1
|
Zhang Y, Liu J, Xu Y, Xie C, Wang S, Yao X. Design and regulation of defective electrocatalysts. Chem Soc Rev 2024; 53:10620-10659. [PMID: 39268976 DOI: 10.1039/d4cs00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Electrocatalysts are the key components of electrochemical energy storage and conversion devices. High performance electrocatalysts can effectively reduce the energy barrier of the chemical reactions, thereby improving the conversion efficiency of energy devices. The electrocatalytic reaction mainly experiences adsorption and desorption of molecules (reactants, intermediates and products) on a catalyst surface, accompanied by charge transfer processes. Therefore, surface control of electrocatalysts plays a pivotal role in catalyst design and optimization. In recent years, many studies have revealed that the rational design and regulation of a defect structure can result in rearrangement of the atomic structure on the catalyst surface, thereby efficaciously promoting the electrocatalytic performance. However, the relationship between defects and catalytic properties still remains to be understood. In this review, the types of defects, synthesis methods and characterization techniques are comprehensively summarized, and then the intrinsic relationship between defects and electrocatalytic performance is discussed. Moreover, the application and development of defects are reviewed in detail. Finally, the challenges existing in defective electrocatalysts are summarized and prospected, and the future research direction is also suggested. We hope that this review will provide some principal guidance and reference for researchers engaged in defect and catalysis research, better help researchers understand the research status and development trends in the field of defects and catalysis, and expand the application of high-performance defective electrocatalysts to the field of electrocatalytic engineering.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, P. R. China.
| | - Jingjing Liu
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, P. R. China.
| | - Yangfan Xu
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong 518107, P. R. China.
| | - Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xiangdong Yao
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
2
|
Wong RA, Yokota Y, Kim Y. Bridging Electrochemistry and Ultrahigh Vacuum: "Unburying" the Electrode-Electrolyte Interface. Acc Chem Res 2023. [PMID: 37384820 DOI: 10.1021/acs.accounts.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
ConspectusElectrochemistry has a central role in addressing the societal issues of our time, including the United Nations' Sustainable Development Goals (SDGs) and beyond. At a more basic level, however, elucidating the nature of electrode-electrolyte interfaces is an ongoing challenge due to many reasons, but one obvious reason is the fact that the electrode-electrolyte interface is buried by a thick liquid electrolyte layer. This fact would seem to preclude, by default, the use of many traditional characterization techniques in ultrahigh vacuum surface science due to their incompatibility with liquids. However, combined UHV-EC (ultrahigh vacuum-electrochemistry) approaches are an active area of research and provide a means of bridging the liquid environment of electrochemistry to UHV-based techniques. In short, UHV-EC approaches are able to remove the bulk electrolyte layer by performing electrochemistry in the liquid environment of electrochemistry followed by sample removal (referred to as emersion), evacuation, and then transfer into vacuum for analysis.Through this Account, we highlight our group's activities using UHV-EC to bridge electrochemistry with UHV-based X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS) and scanning tunneling microscopy (STM). We provide a background and overview of the UHV-EC setup, and through illustrative examples, we convey what sorts of insights and information can be obtained. One notable advance is the use of ferrocene-terminated self-assembled monolayers as a spectroscopic molecular probe, allowing the electrochemical response to be correlated with the potential-dependent electronic and chemical state of the electrode-monolayer-electrolyte interfacial region. With XPS/UPS, we have been able to probe changes in the oxidation state, valence structure, and also the so-called potential drop across the interfacial region. In related work, we have also spectroscopically probed changes in the surface composition and screening of the surface charge of oxygen-terminated boron-doped diamond electrodes emersed from high-pH solutions. Finally, we will give readers a glimpse into our recent progress regarding real-space visualizations of electrodes following electrochemistry and emersion using UHV-based STM. We begin by demonstrating the ability to visualize large-scale morphology changes, including electrochemically induced graphite exfoliation and the surface reconstruction of Au surfaces. Taking this further, we show that in certain instances atomically resolved specifically adsorbed anions on metal electrodes can be imaged. In all, we anticipate that this Account will stimulate readers to advance UHV-EC approaches further, as there is a need to improve our understanding concerning the guidelines that determine applicable electrochemical systems and how to exploit promising extensions to other UHV methods.
Collapse
Affiliation(s)
- Raymond A Wong
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuyuki Yokota
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Chen Z, Li J, Meng L, Li J, Hao Y, Jiang T, Yang X, Li Y, Liu ZP, Gong M. Ligand vacancy channels in pillared inorganic-organic hybrids for electrocatalytic organic oxidation with enzyme-like activities. Nat Commun 2023; 14:1184. [PMID: 36864050 PMCID: PMC9981682 DOI: 10.1038/s41467-023-36830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
Simultaneously achieving abundant and well-defined active sites with high selectivity has been one of the ultimate goals for heterogeneous catalysis. Herein, we construct a class of Ni hydroxychloride-based inorganic-organic hybrid electrocatalysts with the inorganic Ni hydroxychloride chains pillared by the bidentate N-N ligands. The precise evacuation of N-N ligands under ultrahigh-vacuum forms ligand vacancies while partially retaining some ligands as structural pillars. The high density of ligand vacancies forms the active vacancy channel with abundant and highly-accessible undercoordinated Ni sites, exhibiting 5-25 fold and 20-400 fold activity enhancement compared to the hybrid pre-catalyst and standard β-Ni(OH)2 for the electrochemical oxidation of 25 different organic substrates, respectively. The tunable N-N ligand can also tailor the sizes of the vacancy channels to significantly impact the substrate configuration leading to unprecedented substrate-dependent reactivities on hydroxide/oxide catalysts. This approach bridges heterogenous and homogeneous catalysis for creating efficient and functional catalysis with enzyme-like properties.
Collapse
Affiliation(s)
- Zhe Chen
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jili Li
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Lingshen Meng
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jianan Li
- grid.28056.390000 0001 2163 4895National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237 China
| | - Yaming Hao
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Tao Jiang
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Xuejing Yang
- grid.28056.390000 0001 2163 4895National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237 China
| | - Yefei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Zhi-Pan Liu
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Ming Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
4
|
Engstfeld AK, Klein J, Brimaud S. Bifunctional versus Defect-Mediated Effects in Electrocatalytic Methanol Oxidation. Chemphyschem 2021; 22:828-832. [PMID: 33635558 PMCID: PMC8251818 DOI: 10.1002/cphc.202000979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Indexed: 11/09/2022]
Abstract
The most prominent and intensively studied anode catalyst material for direct methanol oxidation fuel cells consists of a combination of platinum (Pt) and ruthenium (Ru). Classically, their high performance is attributed to a bifunctional reaction mechanism where Ru sites provide oxygen species at lower overpotential than Pt. In turn, they oxidize the adsorbed carbonaceous reaction intermediates at lower overpotential; among these, the Pt site-blocking carbon monoxide. We demonstrate that well-defined Pt modified Ru(0001) single crystal electrodes, with varying Pt contents and different local PtRu configurations at the surface, are unexpectedly inactive for the methanol oxidation reaction. This observation stands in contradiction with theoretical predictions and the concept of bifunctional catalysis for this reaction. Instead, we suggest that pure Pt defect sites play a more critical role than bifunctional defect sites on the electrodes investigated in this work.
Collapse
Affiliation(s)
- Albert K. Engstfeld
- Institute of Surface Chemistry and CatalysisUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Present Address: Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| | - Jens Klein
- Institute of Surface Chemistry and CatalysisUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| | - Sylvain Brimaud
- Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)Helmholtzstrasse 889081UlmGermany
| |
Collapse
|
5
|
Xie C, Yan D, Li H, Du S, Chen W, Wang Y, Zou Y, Chen R, Wang S. Defect Chemistry in Heterogeneous Catalysis: Recognition, Understanding, and Utilization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03034] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao Xie
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dafeng Yan
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hao Li
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shiqian Du
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ru Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Sakaushi K, Kumeda T, Hammes-Schiffer S, Melander MM, Sugino O. Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Phys Chem Chem Phys 2020; 22:19401-19442. [DOI: 10.1039/d0cp02741c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding microscopic mechanism of multi-electron multi-proton transfer reactions at complexed systems is important for advancing electrochemistry-oriented science in the 21st century.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - Tomoaki Kumeda
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | | | - Marko M. Melander
- Nanoscience Center
- Department of Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | - Osamu Sugino
- The Institute of Solid State Physics
- the University of Tokyo
- Chiba 277-8581
- Japan
| |
Collapse
|
7
|
Scott SB, Engstfeld AK, Jusys Z, Hochfilzer D, Knøsgaard N, Trimarco DB, Vesborg PCK, Behm RJ, Chorkendorff I. Anodic molecular hydrogen formation on Ru and Cu electrodes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01213k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
On important electrocatalysts including ruthenium and copper, increasing the potential pushes adsorbed hydrogen off as H2, an unexpected uphill desorption.
Collapse
Affiliation(s)
- Soren B. Scott
- Section for Surface Physics and Catalysis
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Albert K. Engstfeld
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| | - Zenonas Jusys
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| | - Degenhart Hochfilzer
- Section for Surface Physics and Catalysis
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Nikolaj Knøsgaard
- Section for Surface Physics and Catalysis
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | | | - Peter C. K. Vesborg
- Section for Surface Physics and Catalysis
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - R. Jürgen Behm
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| | - Ib Chorkendorff
- Section for Surface Physics and Catalysis
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|