:3383-3395. [PMID: 38262618 PMCID: PMC10859935 DOI: 10.1021/jacs.3c12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Phase separation has emerged as an important mechanism explaining the formation of certain biomolecular condensates. Biological phase separation is often driven by the multivalent interactions of modular protein domains. Beyond valency, the physical features of folded domains that promote phase separation are poorly understood. We used a model system─the small ubiquitin modifier (SUMO) and its peptide ligand, the SUMO interaction motif (SIM)─to examine how domain surface charge influences multivalency-driven phase separation. Phase separation of polySUMO and polySIM was altered by pH via a change in the protonation state of SUMO surface histidines. These effects were recapitulated by histidine mutations, which modulated SUMO solubility and polySUMO-polySIM phase separation in parallel and were quantitatively explained by atomistic modeling of weak interactions among proteins in the system. Thus, surface charge can tune the phase separation of multivalent proteins, suggesting a means of controlling phase separation biologically, evolutionarily, and therapeutically.
Collapse
Affiliation(s)
- Jonggul Kim
- Department
of Biophysics, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
- Howard
Hughes Medical Institute, Dallas, Texas 75390, United States
| | - Sanbo Qin
- Department
of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Huan-Xiang Zhou
- Department
of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Department
of Physics, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Michael K. Rosen
- Department
of Biophysics, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
- Howard
Hughes Medical Institute, Dallas, Texas 75390, United States
| |
Collapse
|
7
|
Zhang Y, Li S, Gong X, Chen J. Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase Separation. J Am Chem Soc 2024; 146:342-357. [PMID: 38112495 PMCID: PMC10842759 DOI: 10.1021/jacs.3c09195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate phase separation that underlies the formation of a biomolecular condensate. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding the sequence-specific phase separation of IDPs. However, the widely used Cα-only models are limited in capturing the peptide nature of IDPs, particularly backbone-mediated interactions and effects of secondary structures, in phase separation. Here, we describe a hybrid resolution (HyRes) protein model toward a more accurate description of the backbone and transient secondary structures in phase separation. With an atomistic backbone and coarse-grained side chains, HyRes can semiquantitatively capture the residue helical propensity and overall chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for the direct simulation of spontaneous phase separation and, at the same time, appears accurate enough to resolve the effects of single His to Lys mutations. HyRes simulations also successfully predict increased β-structure formation in the condensate, consistent with available experimental CD data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate the phase separation propensity as measured by the saturation concentration. The simulations successfully recapitulate the effect of these mutants on the helicity and phase separation propensity of TDP-43 CR. Analyses reveal that the balance between backbone and side chain-mediated interactions, but not helicity itself, actually determines phase separation propensity. These results support that HyRes represents an effective protein model for molecular simulation of IDP phase separation and will help to elucidate the coupling between transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Sabri N, Cuneo MJ, Marzahn MR, Lee J, Bouchard JJ, Güllülü Ö, Vaithiyalingam S, Borgia MB, Schmit J, Mittag T. Reduction of oligomer size modulates the competition between cluster formation and phase separation of the tumor suppressor SPOP. J Biol Chem 2023; 299:105427. [PMID: 37926283 PMCID: PMC10696467 DOI: 10.1016/j.jbc.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Phase separation compartmentalizes many cellular pathways. Given that the same interactions that drive phase separation mediate the formation of soluble complexes below the saturation concentration, the contribution of condensates versus complexes to function is sometimes unclear. Here, we characterized several new cancer-associated mutations of the tumor suppressor speckle-type POZ protein (SPOP), a substrate recognition subunit of the Cullin3-RING ubiquitin ligase. This pointed to a strategy for generating separation-of-function mutations. SPOP self-associates into linear oligomers and interacts with multivalent substrates, and this mediates the formation of condensates. These condensates bear the hallmarks of enzymatic ubiquitination activity. We characterized the effect of mutations in the dimerization domains of SPOP on its linear oligomerization, binding to its substrate DAXX, and phase separation with DAXX. We showed that the mutations reduce SPOP oligomerization and shift the size distribution of SPOP oligomers to smaller sizes. The mutations therefore reduce the binding affinity to DAXX but unexpectedly enhance the poly-ubiquitination activity of SPOP toward DAXX. Enhanced activity may be explained by enhanced phase separation of DAXX with the SPOP mutants. Our results provide a comparative assessment of the functional role of complexes versus condensates and support a model in which phase separation is an important factor in SPOP function. Our findings also suggest that tuning of linear SPOP self-association could be used by the cell to modulate activity and provide insights into the mechanisms underlying hypermorphic SPOP mutations. The characteristics of cancer-associated SPOP mutations suggest a route for designing separation-of-function mutations in other phase-separating systems.
Collapse
Affiliation(s)
- Nafiseh Sabri
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew J Cuneo
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Melissa R Marzahn
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jihun Lee
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jill J Bouchard
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ömer Güllülü
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sivaraja Vaithiyalingam
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Madeleine B Borgia
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jeremy Schmit
- Department of Physics, Kansas State University, Manhattan, Kansas, USA
| | - Tanja Mittag
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
9
|
Skriver K, Theisen FF, Kragelund BB. Conformational entropy in molecular recognition of intrinsically disordered proteins. Curr Opin Struct Biol 2023; 83:102697. [PMID: 37716093 DOI: 10.1016/j.sbi.2023.102697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/18/2023]
Abstract
Broad conformational ensembles make intrinsically disordered proteins or regions entropically intriguing. Although methodologically challenging and understudied, emerging studies into their changes in conformational entropy (ΔS°conf) upon complex formation have provided both quantitative and qualitative insight. Recent work based on thermodynamics from isothermal titration calorimetry and NMR spectroscopy uncovers an expanded repertoire of regulatory mechanisms, where ΔS°conf plays roles in partner selection, state behavior, functional buffering, allosteric regulation, and drug design. We highlight these mechanisms to display the large entropic reservoir of IDPs for the regulation of molecular communication. We call upon the field to make efforts to contribute to this insight as more studies are needed for forwarding mechanistic decoding of intrinsically disordered proteins and their complexes.
Collapse
Affiliation(s)
- Karen Skriver
- The Linderstrøm Lang Centre for Protein Science, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; REPIN, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Frederik Friis Theisen
- The Linderstrøm Lang Centre for Protein Science, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; REPIN, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark. https://twitter.com/@FrederikTheisen
| | - Birthe B Kragelund
- The Linderstrøm Lang Centre for Protein Science, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; REPIN, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
10
|
Dar F, Cohen SR, Mitrea DM, Phillips AH, Nagy G, Leite WC, Stanley CB, Choi JM, Kriwacki RW, Pappu RV. Biomolecular condensates form spatially inhomogeneous network fluids. RESEARCH SQUARE 2023:rs.3.rs-3419423. [PMID: 37886520 PMCID: PMC10602126 DOI: 10.21203/rs.3.rs-3419423/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and bespoke coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that mimic nucleolar granular components (GCs). We show that facsimiles of GCs are network fluids featuring spatial inhomogeneities across hierarchies of length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights, extracted from a combination of approaches, suggest that condensates formed by multivalent proteins share features with network fluids formed by associative systems such as patchy or hairy colloids.
Collapse
Affiliation(s)
- Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
- These authors contributed equally: Furqan Dar, Samuel R. Cohen, and Jeong-Mo Choi
| | - Samuel R. Cohen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
- These authors contributed equally: Furqan Dar, Samuel R. Cohen, and Jeong-Mo Choi
| | - Diana M. Mitrea
- Dewpoint Therapeutics Inc., 451 D Street, Boston, MA 02210, USA
| | - Aaron H. Phillips
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Wellington C. Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Christopher B. Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
- These authors contributed equally: Furqan Dar, Samuel R. Cohen, and Jeong-Mo Choi
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
11
|
Galagedera SKK, Dao TP, Enos SE, Chaudhuri A, Schmit JD, Castañeda CA. Polyubiquitin ligand-induced phase transitions are optimized by spacing between ubiquitin units. Proc Natl Acad Sci U S A 2023; 120:e2306638120. [PMID: 37824531 PMCID: PMC10589717 DOI: 10.1073/pnas.2306638120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Biomolecular condensates form via multivalent interactions among key macromolecules and are regulated through ligand binding and/or posttranslational modifications. One such modification is ubiquitination, the covalent addition of ubiquitin (Ub) or polyubiquitin chains to target macromolecules. Specific interactions between polyubiquitin chains and partner proteins, including hHR23B, NEMO, and UBQLN2, regulate condensate assembly or disassembly. Here, we used a library of designed polyubiquitin hubs and UBQLN2 as model systems for determining the driving forces of ligand-mediated phase transitions. Perturbations to either the UBQLN2-binding surface of Ub or the spacing between Ub units reduce the ability of hubs to modulate UBQLN2 phase behavior. By developing an analytical model based on polyphasic linkage principles that accurately described the effects of different hubs on UBQLN2 phase separation, we determined that introduction of Ub to UBQLN2 condensates incurs a significant inclusion energetic penalty. This penalty antagonizes the ability of polyUb hubs to scaffold multiple UBQLN2 molecules and cooperatively amplify phase separation. The extent to which polyubiquitin hubs promote UBQLN2 phase separation is encoded in the spacings between Ub units. This spacing is modulated by chains of different linkages and designed chains of different architectures, thus illustrating how the ubiquitin code regulates functionality via the emergent properties of the condensate. The spacing in naturally occurring linear polyubiquitin chains is already optimized to promote phase separation with UBQLN2. We expect our findings to extend to other condensates, emphasizing the importance of ligand properties, including concentration, valency, affinity, and spacing between binding sites in studies and designs of condensates.
Collapse
Affiliation(s)
- Sarasi K. K. Galagedera
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Thuy P. Dao
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Suzanne E. Enos
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Antara Chaudhuri
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS66506
| | - Carlos A. Castañeda
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
- BioInspired Institute, Syracuse University, Syracuse, NY13244
| |
Collapse
|
12
|
Welles RM, Sojitra KA, Garabedian MV, Xia B, Wang W, Guan M, Regy RM, Gallagher ER, Hammer DA, Mittal J, Good MC. Determinants of Disordered Protein Co-Assembly Into Discrete Condensed Phases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532134. [PMID: 36945618 PMCID: PMC10028963 DOI: 10.1101/2023.03.10.532134] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cells harbor numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids resulting in demixing via liquid-liquid phase separation (LLPS). Proteins harboring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modeling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.
Collapse
|
13
|
Zhang Y, Li S, Gong X, Chen J. Accurate Simulation of Coupling between Protein Secondary Structure and Liquid-Liquid Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554378. [PMID: 37662293 PMCID: PMC10473686 DOI: 10.1101/2023.08.22.554378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate liquid-liquid phase separation (LLPS) that underlies the formation of membraneless organelles. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding sequence-specific phase separation of IDPs. However, the widely-used Cα-only models are severely limited in capturing the peptide nature of IDPs, including backbone-mediated interactions and effects of secondary structures, in LLPS. Here, we describe a hybrid resolution (HyRes) protein model for accurate description of the backbone and transient secondary structures in LLPS. With an atomistic backbone and coarse-grained side chains, HyRes accurately predicts the residue helical propensity and chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for direct simulation of spontaneous phase separation, and at the same time accurate enough to resolve the effects of single mutations. HyRes simulations also successfully predict increased beta-sheet formation in the condensate, consistent with available experimental data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate LLPS propensity. The simulations successfully recapitulate the effect of these mutants on the helicity and LLPS propensity of TDP-43 CR. Analyses reveal that the balance between backbone and sidechain-mediated interactions, but not helicity itself, actually determines LLPS propensity. We believe that the HyRes model represents an important advance in the molecular simulation of LLPS and will help elucidate the coupling between IDP transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Alston JJ, Soranno A. Condensation Goes Viral: A Polymer Physics Perspective. J Mol Biol 2023; 435:167988. [PMID: 36709795 PMCID: PMC10368797 DOI: 10.1016/j.jmb.2023.167988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The past decade has seen a revolution in our understanding of how the cellular environment is organized, where an incredible body of work has provided new insights into the role played by membraneless organelles. These rapid advancements have been made possible by an increasing awareness of the peculiar physical properties that give rise to such bodies and the complex biology that enables their function. Viral infections are not extraneous to this. Indeed, in host cells, viruses can harness existing membraneless compartments or, even, induce the formation of new ones. By hijacking the cellular machinery, these intracellular bodies can assist in the replication, assembly, and packaging of the viral genome as well as in the escape of the cellular immune response. Here, we provide a perspective on the fundamental polymer physics concepts that may help connect and interpret the different observed phenomena, ranging from the condensation of viral genomes to the phase separation of multicomponent solutions. We complement the discussion of the physical basis with a description of biophysical methods that can provide quantitative insights for testing and developing theoretical and computational models.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA.
| |
Collapse
|
15
|
Abstract
Multivalent proteins and nucleic acids, collectively referred to as multivalent associative biomacromolecules, provide the driving forces for the formation and compositional regulation of biomolecular condensates. Here, we review the key concepts of phase transitions of aqueous solutions of associative biomacromolecules, specifically proteins that include folded domains and intrinsically disordered regions. The phase transitions of these systems come under the rubric of coupled associative and segregative transitions. The concepts underlying these processes are presented, and their relevance to biomolecular condensates is discussed.
Collapse
Affiliation(s)
- Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samuel R. Cohen
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Furqan Dar
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
16
|
Polyansky AA, Gallego LD, Efremov RG, Köhler A, Zagrovic B. Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales. eLife 2023; 12:e80038. [PMID: 37470705 PMCID: PMC10406433 DOI: 10.7554/elife.80038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/18/2023] [Indexed: 07/21/2023] Open
Abstract
Non-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The Saccharomyces cerevisiae Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge11-80) undergoes robust phase separation. This study connects single- and multi-chain all-atom molecular dynamics simulations of Lge11-80 with the in vitro behavior of Lge11-80 condensates. Analysis of modeled protein-protein interactions elucidates the key determinants of Lge11-80 condensate formation and links configurational entropy, valency, and compactness of proteins inside the condensates. A newly derived analytical formalism, related to colloid fractal cluster formation, describes condensate architecture across length scales as a function of protein valency and compactness. In particular, the formalism provides an atomistically resolved model of Lge11-80 condensates on the scale of hundreds of nanometers starting from individual protein conformers captured in simulations. The simulation-derived fractal dimensions of condensates of Lge11-80 and its mutants agree with their in vitro morphologies. The presented framework enables a multiscale description of biomolecular condensates and embeds their study in a wider context of colloid self-organization.
Collapse
Affiliation(s)
- Anton A Polyansky
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational BiologyViennaAustria
| | - Laura D Gallego
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Roman G Efremov
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
| | - Alwin Köhler
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell BiologyViennaAustria
| | - Bojan Zagrovic
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational BiologyViennaAustria
| |
Collapse
|
17
|
Galagedera SKK, Dao TP, Enos SE, Chaudhuri A, Schmit JD, Castañeda CA. Decoding optimal ligand design for multicomponent condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532222. [PMID: 36993708 PMCID: PMC10054939 DOI: 10.1101/2023.03.13.532222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biomolecular condensates form via multivalent interactions among key macromolecules and are regulated through ligand binding and/or post-translational modifications. One such modification is ubiquitination, the covalent addition of ubiquitin (Ub) or polyubiquitin chains to target macromolecules for various cellular processes. Specific interactions between polyubiquitin chains and partner proteins, including hHR23B, NEMO, and UBQLN2, regulate condensate assembly or disassembly. Here, we used a library of designed polyubiquitin hubs and UBQLN2 as model systems for determining the driving forces of ligand-mediated phase transitions. Perturbations to the UBQLN2-binding surface of Ub or deviations from the optimal spacing between Ub units reduce the ability of hubs to modulate UBQLN2 phase behavior. By developing an analytical model that accurately described the effects of different hubs on UBQLN2 phase diagrams, we determined that introduction of Ub to UBQLN2 condensates incurs a significant inclusion energetic penalty. This penalty antagonizes the ability of polyUb hubs to scaffold multiple UBQLN2 molecules and cooperatively amplify phase separation. Importantly, the extent to which polyubiquitin hubs can promote UBQLN2 phase separation are encoded in the spacings between Ub units as found for naturally-occurring chains of different linkages and designed chains of different architectures, thus illustrating how the ubiquitin code regulates functionality via the emergent properties of the condensate. We expect our findings to extend to other condensates necessitating the consideration of ligand properties, including concentration, valency, affinity, and spacing between binding sites in studies and designs of condensates.
Collapse
Affiliation(s)
| | - Thuy P. Dao
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Suzanne E. Enos
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Antara Chaudhuri
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Carlos A. Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
18
|
Zeng X, Pappu RV. Developments in describing equilibrium phase transitions of multivalent associative macromolecules. Curr Opin Struct Biol 2023; 79:102540. [PMID: 36804705 PMCID: PMC10732938 DOI: 10.1016/j.sbi.2023.102540] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023]
Abstract
Biomolecular condensates are distinct cellular bodies that form and dissolve reversibly to organize cellular matter and biochemical reactions in space and time. Condensates are thought to form and dissolve under the influence of spontaneous and driven phase transitions of multivalent associative macromolecules. These include phase separation, which is defined by segregation of macromolecules from the solvent or from one another, and percolation or gelation, which is an inclusive networking transition driven by reversible associations among multivalent macromolecules. Considerable progress has been made to model sequence-specific phase transitions, especially for intrinsically disordered proteins. Here, we summarize the state-of-the-art of theories and computations aimed at understanding and modeling sequence-specific, thermodynamically controlled, coupled associative and segregative phase transitions of archetypal multivalent macromolecules.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA. https://twitter.com/@xiangzezeng
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
19
|
Sabri N, Cuneo MJ, Marzahn MR, Lee J, Bouchard JJ, Vaithiyalingam S, Borgia MB, Schmit J, Mittag T. Reduction of oligomer size modulates the competition between cluster formation and phase separation of the tumor suppressor SPOP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528154. [PMID: 36993550 PMCID: PMC10054981 DOI: 10.1101/2023.02.11.528154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phase separation is a ubiquitous process that compartmentalizes many cellular pathways. Given that the same interactions that drive phase separation mediate the formation of complexes below the saturation concentration, the contribution of condensates vs complexes to function is not always clear. Here, we characterized several new cancer-associated mutations of the tumor suppressor Speckle-type POZ protein (SPOP), a substrate recognition subunit of the Cullin3-RING ubiquitin ligase (CRL3), which pointed to a strategy for generating separation-of-function mutations. SPOP self-associates into linear oligomers and interacts with multivalent substrates, and this mediates the formation of condensates. These condensates bear the hallmarks of enzymatic ubiquitination activity. We characterized the effect of mutations in the dimerization domains of SPOP on its linear oligomerization, binding to the substrate DAXX, and phase separation with DAXX. We showed that the mutations reduce SPOP oligomerization and shift the size distribution of SPOP oligomers to smaller sizes. The mutations therefore reduce the binding affinity to DAXX, but enhance the poly-ubiquitination activity of SPOP towards DAXX. This unexpectedly enhanced activity may be explained by enhanced phase separation of DAXX with the SPOP mutants. Our results provide a comparative assessment of the functional role of clusters versus condensates and support a model in which phase separation is an important factor in SPOP function. Our findings also suggest that tuning of linear SPOP self-association could be used by the cell to modulate its activity, and provide insights into the mechanisms underlying hypermorphic SPOP mutations. The characteristics of these cancer-associated SPOP mutations suggest a route for designing separation-of-function mutations in other phase-separating systems.
Collapse
Affiliation(s)
- Nafiseh Sabri
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38103, USA
| | - Matthew J. Cuneo
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38103, USA
| | - Melissa R. Marzahn
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38103, USA
- Current address: Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Jihun Lee
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38103, USA
- Current address: Celltrion, South Korea
| | - Jill J. Bouchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38103, USA
- Current address: Dewpoint Therapeutics, Boston, MA 02210, USA
| | - Sivaraja Vaithiyalingam
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38103, USA
| | - Madeleine B. Borgia
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38103, USA
| | - Jeremy Schmit
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38103, USA
| |
Collapse
|
20
|
Thomasen FE, Cuneo MJ, Mittag T, Lindorff-Larsen K. Conformational and oligomeric states of SPOP from small-angle X-ray scattering and molecular dynamics simulations. eLife 2023; 12:e84147. [PMID: 36856266 PMCID: PMC9998093 DOI: 10.7554/elife.84147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Speckle-type POZ protein (SPOP) is a substrate adaptor in the ubiquitin proteasome system, and plays important roles in cell-cycle control, development, and cancer pathogenesis. SPOP forms linear higher-order oligomers following an isodesmic self-association model. Oligomerization is essential for SPOP's multivalent interactions with substrates, which facilitate phase separation and localization to biomolecular condensates. Structural characterization of SPOP in its oligomeric state and in solution is, however, challenging due to the inherent conformational and compositional heterogeneity of the oligomeric species. Here, we develop an approach to simultaneously and self-consistently characterize the conformational ensemble and the distribution of oligomeric states of SPOP by combining small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. We build initial conformational ensembles of SPOP oligomers using coarse-grained molecular dynamics simulations, and use a Bayesian/maximum entropy approach to refine the ensembles, along with the distribution of oligomeric states, against a concentration series of SAXS experiments. Our results suggest that SPOP oligomers behave as rigid, helical structures in solution, and that a flexible linker region allows SPOP's substrate-binding domains to extend away from the core of the oligomers. Additionally, our results are in good agreement with previous characterization of the isodesmic self-association of SPOP. In the future, the approach presented here can be extended to other systems to simultaneously characterize structural heterogeneity and self-assembly.
Collapse
Affiliation(s)
- F Emil Thomasen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Matthew J Cuneo
- Department of Structural Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
21
|
Ginell GM, Holehouse AS. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. Methods Mol Biol 2023; 2563:95-116. [PMID: 36227469 DOI: 10.1007/978-1-0716-2663-4_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular organization is determined by a combination of membrane-bound and membrane-less biomolecular assemblies that range from clusters of tens of molecules to micrometer-sized cellular bodies. Over the last decade, membrane-less assemblies have come to be referred to as biomolecular condensates, reflecting their ability to condense specific molecules with respect to the remainder of the cell. In many cases, the physics of phase transitions provides a conceptual framework and a mathematical toolkit to describe the assembly, maintenance, and dissolution of biomolecular condensates. Among the various quantitative and qualitative models applied to understand intracellular phase transitions, the stickers-and-spacers framework offers an intuitive yet rigorous means to map biomolecular sequences and structure to the driving forces needed for higher-order assembly. This chapter introduces the fundamental concepts behind the stickers-and-spacers model, considers its application to different biological systems, and discusses limitations and misconceptions around the model.
Collapse
Affiliation(s)
- Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
22
|
Laghmach R, Malhotra I, Potoyan DA. Multiscale Modeling of Protein-RNA Condensation in and Out of Equilibrium. Methods Mol Biol 2023; 2563:117-133. [PMID: 36227470 PMCID: PMC11186142 DOI: 10.1007/978-1-0716-2663-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A vast number of intracellular membraneless bodies also known as biomolecular condensates form through a liquid-liquid phase separation (LLPS) of biomolecules. To date, phase separation has been identified as the main driving force for a membraneless organelles such as nucleoli, Cajal bodies, stress granules, and chromatin compartments. Recently, the protein-RNA condensation is receiving increased attention, because it is closely related to the biological function of cells such as transcription, translation, and RNA metabolism. Despite the multidisciplinary efforts put forth to study the biophysical properties of protein-RNA condensates, there are many fundamental unanswered questions regarding the mechanism of formation and regulation of protein-RNA condensates in eukaryotic cells. Major challenges in studying protein-RNA condensation stem from (i) the molecular heterogeneity and conformational flexibility of RNA and protein chains and (ii) the nonequilibrium nature of transcription and cellular environment. Computer simulations, bioinformatics, and mathematical models are uniquely positioned for shedding light on the microscopic nature of protein-RNA phase separation. To this end, there is an urgent need for innovative models with the right spatiotemporal resolution for confronting the experimental observables in a comprehensive and physics-based manner. In this chapter, we will summarize the currently emerging research efforts, which employ atomistic and coarse-grained molecular models and field theoretical models to understand equilibrium and nonequilibrium aspects of protein-RNA condensation.
Collapse
Affiliation(s)
- Rabia Laghmach
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Isha Malhotra
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA, USA.
| |
Collapse
|
23
|
Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates. Essays Biochem 2022; 66:831-847. [PMID: 36350034 DOI: 10.1042/ebc20220052] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
Abstract
The facts that many proteins with crucial biological functions do not have unique structures and that many biological processes are compartmentalized into the liquid-like biomolecular condensates, which are formed via liquid-liquid phase separation (LLPS) and are not surrounded by the membrane, are revolutionizing the modern biology. These phenomena are interlinked, as the presence of intrinsic disorder represents an important requirement for a protein to undergo LLPS that drives biogenesis of numerous membrane-less organelles (MLOs). Therefore, one can consider these phenomena as crucial constituents of a new IDP-LLPS-MLO field. Furthermore, intrinsically disordered proteins (IDPs), LLPS, and MLOs represent a clear link between molecular and cellular biology and soft matter and condensed soft matter physics. Both IDP and LLPS/MLO fields are undergoing explosive development and generate the ever-increasing mountain of crucial data. These new data provide answers to so many long-standing questions that it is difficult to imagine that in the very recent past, protein scientists and cellular biologists operated without taking these revolutionary concepts into account. The goal of this essay is not to deliver a comprehensive review of the IDP-LLPS-MLO field but to provide a brief and rather subjective outline of some of the recent developments in these exciting fields.
Collapse
|
24
|
Ren CL, Shan Y, Zhang P, Ding HM, Ma YQ. Uncovering the molecular mechanism for dual effect of ATP on phase separation in FUS solution. SCIENCE ADVANCES 2022; 8:eabo7885. [PMID: 36103543 PMCID: PMC9473584 DOI: 10.1126/sciadv.abo7885] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 06/04/2023]
Abstract
Recent studies reported that adenosine triphosphate (ATP) could inhibit and enhance the phase separation in prion-like proteins. The molecular mechanism underlying such a puzzling phenomenon remains elusive. Here, taking the fused in sarcoma (FUS) solution as an example, we comprehensively reveal the underlying mechanism by which ATP regulates phase separation by combining the semiempirical quantum mechanical method, mean-field theory, and molecular simulation. At the microscopic level, ATP acts as a bivalent or trivalent binder; at the macroscopic level, the reentrant phase separation occurs in dilute FUS solutions, resulting from the ATP concentration-dependent binding ability under different conditions. The ATP concentration for dissolving the protein condensates is about 10 mM, agreeing with experimental results. Furthermore, from a dynamic point of view, the effect of ATP on phase separation is also nonmonotonic. This work provides a clear physical description of the microscopic interaction and macroscopic phase diagram of the ATP-modulated phase separation.
Collapse
Affiliation(s)
- Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yue Shan
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
25
|
Shillcock JC, Lagisquet C, Alexandre J, Vuillon L, Ipsen JH. Model biomolecular condensates have heterogeneous structure quantitatively dependent on the interaction profile of their constituent macromolecules. SOFT MATTER 2022; 18:6674-6693. [PMID: 36004748 DOI: 10.1039/d2sm00387b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biomolecular condensates play numerous roles in cells by selectively concentrating client proteins while excluding others. These functions are likely to be sensitive to the spatial organization of the scaffold proteins forming the condensate. We use coarse-grained molecular simulations to show that model intrinsically-disordered proteins phase separate into a heterogeneous, structured fluid characterized by a well-defined length scale. The proteins are modelled as semi-flexible polymers with punctate, multifunctional binding sites in good solvent conditions. Their dense phase is highly solvated with a spatial structure that is more sensitive to the separation of the binding sites than their affinity. We introduce graph theoretic measures to quantify their heterogeneity, and find that it increases with increasing binding site number, and exhibits multi-timescale dynamics. The model proteins also swell on passing from the dilute solution to the dense phase. The simulations predict that the structure of the dense phase is modulated by the location and affinity of binding sites distant from the termini of the proteins, while sites near the termini more strongly affect its phase behaviour. The relations uncovered between the arrangement of weak interaction sites on disordered proteins and the material properties of their dense phase can be experimentally tested to give insight into the biophysical properties, pathological effects, and rational design of biomolecular condensates.
Collapse
Affiliation(s)
- Julian C Shillcock
- Blue Brain Project and Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Clément Lagisquet
- LAMA, Univ. Savoie Mont Blanc, CNRS, LAMA, 73376 Le Bourget du Lac, France.
| | - Jérémy Alexandre
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Laurent Vuillon
- LAMA, Univ. Savoie Mont Blanc, CNRS, LAMA, 73376 Le Bourget du Lac, France.
| | - John H Ipsen
- Dept. of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
26
|
Mittag T, Pappu RV. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol Cell 2022; 82:2201-2214. [PMID: 35675815 PMCID: PMC9233049 DOI: 10.1016/j.molcel.2022.05.018] [Citation(s) in RCA: 265] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Macromolecular phase separation is being recognized for its potential importance and relevance as a driver of spatial organization within cells. Here, we describe a framework based on synergies between networking (percolation or gelation) and density (phase separation) transitions. Accordingly, the phase transitions in question are referred to as phase separation coupled to percolation (PSCP). The condensates that result from PSCP are viscoelastic network fluids. Such systems have sequence-, composition-, and topology-specific internal network structures that give rise to time-dependent interplays between viscous and elastic properties. Unlike pure phase separation, the process of PSCP gives rise to sequence-, chemistry-, and structure-specific distributions of clusters that can form at concentrations that lie well below the threshold concentration for phase separation. PSCP, influenced by specific versus solubility-determining interactions, also provides a bridge between different observations and helps answer questions and address challenges that have arisen regarding the role of macromolecular phase separation in biology.
Collapse
Affiliation(s)
- Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
27
|
Ghosh K, Huihui J, Phillips M, Haider A. Rules of Physical Mathematics Govern Intrinsically Disordered Proteins. Annu Rev Biophys 2022; 51:355-376. [PMID: 35119946 PMCID: PMC9190209 DOI: 10.1146/annurev-biophys-120221-095357] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In stark contrast to foldable proteins with a unique folded state, intrinsically disordered proteins and regions (IDPs) persist in perpetually disordered ensembles. Yet an IDP ensemble has conformational features-even when averaged-that are specific to its sequence. In fact, subtle changes in an IDP sequence can modulate its conformational features and its function. Recent advances in theoretical physics reveal a set of elegant mathematical expressions that describe the intricate relationships among IDP sequences, their ensemble conformations, and the regulation of their biological functions. These equations also describe the molecular properties of IDP sequences that predict similarities and dissimilarities in their functions and facilitate classification of sequences by function, an unmet challenge to traditional bioinformatics. These physical sequence-patterning metrics offer a promising new avenue for advancing synthetic biology at a time when multiple novel functional modes mediated by IDPs are emerging.
Collapse
Affiliation(s)
- Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, Colorado, USA,Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, USA
| | - Jonathan Huihui
- Department of Physics and Astronomy, University of Denver, Denver, Colorado, USA
| | - Michael Phillips
- Department of Physics and Astronomy, University of Denver, Denver, Colorado, USA
| | - Austin Haider
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, USA
| |
Collapse
|
28
|
Lin YH, Wu H, Jia B, Zhang M, Chan HS. Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding. Biophys J 2022; 121:157-171. [PMID: 34637756 PMCID: PMC8758407 DOI: 10.1016/j.bpj.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023] Open
Abstract
The assembly of functional biomolecular condensates often involves liquid-liquid phase separation (LLPS) of proteins with multiple modular domains, which can be folded or conformationally disordered to various degrees. To understand the LLPS-driving domain-domain interactions, a fundamental question is how readily the interactions in the condensed phase can be inferred from interdomain interactions in dilute solutions. In particular, are the interactions leading to LLPS exclusively those underlying the formation of discrete interdomain complexes in homogeneous solutions? We address this question by developing a mean-field LLPS theory of two stoichiometrically constrained solute species. The theory is applied to the neuronal proteins SynGAP and PSD-95, whose complex coacervate serves as a rudimentary model for neuronal postsynaptic densities (PSDs). The predicted phase behaviors are compared with experiments. Previously, a three SynGAP/two PSD-95 ratio was determined for SynGAP/PSD-95 complexes in dilute solutions. However, when this 3:2 stoichiometry is uniformly imposed in our theory encompassing both dilute and condensed phases, the tie-line pattern of the predicted SynGAP/PSD-95 phase diagram differs drastically from that obtained experimentally. In contrast, theories embodying alternate scenarios postulating auxiliary SynGAP-PSD-95 as well as SynGAP-SynGAP and PSD-95-PSD-95 interactions, in addition to those responsible for stoichiometric SynGAP/PSD-95 complexes, produce tie-line patterns consistent with experiment. Hence, our combined theoretical-experimental analysis indicates that weaker interactions or higher-order complexes beyond the 3:2 stoichiometry, but not yet documented, are involved in the formation of SynGAP/PSD-95 condensates, imploring future efforts to ascertain the nature of these auxiliary interactions in PSD-like LLPS and underscoring a likely general synergy between stoichiometric, structurally specific binding and stochastic, multivalent "fuzzy" interactions in the assembly of functional biomolecular condensates.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada,Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Haowei Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Bowen Jia
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China,School of Life Sciences, Southern University of Science and Technology, Shenzhen, China,Corresponding author
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada,Corresponding author
| |
Collapse
|
29
|
Motif-pattern dependence of biomolecular phase separation driven by specific interactions. PLoS Comput Biol 2021; 17:e1009748. [PMID: 34965250 PMCID: PMC8751999 DOI: 10.1371/journal.pcbi.1009748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/11/2022] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic cells partition a wide variety of important materials and processes into biomolecular condensates—phase-separated droplets that lack a membrane. In addition to nonspecific electrostatic or hydrophobic interactions, phase separation also depends on specific binding motifs that link together constituent molecules. Nevertheless, few rules have been established for how these ubiquitous specific, saturating, motif-motif interactions drive phase separation. By integrating Monte Carlo simulations of lattice-polymers with mean-field theory, we show that the sequence of heterotypic binding motifs strongly affects a polymer’s ability to phase separate, influencing both phase boundaries and condensate properties (e.g. viscosity and polymer diffusion). We find that sequences with large blocks of single motifs typically form more inter-polymer bonds, which promotes phase separation. Notably, the sequence of binding motifs influences phase separation primarily by determining the conformational entropy of self-bonding by single polymers. This contrasts with systems where the molecular architecture primarily affects the energy of the dense phase, providing a new entropy-based mechanism for the biological control of phase separation. Cells need to concentrate biomolecules in the right place at the right time in order to function. Many important intracellular compartments are liquid droplets formed by phase separation, the same process that separates oil from vinegar. The properties of such “biomolecular condensates” depend on the component molecules, such as proteins and RNAs. These molecules are polymers made of many interacting monomers, often organized into “motifs,” and the sequence of motifs shapes the properties of the condensates. Recent work has revealed important principles governing phase separation when the motifs are charged and interact across long distances, but many phase-separating molecules form specific interactions that are short-range and one-to-one. How does the sequence of specifically-interacting motifs affect phase separation? Using a combination of simulations and theoretical calculations, we show that the sequence has profound effects on both the formation and properties of condensates. Sequences with large blocks of identical motifs are better at phase separating but more viscous and solid-like. Importantly, we find that sequence controls phase separation via the proclivity to form self-bonds instead of forming bonds with other polymers. Thus the sequence of specifically-interacting motifs provides a control point for the formation and properties of phase-separated intracellular compartments.
Collapse
|
30
|
Theisen FF, Staby L, Tidemand FG, O'Shea C, Prestel A, Willemoës M, Kragelund BB, Skriver K. Quantification of Conformational Entropy Unravels Effect of Disordered Flanking Region in Coupled Folding and Binding. J Am Chem Soc 2021; 143:14540-14550. [PMID: 34473923 DOI: 10.1021/jacs.1c04214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intrinsic disorder (ID) constitutes a new dimension to the protein structure-function relationship. The ability to undergo conformational changes upon binding is a key property of intrinsically disordered proteins and remains challenging to study using conventional methods. A 1994 paper by R. S. Spolar and M. T. Record presented a thermodynamic approach for estimating changes in conformational entropy based on heat capacity changes, allowing quantification of residues folding upon binding. Here, we adapt the method for studies of intrinsically disordered proteins. We integrate additional data to provide a broader experimental foundation for the underlying relations and, based on >500 protein-protein complexes involving disordered proteins, reassess a key relation between polar and nonpolar surface area changes, previously determined using globular protein folding. We demonstrate the improved suitability of the adapted method to studies of the folded αα-hub domain RST from radical-induced cell death 1, whose interactome is characterized by ID. From extensive thermodynamic data, quantifying the conformational entropy changes upon binding, and comparison to the NMR structure, the adapted method improves accuracy for ID-based studies. Furthermore, we apply the method, in conjunction with NMR, to reveal hitherto undetected effects of interaction-motif context. Thus, inclusion of the disordered context of the DREB2A RST-binding motif induces structuring of the binding motif, resulting in major enthalpy-entropy compensation in the interaction interface. This study, also evaluating additional interactions, demonstrates the strength of the ID-adapted Spolar-Record thermodynamic approach for dissection of structural features of ID-based interactions, easily overlooked in traditional studies, and for translation of these into mechanistic knowledge.
Collapse
Affiliation(s)
| | | | - Frederik Grønbæk Tidemand
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Li W, Jiang H. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression. J Mol Biol 2021; 434:167151. [PMID: 34271007 DOI: 10.1016/j.jmb.2021.167151] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022]
Abstract
Our understanding of the spatiotemporal regulation of eukaryotic gene expression has recently been greatly stimulated by the findings that many of the regulators of chromatin, transcription, and RNA processing form biomolecular condensates often assembled through liquid-liquid phase separation. Increasing number of reports suggest that these condensates functionally regulate gene expression, largely by concentrating the relevant biomolecules in the liquid-like micro-compartments. However, it remains poorly understood how the physicochemical properties, especially the material properties, of the condensates regulate gene expression activity. In this review, we discuss current data on various nuclear condensates and their biophysical properties with the underlying molecular interactions, and how they may functionally impact gene expression at the level of chromatin organization and activities, transcription, and RNA processing.
Collapse
Affiliation(s)
- Wei Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
32
|
Schmit JD, Feric M, Dundr M. How Hierarchical Interactions Make Membraneless Organelles Tick Like Clockwork. Trends Biochem Sci 2021; 46:525-534. [PMID: 33483232 PMCID: PMC8195823 DOI: 10.1016/j.tibs.2020.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Biomolecular condensates appear throughout the cell, serving many different biochemical functions. We argue that condensate functionality is optimized when the interactions driving condensation vary widely in affinity. Strong interactions provide structural specificity needed to encode functional properties but carry the risk of kinetic arrest, while weak interactions allow the system to remain dynamic but do not restrict the conformational ensemble enough to sustain specific functional features. To support our opinion, we describe illustrative examples of the interplay of strong and weak interactions that are found in the nucleolus, SPOP/DAXX condensates, polySUMO/polySIM condensates, chromatin, and stress granules. The common feature of these systems is a hierarchical assembly motif in which weak, transient interactions condense structurally defined functional units.
Collapse
Affiliation(s)
- Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
| | - Marina Feric
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miroslav Dundr
- Center for Cancer Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
33
|
Davis RB, Kaur T, Moosa MM, Banerjee PR. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains. Protein Sci 2021; 30:1454-1466. [PMID: 34018649 PMCID: PMC8197437 DOI: 10.1002/pro.4127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Fusion transcription factors generated by genomic translocations are common drivers of several types of cancers including sarcomas and leukemias. Oncofusions of the FET (FUS, EWSR1, and TAF15) family proteins result from the fusion of the prion-like domain (PLD) of FET proteins to the DNA-binding domain (DBD) of certain transcription regulators and are implicated in aberrant transcriptional programs through interactions with chromatin remodelers. Here, we show that FUS-DDIT3, a FET oncofusion protein, undergoes PLD-mediated phase separation into liquid-like condensates. Nuclear FUS-DDIT3 condensates can recruit essential components of the global transcriptional machinery such as the chromatin remodeler SWI/SNF. The recruitment of mammalian SWI/SNF (mSWI/SNF) is driven by heterotypic PLD-PLD interactions between FUS-DDIT3 and core subunits of SWI/SNF, such as the catalytic component BRG1. Further experiments with single-molecule correlative force-fluorescence microscopy support a model wherein the fusion protein forms condensates on DNA surface and enrich BRG1 to activate transcription by ectopic chromatin remodeling. Similar PLD-driven co-condensation of mSWI/SNF with transcription factors can be employed by other oncogenic fusion proteins with a generic PLD-DBD domain architecture for global transcriptional reprogramming.
Collapse
Affiliation(s)
- Richoo B. Davis
- Department of PhysicsUniversity at BuffaloBuffaloNew YorkUSA
| | - Taranpreet Kaur
- Department of PhysicsUniversity at BuffaloBuffaloNew YorkUSA
| | | | | |
Collapse
|
34
|
Intrinsically disordered substrates dictate SPOP subnuclear localization and ubiquitination activity. J Biol Chem 2021; 296:100693. [PMID: 33894201 PMCID: PMC8138767 DOI: 10.1016/j.jbc.2021.100693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
Speckle-type POZ protein (SPOP) is a ubiquitin ligase adaptor that binds substrate proteins and facilitates their proteasomal degradation. Most SPOP substrates present multiple SPOP-binding (SB) motifs and undergo liquid-liquid phase separation with SPOP. Pancreatic and duodenal homeobox 1 (Pdx1), an insulin transcription factor, is downregulated by interaction with SPOP. Unlike other substrates, only one SB motif has previously been reported within the Pdx1 C-terminal intrinsically disordered region (Pdx1-C). Given this difference, we aimed to determine the specific mode of interaction of Pdx1 with SPOP and how it is similar or different to that of other SPOP substrates. Here, we identify a second SB motif in Pdx1-C, but still find that the resulting moderate valency is insufficient to support phase separation with SPOP in cells. Although Pdx1 does not phase separate with SPOP, Pdx1 and SPOP interaction prompts SPOP relocalization from nuclear speckles to the diffuse nucleoplasm. Accordingly, we find that SPOP-mediated ubiquitination activity of Pdx1 occurs in the nucleoplasm and that highly efficient Pdx1 turnover requires both SB motifs. Our results suggest that the subnuclear localization of SPOP-substrate interactions and substrate ubiquitination may be directed by the properties of the substrate itself.
Collapse
|
35
|
Joseph JA, Espinosa JR, Sanchez-Burgos I, Garaizar A, Frenkel D, Collepardo-Guevara R. Thermodynamics and kinetics of phase separation of protein-RNA mixtures by a minimal model. Biophys J 2021; 120:1219-1230. [PMID: 33571491 DOI: 10.1016/j.bpj.2021.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Intracellular liquid-liquid phase separation enables the formation of biomolecular condensates, such as ribonucleoprotein granules, which play a crucial role in the spatiotemporal organization of biomolecules (e.g., proteins and RNAs). Here, we introduce a patchy-particle polymer model to investigate liquid-liquid phase separation of protein-RNA mixtures. We demonstrate that at low to moderate concentrations, RNA enhances the stability of RNA-binding protein condensates because it increases the molecular connectivity of the condensed-liquid phase. Importantly, we find that RNA can also accelerate the nucleation stage of phase separation. Additionally, we assess how the capacity of RNA to increase the stability of condensates is modulated by the relative protein-protein/protein-RNA binding strengths. We find that phase separation and multiphase organization of multicomponent condensates is favored when the RNA binds with higher affinity to the lower-valency proteins in the mixture than to the cognate higher-valency proteins. Collectively, our results shed light on the roles of RNA in ribonucleoprotein granule formation and the internal structuring of stress granules.
Collapse
Affiliation(s)
- Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daan Frenkel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
36
|
Zhou HX. Viscoelasticity of biomolecular condensates conforms to the Jeffreys model. J Chem Phys 2021; 154:041103. [PMID: 33514117 PMCID: PMC7847312 DOI: 10.1063/5.0038916] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Biomolecular condensates, largely by virtue of their material properties, are revolutionizing biology, and yet, the physical understanding of these properties is lagging. Here, I show that the viscoelasticity of condensates can be captured by a simple model, comprising a component where shear relaxation is an exponential function (with time constant τ1) and a component with nearly instantaneous shear relaxation (time constant τ0 → 0). Modulation of intermolecular interactions, e.g., by adding salt, can disparately affect the two components such that the τ1 component may dominate at low salt, whereas the τ0 component may dominate at high salt. Condensates have a tendency to fuse, with the dynamics accelerated by interfacial tension and impeded by viscosity. For fast-fusion condensates, shear relaxation on the τ1 timescale may become rate-limiting such that the fusion speed is no longer in direction proportion to the interfacial tension. These insights help narrow the gap in understanding between the biology and physics of biomolecular condensates.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
37
|
Bhandari K, Cotten MA, Kim J, Rosen MK, Schmit JD. Structure-Function Properties in Disordered Condensates. J Phys Chem B 2021; 125:467-476. [PMID: 33395293 DOI: 10.1021/acs.jpcb.0c11057] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biomolecular condensates appear throughout the cell serving a wide variety of functions. Many condensates appear to form by the assembly of multivalent molecules, which produce phase-separated networks with liquidlike properties. These networks then recruit client molecules, with the total composition providing functionality. Here we use a model system of poly-SUMO and poly-SIM proteins to understand client-network interactions and find that the structure of the network plays a strong role in defining client recruitment and thus functionality. The basic unit of assembly in this system is a zipperlike filament composed of alternating poly-SUMO and poly-SIM molecules. These filaments have defects of unsatisfied bonds that allow for both the formation of a 3D network and the recruitment of clients. The filamentous structure constrains the scaffold stoichiometries and the distribution of client recruitment sites that the network can accommodate. This results in a nonmonotonic client binding response that can be tuned independently by the client valence and binding energy. These results show how the interactions within liquid states can be disordered yet still contain structural features that provide functionality to the condensate.
Collapse
Affiliation(s)
- Kamal Bhandari
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Michael A Cotten
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jonggul Kim
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Michael K Rosen
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
38
|
Das S, Lin YH, Vernon RM, Forman-Kay JD, Chan HS. Comparative roles of charge, π, and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. Proc Natl Acad Sci U S A 2020; 117:28795-28805. [PMID: 33139563 PMCID: PMC7682375 DOI: 10.1073/pnas.2008122117] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endeavoring toward a transferable, predictive coarse-grained explicit-chain model for biomolecular condensates underlain by liquid-liquid phase separation (LLPS) of proteins, we conducted multiple-chain simulations of the N-terminal intrinsically disordered region (IDR) of DEAD-box helicase Ddx4, as a test case, to assess roles of electrostatic, hydrophobic, cation-π, and aromatic interactions in amino acid sequence-dependent LLPS. We evaluated three different residue-residue interaction schemes with a shared electrostatic potential. Neither a common hydrophobicity scheme nor one augmented with arginine/lysine-aromatic cation-π interactions consistently accounted for available experimental LLPS data on the wild-type, a charge-scrambled, a phenylalanine-to-alanine (FtoA), and an arginine-to-lysine (RtoK) mutant of Ddx4 IDR. In contrast, interactions based on contact statistics among folded globular protein structures reproduce the overall experimental trend, including that the RtoK mutant has a much diminished LLPS propensity. Consistency between simulation and experiment was also found for RtoK mutants of P-granule protein LAF-1, underscoring that, to a degree, important LLPS-driving π-related interactions are embodied in classical statistical potentials. Further elucidation is necessary, however, especially of phenylalanine's role in condensate assembly because experiments on FtoA and tyrosine-to-phenylalanine mutants suggest that LLPS-driving phenylalanine interactions are significantly weaker than posited by common statistical potentials. Protein-protein electrostatic interactions are modulated by relative permittivity, which in general depends on aqueous protein concentration. Analytical theory suggests that this dependence entails enhanced interprotein interactions in the condensed phase but more favorable protein-solvent interactions in the dilute phase. The opposing trends lead to only a modest overall impact on LLPS.
Collapse
Affiliation(s)
- Suman Das
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Robert M Vernon
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie D Forman-Kay
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
39
|
Ghosh A, Zhang X, Zhou HX. Tug of War between Condensate Phases in a Minimal Macromolecular System. J Am Chem Soc 2020; 142:8848-8861. [PMID: 32326697 DOI: 10.1021/jacs.0c01881] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membraneless organelles, comprising dozens to hundreds of macromolecular components, form heterogeneous phases in space and evolve over time in material properties. Here, using four macromolecules, we demonstrate a range of phase behaviors associated with membraneless organelles and uncover the underlying physicochemical rules. The macromolecules are SH35 (S) and PRM5 (P), two pentameric, oppositely charged protein constructs; heparin (H), an anionic polymer; and lysozyme (L), a cationic single-domain protein. The S:P, S:L, and P:H binaries form droplets, but the H:L binary forms network-like precipitates, therefore setting up a tug of war between different condensate phases within the S:P:H:L quaternary. The H:L exception can partly be attributed to the compactness of L, as supported by ThT binding data. Increasing amounts of P alone or both S and P, but not S alone, can dissolve H:L precipitates into droplets. These differential effects can be explained by the order of the strengths of pairwise attraction: H:L > P:H > S:P > S:L, deduced from the shapes of ternary phase boundaries. When S and P are at subdissolution concentrations, S:P:H:L precipitates change over time to become droplet-like in appearance, although not completely fluidic according to fluorescence recovery after photobleaching. In fact, confocal microscopy reveals separated S:L-rich and P:H-rich foci inside the droplet-like condensates. Therefore, complex phase behaviors of membraneless organelles, including rescue of aberrant phase transitions, demixing of condensates, and time evolution of material properties, can all be reconstituted and understood via a minimal macromolecular system.
Collapse
Affiliation(s)
- Archishman Ghosh
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Xiaojia Zhang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
40
|
Peran I, Mittag T. Molecular structure in biomolecular condensates. Curr Opin Struct Biol 2019; 60:17-26. [PMID: 31790873 DOI: 10.1016/j.sbi.2019.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Evidence accumulated over the past decade provides support for liquid-liquid phase separation as the mechanism underlying the formation of biomolecular condensates, which include not only 'membraneless' organelles such as nucleoli and RNA granules, but additional assemblies involved in transcription, translation and signaling. Understanding the molecular mechanisms of condensate function requires knowledge of the structures of their constituents. Current knowledge suggests that structures formed via multivalent domain-motif interactions remain largely unchanged within condensates. Two different viewpoints exist regarding structures of disordered low-complexity domains within condensates; one argues that low-complexity domains remain largely disordered in condensates and their multivalency is encoded in short motifs called 'stickers', while the other argues that the sequences form cross-β structures resembling amyloid fibrils. We review these viewpoints and highlight outstanding questions that will inform structure-function relationships for biomolecular condensates.
Collapse
Affiliation(s)
- Ivan Peran
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|