1
|
Yu L, Xu Q, Sun Y, Wang Y, Tang Y, Yuan Q, Peng S, Wu G, Xiao Y, Zhou X. Programmable Lanthanide Metal-Organic Framework for Ultra-Efficient Nucleic Acids Extraction and Interaction Analysis. Anal Chem 2024; 96:11455-11462. [PMID: 38968402 DOI: 10.1021/acs.analchem.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Efficient, mild, and reversible adsorption of nucleic acids onto nanomaterials represents a promising analytical approach for medical diagnosis. However, there is a scarcity of efficient and reversible nucleic acid adsorption nanomaterials. Additionally, the lack of comprehension of the molecular mechanisms governing their interactions poses significant challenges. These issues hinder the rational design and analytical applications of the nanomaterials. Herein, we propose an ultra-efficient nucleic acid affinity nanomaterial based on programmable lanthanide metal-organic frameworks (Ln-MOFs). Through experiments and density functional theory calculations, a rational design guideline for nucleic acid affinity of Ln-MOF was proposed, and a modular and flexible preparation scheme was provided. Then, Er-TPA (terephthalic acid) MOF emerged as the optimal candidate due to its pore size-independent adsorption and desorption capabilities for nucleic acids, enabling ultra-efficient adsorption (about 150% mass ratio) within 1 min. Furthermore, we elucidate the molecular-level mechanisms underlying the Ln-MOF adsorption of single- and double-stranded DNA and G4 structures. The affinity nanomaterial based on Ln-MOF exhibits robust nucleic acid extraction capability (4-fold higher than commercial reagent kits) and enables mild and reversible CRISPR/Cas9 functional regulation. This method holds significant promise for broad application in DNA/RNA liquid biopsy and gene editing, facilitating breakthroughs in analytical chemistry, pharmacy, and medical research.
Collapse
Affiliation(s)
- Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qi Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Naifert SA, Osipov AA, Efremov AN, Rajakumar K, Uchaev DA, Zherebtsov DA, Belov KN. 1D and 2D coordination polymers with a new rigid chelating linker: diacetylenedisalicylic acid. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:42-50. [PMID: 38205836 DOI: 10.1107/s205252062301017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024]
Abstract
Diacetylenedisalicylic acid is a new rigid linker molecule, capable of forming strong chelate bonds with metal cations. Its monosubstituted salts with dimethylamine and sodium form 1D and 2D coordination polymers, whose structures were solved from single crystals, along with the dimethyl ester of diacetylenedisalicylic acid. The structure of the dimethyl ester is characterized by a dense co-facial π-stacking of molecules with a dominance of van der Waals interactions between the stacks. The angle between the stack direction and the butadiyne groups does not meet the Enkelmann criterion for polymerization in a crystal. In contrast to the dimethyl ester, both salts have a rigid framework with channels filled with disordered solvent molecules. Photoluminescence spectra of the acid and its dimethyl ester have been studied. Thermal analysis of the acid confirms its high thermal stability to 286°C. The acid and its dimethyl ester are prone to polymerization on further heating followed by 50-52% mass loss, forming an amorphous carbon residue at 1000°C.
Collapse
Affiliation(s)
- Sergei A Naifert
- South Ural State University, Lenin prospekt, 76, Chelyabinsk, 454080, Russian Federation
| | - Artem A Osipov
- South Ural State University, Lenin prospekt, 76, Chelyabinsk, 454080, Russian Federation
| | - Andrey N Efremov
- South Ural State University, Lenin prospekt, 76, Chelyabinsk, 454080, Russian Federation
| | - Kanthapazham Rajakumar
- South Ural State University, Lenin prospekt, 76, Chelyabinsk, 454080, Russian Federation
| | - Daniil A Uchaev
- South Ural State University, Lenin prospekt, 76, Chelyabinsk, 454080, Russian Federation
| | - Dmitry A Zherebtsov
- South Ural State University, Lenin prospekt, 76, Chelyabinsk, 454080, Russian Federation
| | - Kirill N Belov
- South Ural State University, Lenin prospekt, 76, Chelyabinsk, 454080, Russian Federation
| |
Collapse
|
3
|
Sun Y, Yu H, Han S, Ran R, Yang Y, Tang Y, Wang Y, Zhang W, Tang H, Fu B, Fu B, Weng X, Liu SM, Deng H, Peng S, Zhou X. Method for the extraction of circulating nucleic acids based on MOF reveals cell-free RNA signatures in liver cancer. Natl Sci Rev 2024; 11:nwae022. [PMID: 38348130 PMCID: PMC10860518 DOI: 10.1093/nsr/nwae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 02/15/2024] Open
Abstract
Cell-free RNA (cfRNA) allows assessment of health, status, and phenotype of a variety of human organs and is a potential biomarker to non-invasively diagnose numerous diseases. Nevertheless, there is a lack of highly efficient and bias-free cfRNA isolation technologies due to the low abundance and instability of cfRNA. Here, we developed a reproducible and high-efficiency isolation technology for different types of cell-free nucleic acids (containing cfRNA and viral RNA) in serum/plasma based on the inclusion of nucleic acids by metal-organic framework (MOF) materials, which greatly improved the isolation efficiency and was able to preserve RNA integrity compared with the most widely used research kit method. Importantly, the quality of cfRNA extracted by the MOF method is about 10-fold that of the kit method, and the MOF method isolates more than three times as many different RNA types as the kit method. The whole transcriptome mapping characteristics of cfRNA in serum from patients with liver cancer was described and a cfRNA signature with six cfRNAs was identified to diagnose liver cancer with high diagnostic efficiency (area under curve = 0.905 in the independent validation cohort) using this MOF method. Thus, this new MOF isolation technique will advance the field of liquid biopsy, with the potential to diagnose liver cancer.
Collapse
Affiliation(s)
- Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Haixin Yu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Ruoxi Ran
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wenhao Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Heng Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Boqiao Fu
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Mena-Gutiérrez S, Pascual-Colino J, Beobide G, Castillo O, Castellanos-Rubio A, Luque A, Maiza-Razkin E, Mentxaka J, Pérez-Yáñez S. Isoreticular Chemistry and Applications of Supramolecularly Assembled Copper-Adenine Porous Materials. Inorg Chem 2023; 62:18496-18509. [PMID: 37910080 PMCID: PMC10647167 DOI: 10.1021/acs.inorgchem.3c02708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The useful concepts of reticular chemistry, rigid and predictable metal nodes together with strong and manageable covalent interactions between metal centers and organic linkers, have made the so-called metal-organic frameworks (MOFs) a flourishing area of enormous applicability. In this work, the extension of similar strategies to supramolecularly assembled metal-organic materials has allowed us to obtain a family of isoreticular compounds of the general formula [Cu7(μ-adeninato-κN3:κN9)6(μ3-OH)6(μ-OH2)6](OOC-R-COO)·nH2O (R: ethylene-, acetylene-, naphthalene-, or biphenyl-group) in which the rigid copper-adeninato entities and the organic dicarboxylate anions are held together not by covalent interactions but by a robust and flexible network of synergic hydrogen bonds and π-π stacking interactions based on well-known supramolecular synthons (SMOFs). All compounds are isoreticular, highly insoluble, and water-stable and show a porous crystalline structure with a pcu topology containing a two-dimensional (2D) network of channels, whose dimensions and degree of porosity of the supramolecular network are tailored by the length of the dicarboxylate anion. The partial loss of the crystallization water molecules upon removal from the mother liquor produces a shrinkage of the unit cell and porosity, which leads to a color change of the compounds (from blue to olive green) if complete dehydration is achieved by means of gentle heating or vacuuming. However, the supramolecular network of noncovalent interactions is robust and flexible enough to reverse to the expanded unit cell and color after exposure to a humid atmosphere. This humidity-driven breathing behavior has been used to design a sensor in which the electrical resistance varies reversibly with the degree of humidity, very similar to the water vapor adsorption isotherm of the SMOF. The in-solution adsorption properties were explored for the uptake and release of the widely employed 5-fluorouracil, 4-aminosalycilic acid, 5-aminosalycilic acid, and allopurinol drugs. In addition, cytotoxicity activity assays were completed for the pristine and 5-fluorouracil-loaded samples.
Collapse
Affiliation(s)
- Sandra Mena-Gutiérrez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - Jon Pascual-Colino
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Garikoitz Beobide
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Oscar Castillo
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Ainara Castellanos-Rubio
- Departamento
de Genética, Antropología física y Fisiología
animal, Facultad de Medicina, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, E-48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science; E-48011, Bilbao, Spain
- Biobizkaia
Research Institute, E-480903 Barakaldo, Bizkaia Spain
| | - Antonio Luque
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Ekain Maiza-Razkin
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - Jon Mentxaka
- Biobizkaia
Research Institute, E-480903 Barakaldo, Bizkaia Spain
- Departamento
de Bioquímica y Biología Molecular, UPV-EHU, E-48940 Leioa, Bizkaia Spain
| | - Sonia Pérez-Yáñez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| |
Collapse
|
5
|
Liu J, Liu X, Liu Q, Cao J, Lv X, Wang S, Tian T, Zhou X, Deng H. Mesoporous Metal-Organic Frameworks for Catalytic RNA Deprotection and Activation. Angew Chem Int Ed Engl 2023; 62:e202302649. [PMID: 37338989 DOI: 10.1002/anie.202302649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
A metal-organic framework (MOF) with mespores (2 to 50 nm) allows the inclusion of large biomolecules, such as nucleic acids. However, chemical reaction on the nucleic acids, to further regulate their bioactivity, is yet to be demonstrated within MOF pores. Here, we report the deprotection of carbonate protected RNA molecules (21 to 102 nt) to restore their original activity using a MOF as a heterogeneous catalyst. Two MOFs, MOF-626 and MOF-636 are designed and synthesized, with mesopores of 2.2 and 2.8 nm, respectively, carrying isolated metal sites (Ni, Co, Cu, Pd, Rh and Ru). The pores favor the entrance of RNA, while the metal sites catalyze C-O bond cleavage at the carbonate group. Complete conversion of RNA is achieved by Pd-MOF-626, 90 times more efficiently than Pd(NO3 )2 . MOF crystals are also removable from the aqueous reaction media, leaving a negligible metal footprint, 3.9 ppb, only 1/55 of that using homogeneous Pd catalysts. These features make MOF potentially suited for bioorthogonal chemistry.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jing Cao
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinheng Lv
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shaoru Wang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Yangtze Memory Laboratories, Wuhan, 430075, China
| |
Collapse
|
6
|
Yu L, Wang Y, Sun Y, Tang Y, Xiao Y, Wu G, Peng S, Zhou X. Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305171. [PMID: 37616525 DOI: 10.1002/adma.202305171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Collapse
Affiliation(s)
- Long Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
Hu G, Liu Q, Zhou Y, Yan W, Sun Y, Peng S, Zhao C, Zhou X, Deng H. Extremely Large 3D Cages in Metal-Organic Frameworks for Nucleic Acid Extraction. J Am Chem Soc 2023. [PMID: 37224417 DOI: 10.1021/jacs.3c02128] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Three-dimensional (3D) cages in the mesopore regime (2-50 nm) assembled from molecular building blocks are highly desirable in biological applications; however, their synthesis in crystalline form is quite challenging, as well as their structure characterization. Here, we report the synthesis of extremely large 3D cages in MOF crystals, with internal cage sizes of 6.9, and 8.5 nm in MOF-929; 9.3 and 11.4 nm in MOF-939, in cubic unit cells, a = 17.4 and 22.8 nm, respectively. These cages are constructed from relatively short organic linkers with the lengths of 0.85 and 1.3 nm, where the influence from molecular motion is minimized, thus favoring their crystallization. A 0.45 nm linker length elongation leads to a maximum 2.9 nm increase in cage size, giving a supreme efficiency in cage expansion. The spatial arrangements of these 3D cages were visualized by both X-ray diffraction and transmission electron microscopy. The efforts to obtain these cages in crystals pushed forward the size boundary for the construction of 3D cages from molecules and also exploited the limit of the area in space possibly supported per chemical bond, where the expansion efficiencies of the cages were found to play a critical role. These extremely large 3D cages in MOFs were useful in the complete extraction of long nucleic acid, such as total RNA and plasmid from aqueous solution.
Collapse
Affiliation(s)
- Gaoli Hu
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430075, China
| | - Qi Liu
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Yan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuqing Sun
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shuang Peng
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengbin Zhao
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430075, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430075, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Ye Y, Yu H, Chen B, Zhao Y, Lv B, Xue G, Sun Y, Cao J. Engineering nanoenzymes integrating Iron-based metal organic frameworks with Pt nanoparticles for enhanced Photodynamic-Ferroptosis therapy. J Colloid Interface Sci 2023; 645:882-894. [PMID: 37178565 DOI: 10.1016/j.jcis.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Photodynamic therapy (PDT), as a promising strategy in cancer treatment that utilizes photosensitizers (PSs) to produce reactive oxygen species, has been widely used for eliminating cancer cells under specific wavelength light irradiation. However, the low aqueous solubility of PSs and special tumor microenvironments (TME), such as high glutathione (GSH) and tumor hypoxia remain challenges towards PDT for hypoxic tumor treatment. To address these problems, we constructed a novel nanoenzyme for enhanced PDT-ferroptosis therapy by integrating small Pt nanoparticles (Pt NPs) and near-infrared photosensitizer CyI into iron-based metal organic frameworks (MOFs). In addition, hyaluronic acid was adhered to the surface of the nanoenzymes to enhance the targeting ability. In this design, MOFs act not only as a delivery vector for PSs, but also a ferroptosis inducer. Pt NPs stabilized by MOFs were functioned as an oxygen (O2) generator by catalyzing hydrogen peroxide into O2 to relieve tumor hypoxia and increase singlet oxygen generation. In vitro and in vivo results demonstrated that under laser irradiation, this nanoenzyme could effectively relive the tumor hypoxia and decrease the level of GSH, resulting in enhanced PDT-ferroptosis therapy against hypoxic tumor. The proposed nanoenzymes represent an important advance in altering TME for improved clinical PDT-ferroptosis therapy, as well as their potential as effective theranostic agents for hypoxic tumors.
Collapse
Affiliation(s)
- Yuyun Ye
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Bohan Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Bai Lv
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Guanghe Xue
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
9
|
Jiang Q, Xiao Y, Hong AN, Shen Y, Li Z, Feng P, Zhong W. Highly Stable Fe/Co-TPY-MIL-88(NH 2) Metal-Organic Framework (MOF) in Enzymatic Cascade Reactions for Chemiluminescence-Based Detection of Extracellular Vesicles. ACS Sens 2023; 8:1658-1666. [PMID: 36945081 DOI: 10.1021/acssensors.2c02791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Metal-Organic Frameworks (MOFs) can deliver many advantages when acting as enzyme mimics to assist with signal amplification in molecular detection: they have abundant active catalytic sites per unit volume of the material; their structures and elemental compositions are highly tunable, and their high specific surface area and porous property can assist with target separation and enrichment. In the present work, we have demonstrated that, by adding the pore partition agent, 2,4,6-tris(4-pyridyl)pyridine (TPY) during synthesis of the bimetallic Fe/Co-MIL-88(NH2) MOF to block the open metal sites, a highly porous MOF of Fe/Co-TPY-MIL-88(NH2) can be produced. This material also exhibits high stability in basic solutions and biofluids and possesses high peroxidase-mimicking activity, which can be utilized to produce long-lasting chemiluminescence (CL) from luminol and H2O2. Moreover, acting as the peroxidase-mimic, the Fe/Co-TPY-MIL-88(NH2) MOF can form the enzymatic cascade with glucose oxidase (GOx) for biomarker detection. When applied to detect extracellular vesicles (EVs), the MOF material and GOx are brought to the proximity on the EVs through two surface proteins, which triggers the enzyme cascade to produce high CL from glucose and luminol. EVs within the concentration range of 5 × 105 to 4 × 107 particles/mL can be detected with an LOD of 1 × 105 particles/mL, and the method can be used to analyze EV contents in human serum without sample preparation and EV purification. Overall, our work demonstrates that the high versatility and tunability of the MOF structures could bring in significant benefits to biosensing and enable ultrasensitive detection of biomarkers with judicious material designs.
Collapse
|
10
|
He L, Shang M, Chen Z, Yang Z. Metal-Organic Frameworks Nanocarriers for Functional Nucleic Acid Delivery in Biomedical Applications. CHEM REC 2023:e202300018. [PMID: 36912736 DOI: 10.1002/tcr.202300018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Indexed: 03/14/2023]
Abstract
Metal-organic frameworks (MOFs), a distinctive funtionalmaterials which is constructed by various metal ions and organic molecules, have gradually attracted researchers' attention from they were founded. In the last decade, MOFs emerge as a biomedical material with potential applications due to their unique properties. However, the MOFs performed as nanocarriers for functional nucleic acid delivery in biomedical applications rarely summarized. In this review, we introduce recent developments of MOFs for nucleic acid delivery in various biologically relevant applications, with special emphasis on cancer therapy (including siRNA, ASO, DNAzyme, miRNA and CpG oligodeoxynucleotides), bioimaging, biosensors and separation of biomolecules. We expect the accomplishment of this review could benefit certain researchers in biomedical field to develop novel sophisticated nanocarriers for functional nucleic acid delivery based on the promising material of MOFs.
Collapse
Affiliation(s)
- Li He
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mengdi Shang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhongkai Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Construction of a novel "self-regenerative" electrochemical biosensor based on metal-organic frameworks and its application to the detection of Mycoplasma ovine pneumonia. Bioelectrochemistry 2023; 152:108409. [PMID: 36898345 DOI: 10.1016/j.bioelechem.2023.108409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
This study aimed to prepare a novel "self-regenerative" electrochemical biosensor by successively modifying gold nanoparticles, four-arm polyethylene glycol-NH2, and NH2-MIL-53 (Al) (MOF) on the glassy carbon electrode interface. A hairpin G-triplex-mediated DNA (G3 probe) as a part of the mycoplasma ovine pneumonia (MO) gene was loosely adsorbed to MOF. Based on the mechanism of hybridization induction, the G3 probe could effectively detach from the MOF only after introducing the target DNA. Subsequently, its guanine-rich nucleic acid sequences were exposed to solution of methylene blue. As a result, the diffusion current of the sensor system showed a sharp decline. The developed biosensor showed excellent selectivity, and the concentration of target DNA exhibited a good correlation in the range 10-10 to 10-6 M with a detection limit of 1.00 pM (S/N = 3), even in 10% goat serum. Most interestingly, this biosensor interface automatically started the regeneration program. Moreover, regeneration could be effectively achieved at least seven times, and the recovery rate of the electrode interface and sensing efficiency was up to 90%. Additionally, this platform could be used for other clinical assays in various systems by simply changing the DNA sequence of the probe.
Collapse
|
12
|
Zhao Q, Pan B, Long W, Pan Y, Zhou D, Luan X, He B, Wang Y, Song Y. Metal Organic Framework-Based Bio-Barcode CRISPR/Cas12a Assay for Ultrasensitive Detection of MicroRNAs. NANO LETTERS 2022; 22:9714-9722. [PMID: 36412588 DOI: 10.1021/acs.nanolett.2c04022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
CRISPR/Cas12a has shown great potential in molecular diagnostics, but its application in sensing of microRNAs (miRNAs) was limited by sensitivity and complexity. Here, we have sensitively and conveniently detected microRNAs by reasonably integrating metal-organic frameworks (MOFs) based biobarcodes with CRISPR/Cas12a assay (designated as MBCA). In this work, DNA-functionalized Zr-MOFs were designed as the converter to convert and amplify each miRNA target into activators that can initiate the trans-cleavage activity of CRISPR/Cas12a to further amplify the signal. Such integration provides a universal strategy for sensitive detection of miRNAs. By tuning the complementary sequences modified on nanoprobes, this assay achieves subattomolar sensitivity for different miRNAs and was selective to single-based mismatches. With the proposed method, the expression of miR-21 in different cancer cells can be assessed, and breast cancer patients and healthy individuals can be differentiated by analyzing the target miRNAs extracted from serum samples, holding great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Qiao Zhao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210093 Nanjing, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 211816 Nanjing, China
| | - Bei Pan
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Wenxiu Long
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 211816 Nanjing, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210093 Nanjing, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210093 Nanjing, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210093 Nanjing, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 211816 Nanjing, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
13
|
Lai Q, Pei L, Fei T, Yin P, Pang S, Shreeve JM. Size-matched hydrogen bonded hydroxylammonium frameworks for regulation of energetic materials. Nat Commun 2022; 13:6937. [PMID: 36376317 PMCID: PMC9663426 DOI: 10.1038/s41467-022-34686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Size matching molecular design utilizing host-guest chemistry is a general, promising strategy for seeking new functional materials. With the growing trend of multidisciplinary investigations, taming the metastable high-energy guest moiety in well-matched frameworks is a new pathway leading to innovative energetic materials. Presented is a selective encapsulation in hydrogen-bonded hydroxylammonium frameworks (HHF) by screening different sized nitrogen-rich azoles. The size-match between a sensitive high-energy guest and an HHF not only gives rise to higher energetic performance by dense packing, but also reinforces the layer-by-layer structure which can stabilize the resulting materials towards external mechanic stimuli. Preliminary assessment based on calculated detonation properties and mechanical sensitivity indicates that HHF competed well with the energetic performance and molecular stability (detonation velocity = 9286 m s-1, impact sensitivity = 50 J). This work highlights the size-matched phenomenon of HHF and may serve as an alternative strategy for exploring next generation advanced energetic materials.
Collapse
Affiliation(s)
- Qi Lai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
- Department of Chemistry, University of Idaho, Moscow, ID, USA
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
| | - Le Pei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
- Department of Chemistry, University of Idaho, Moscow, ID, USA
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
| | - Teng Fei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Ping Yin
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
- Department of Chemistry, University of Idaho, Moscow, ID, USA.
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China.
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| | | |
Collapse
|
14
|
|
15
|
Cheng X, Guo L, Wang H, Gu J, Yang Y, Kirillova MV, Kirillov AM. Coordination Polymers from Biphenyl-Dicarboxylate Linkers: Synthesis, Structural Diversity, Interpenetration, and Catalytic Properties. Inorg Chem 2022; 61:12577-12590. [PMID: 35920738 PMCID: PMC9775469 DOI: 10.1021/acs.inorgchem.2c01488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 12/25/2022]
Abstract
The present work explores two biphenyl-dicarboxylate linkers, 3,3'-dihydroxy-(1,1'-biphenyl)-4,4'-dicarboxylic (H4L1) and 4,4'-dihydroxy-(1,1'-biphenyl)-3,3'-dicarboxylic (H4L2) acids, in hydrothermal generation of nine new compounds formulated as [Co2(μ2-H2L1)2(phen)2(H2O)4] (1), [Mn2(μ4-H2L1)2(phen)2]n·4nH2O (2), [Zn(μ2-H2L1)(2,2'-bipy)(H2O)]n (3), [Cd(μ2-H2L1) (2,2'-bipy)(H2O)]n (4), [Mn2(μ2-H2L1)(μ4-H2L1)(μ2-4,4'-bipy)2]n·4nH2O (5), [Zn(μ2-H2L1)(μ2-4,4'-bipy)]n (6), [Zn(μ2-H2L2)(phen)]n (7), [Cd(μ3-H2L2)(phen)]n (8), and [Cu(μ2-H2L2) (μ2-4,4'-bipy)(H2O)]n (9). These coordination polymers (CPs) were generated by reacting a metal(II) chloride, a H4L1 or H4L2 linker, and a crystallization mediator such as 2,2'-bipy (2,2'-bipyridine), 4,4'-bipy (4,4'-bipyridine), or phen (1,10-phenanthroline). The structural types of 1-9 range from molecular dimers (1) to one-dimensional (3, 4, 7) and two-dimensional (8, 9) CPs as well as three-dimensional metal-organic frameworks (2, 5, 6). Their structural, topological, and interpenetration features were underlined, including an identification of unique two- and fivefold 3D + 3D interpenetrated nets in 5 and 6. Phase purity, thermal and luminescence behavior, as well as catalytic activity of the synthesized products were investigated. Particularly, a Zn(II)-based CP 3 acts as an effective and recyclable heterogeneous catalyst for Henry reaction between a model substrate (4-nitrobenzaldehyde) and nitroethane to give β-nitro alcohol products. For this reaction, various parameters were optimized, followed by the investigation of the substrate scope. By reporting nine new compounds and their structural traits and functional properties, the present work further outspreads a family of CPs constructed from the biphenyl-dicarboxylate H4L1 and H4L2 linkers.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Lirong Guo
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Hongyu Wang
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Jinzhong Gu
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Ying Yang
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Marina V. Kirillova
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
16
|
Biophysical characterization and in vitro imaging of carbonized MOFs. Biochem Biophys Res Commun 2022; 608:116-121. [PMID: 35397423 DOI: 10.1016/j.bbrc.2022.03.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Nanoparticles have been widely used in biological imaging and treatments of various diseases, especially for studies of tumors, due to their high efficiency in drug delivery and many other functions. Metal-organic frameworks have been an important research area in recent years because of advantages such as large apertures, adjustable structural compositions, adjustable sizes, multifunctionality, high drug loading, good biocompatibility and so on, and they show promise as multifunctional drug carriers. In this study, a carbonized MOF with photothermal therapeutic potential and dual-mode imaging capability was prepared. The biophysical properties of MIL-100 and C-MIL nanoparticles were determined, such as particle size, zeta potential and saturation magnetization strength. CCK-8 cell assays and mouse HE sections confirmed that C-MIL nanoparticles have good in vitro and in vivo biocompatibility. The solution temperature of C-MIL nanoparticles reached 58.1 °C during sustained laser irradiation at 808 nm, which confirmed the photothermal potential of the nanoparticles. Moreover, in biological imaging, C-MIL nanoparticles showed the ability to support in vitro nuclear magnetic and photoacoustic dual-mode imaging. C-MIL nanoparticles provide new options for tumor therapy, drug delivery and biological imaging.
Collapse
|
17
|
Oe N, Hosono N, Uemura T. Revisiting molecular adsorption: unconventional uptake of polymer chains from solution into sub-nanoporous media. Chem Sci 2021; 12:12576-12586. [PMID: 34703543 PMCID: PMC8494126 DOI: 10.1039/d1sc03770f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Adsorption of polymers from the solution phase has been extensively studied to cope with many demands not only for separation technologies, but also for the development of coatings, adhesives, and biocompatible materials. Most studies hitherto focus on adsorption on flat surfaces and mesoporous adsorbents with open frameworks, plausibly because of the preconceived notion that it is unlikely for polymers to enter a pore with a diameter that is smaller than the gyration diameter of the polymer in solution; therefore, sub-nanoporous materials are rarely considered as a polymer adsorption medium. Here we report that polyethylene glycols (PEGs) are adsorbed into sub-nanometer one-dimensional (1D) pores of metal-organic frameworks (MOFs) from various solvents. Isothermal adsorption experiments reveal a unique solvent dependence, which is explained by the balance between polymer solvation propensity for each solvent and enthalpic contributions that compensate for potential entropic losses from uncoiling upon pore admission. In addition, adsorption kinetics identify a peculiar molecular weight (MW) dependence. While short PEGs are adsorbed faster than long ones in single-component adsorption experiments, the opposite trend was observed in double-component competitive experiments. A two-step insertion process consisting of (1) an enthalpy-driven recognition step followed by (2) diffusion regulated infiltration in the restricted 1D channels explains the intriguing selectivity of polymer uptake. Furthermore, liquid chromatography using the MOFs as the stationary phase resulted in significant PEG retention that depends on the MW and temperature. This study provides further insights into the mechanism and thermodynamics behind the present polymer adsorption system, rendering it as a promising method for polymer analysis and separation.
Collapse
Affiliation(s)
- Noriyoshi Oe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Nobuhiko Hosono
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
18
|
Hosono N, Uemura T. Metal-Organic Frameworks as Versatile Media for Polymer Adsorption and Separation. Acc Chem Res 2021; 54:3593-3603. [PMID: 34506124 DOI: 10.1021/acs.accounts.1c00377] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular recognition is of paramount importance for modern chemical processes and has now been achieved for small molecules using well-established host-guest chemistry and adsorption-science principles. In contrast, technologies for recognizing polymer structure are relatively undeveloped. Conventional polymer separation methods, which are mostly limited in practice to size-exclusion chromatography and reprecipitation, find it difficult to recognize minute structural differences in polymer structures as such small structural alterations barely influence the polymer characteristics, including molecular size, polarity, and solubility. Therefore, most of the polymeric products being used today contain mixtures of polymers with different structures as it is challenging to completely control polymer structures during synthesis even with state-of-the-art substitution and polymerization techniques. In this context, development of novel techniques that can resolve the challenges of polymer recognition and separation is in great demand, as these techniques hold the promise of a new paradigm in polymer synthesis, impacting not only materials chemistry but also analytical and biological chemistry.In biological systems, precise recognition and translation of base monomer sequences of mRNA are achieved by threading them through small ribosome tunnels. This principle of introducing polymers into nanosized channels can possibly help us design powerful polymer recognition and separation technologies using metal-organic frameworks (MOFs) as ideal and highly designable recognition media. MOFs are porous materials comprising organic ligands and metal ions and have been extensively studied as porous beds for gas separation and storage. Recently, we found that MOFs can accommodate large polymeric chains in their nanopores. Polymer chains can spontaneously infiltrate MOFs from neat molten and solution phases by threading their terminals into MOF nanochannels. Polymer structures can be recognized and differentiated due to such insertion processes, resulting in the selective adsorption of polymers on MOFs. This enables the precise recognition of the polymer terminus structure, resulting in the perfect separation of a variety of terminal-functionalized polymers that are otherwise difficult to separate by conventional polymer separation methods. Furthermore, the MOFs can recognize polymer shapes, thus enabling the large-scale separation of high purity cyclic polymers from the complex crude mixtures of linear polymers, which are used as precursor materials in common cyclization reactions. In solution-phase adsorption, many factors, including molecular weight, terminal groups, polymer shape, polymer-MOF interaction, and coexisting solvent molecules, influence the selective adsorption behavior; this yields a new liquid chromatography-based polymer separation technology using an MOF as the stationary phase. MOF-packed columns, in which a novel separation mode based on polymer insertion into the MOF operates under a dynamic insertion/rejection equilibrium at the liquid/solid interface, exhibited excellent polymer separation capability. The polymer recognition principle described in this study thus has a high probability for realizing previously unfeasible polymer separations based on monomer composition and sequences, stereoregularity, regioregularity, helicity, and block sequences in synthetic polymers and biomacromolecules.
Collapse
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
19
|
Hosono N, Uemura T. Development of Functional Materials via Polymer Encapsulation into Metal–Organic Frameworks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
20
|
Pal S, Paul S. Theoretical investigation of conformational deviation of the human parallel telomeric G-quadruplex DNA in the presence of different salt concentrations and temperatures under confinement. Phys Chem Chem Phys 2021; 23:14372-14382. [PMID: 34179908 DOI: 10.1039/d0cp06702d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Various experimental reports address the stability of G-quadruplex DNA inside a close confinement such as α-hemolysin, nanocavity water pool and different metal-organic-frameworks (MOFs). To understand the conformational change of G-quadruplex DNA at the atomistic level, we have carried out a total of 40 μs simulation run under both non-polar and polar confinement conditions. To investigate the dynamics, we have considered two different KCl salt concentrations, i.e., 0.47 M (minimal salt concentration) and higher than 2 M (higher salt concentration), at two distinct temperatures, 300 K and 350 K. Here, we have observed that the human telomeric G-quadruplex DNA deviates more from its crystal structure at minimal salt concentration under both non-polar and polar confinement conditions. Besides, the loop regions deviate and fluctuate more compared to the other regions, i.e., sugar-phosphate backbone and tetrad regions. The presence of K+ ions is found to be primarily responsible for this phenomenon. From the spatial density function (SDF) plots, a higher density of K+ ions is observed in the backbone region. Furthermore, from the residue-wise first solvation shell estimation, we have noticed that the K+ ions mainly accumulate in the tetrad region under both non-polar and polar confinement conditions due to which the tetrad regions are more rigid than the loop regions. Higher salt concentration results in increased rigidity of the G-quadruplex DNA. Our study provides valuable insight into the conformational deviation of the G-quadruplex DNA under nanoconfinement conditions.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam-781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam-781039, India.
| |
Collapse
|
21
|
Zheng Y, Zhang X, Su Z. Design of metal-organic framework composites in anti-cancer therapies. NANOSCALE 2021; 13:12102-12118. [PMID: 34236380 DOI: 10.1039/d1nr02581c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks are a class of new and promising anti-cancer materials. MOFs with adjustable pore size, large specific surface area, diverse structure, and excellent chemical and physical properties make them a class of effective protection carriers for anti-cancer substances. This review is centered on the core point of "anti-cancer" and discusses MOFs' research progress in anti-cancer therapies. Firstly, we provided readers with the different types of MOFs, their preparation strategies and the resulting structures. Then, different MOF composites and their biological applications were systematically presented. The specificity of biomolecules endows MOFs with broader anti-cancer applications, while MOFs can protect the drugs and biomolecules to make the best of a challenging situation. Finally, we elucidated a comprehensive overview of the biological applications of MOFs, including research hotspots as drug delivery and biomolecule carriers. Besides, we looked forward to the future developments of MOFs in the field of anti-cancer therapies. As a class of novel materials, the anti-cancer applications of MOFs are extended through the combination of different materials and different methods to improve their efficacy.
Collapse
Affiliation(s)
- Yadan Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | | | | |
Collapse
|
22
|
Marsh C, Shearer GC, Knight BT, Paul-Taylor J, Burrows AD. Supramolecular aspects of biomolecule interactions in metal–organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Nalaparaju A, Jiang J. Metal-Organic Frameworks for Liquid Phase Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003143. [PMID: 33717851 PMCID: PMC7927635 DOI: 10.1002/advs.202003143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Indexed: 05/10/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs) have attracted overwhelming attention. With readily tunable structures and functionalities, MOFs offer an unprecedentedly vast degree of design flexibility from enormous number of inorganic and organic building blocks or via postsynthetic modification to produce functional nanoporous materials. A large extent of experimental and computational studies of MOFs have been focused on gas phase applications, particularly the storage of low-carbon footprint energy carriers and the separation of CO2-containing gas mixtures. With progressive success in the synthesis of water- and solvent-resistant MOFs over the past several years, the increasingly active exploration of MOFs has been witnessed for widespread liquid phase applications such as liquid fuel purification, aromatics separation, water treatment, solvent recovery, chemical sensing, chiral separation, drug delivery, biomolecule encapsulation and separation. At this juncture, the recent experimental and computational studies are summarized herein for these multifaceted liquid phase applications to demonstrate the rapid advance in this burgeoning field. The challenges and opportunities moving from laboratory scale towards practical applications are discussed.
Collapse
Affiliation(s)
- Anjaiah Nalaparaju
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| |
Collapse
|
24
|
Shi X, Zu Y, Jiang S, Sun F. An Anionic Indium–Organic Framework with Spirobifluorene-Based Ligand for Selective Adsorption of Organic Dyes. Inorg Chem 2021; 60:1571-1578. [DOI: 10.1021/acs.inorgchem.0c02962] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xinli Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Yucong Zu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Shuangshuang Jiang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
25
|
Yu K, Wei T, Li Z, Li J, Wang Z, Dai Z. Construction of Molecular Sensing and Logic Systems Based on Site-Occupying Effect-Modulated MOF-DNA Interaction. J Am Chem Soc 2020; 142:21267-21271. [PMID: 33306369 DOI: 10.1021/jacs.0c10442] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interactions between metal-organic frameworks (MOFs) and nucleic acids are of great importance in molecular assembly. However, current MOF-nucleic acid interactions lack diversity and are normally realized in an uncontrollable manner. Herein, the interaction of zirconium-based MOFs (Zr-MOFs) with nucleic acids is enabled by the formation of Zr-O-P bonds and further manipulated by a phosphate-induced site-occupying effect. Covering Zr ions in clusters of MOFs with phosphates impedes the formation of Zr-O-P bonds with nucleic acids, rendering the MOF-nucleic acid interaction tunable and stimulus-responsive. Notably, the experimental results demonstrate that various phosphates, Zr-MOFs, and nucleic acids can all be adopted in the tunable interaction. On the basis of these findings, fluorescent DNA and typical Zr-MOFs are proposed as functional probe-quencher pairs to establish molecular sensing and logic systems. Accordingly, alkaline phosphatase and inorganic pyrophosphatase can be quantified simultaneously, and the overall relation of different phosphates and phosphatases is facilely displayed. The work provides a general strategy for modulating MOF-nucleic acid interactions, which is conducive to the development of molecular intelligent systems.
Collapse
Affiliation(s)
- Kaihua Yu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zijun Li
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junyao Li
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
26
|
Jiang M, Weng YG, Zhou ZY, Ge CY, Zhu QY, Dai J. Cobalt Metal-Organic Frameworks Incorporating Redox-Active Tetrathiafulvalene Ligand: Structures and Effect of LLCT within the MOF on Photoelectrochemical Properties. Inorg Chem 2020; 59:10727-10735. [PMID: 32686407 DOI: 10.1021/acs.inorgchem.0c01185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the effect of charge transfer on the physical properties of metal-organic frameworks (MOFs) is essential for designing multifunctional MOF materials. In this work, three redox-active tetrathiafulvalene (TTF)-based MOFs, formulated as [Co6L6(bpe)6(EtOH)2(MeOH)2(H2O)]n·5nH2O (1), [Co5(μ3-OH)2L4(bpe)2]n (2), and [CoL(bpa)(H2O)]n·2nH2O (3) (L = dimethylthio-tetrathiafulvalene-bicarboxylate, bpe = 1,2-bis(4-pyridyl)ethene, bpa = 1,2-bis(4-pyridyl)ethane), are crystallographically characterized. Complexes 1 and 3 are two-dimensional (2D) coordination polymers, and 2 features an unusual three-dimensional (3D) MOF. The structure of 2 contains a cluster chain constructed from μ2-O bridged pentanuclear cluster subunits, which is first found for 3D MOFs. Complexes 1 and 2 are comprised of the same ligands L and bpe but with different multidimensional configuration, and complexes 1 and 3 have the same 2D layered structures with the same ligand L but with different conjugation ligand bpe/bpa, which provide a good comparison for the structure-property relationship. The charge-transfer (CT) interactions within MOF 1 are stronger than those of 2 due to the closer packing of electron donor (D) L and electron acceptor (A) bpe in 1, and no CT occurs within MOF 3 because of the unconjugated bpa. The order of photocurrent density is 1 > 2 ≫ 3, which is in accordance with that of CT interactions. Further analysis reveals that the CT interactions within the MOF are not beneficial for the supercapacitance which is verified by the highest supercapacitance performance of 3. This work is the first study of the structures and CT effects on the supercapacitance performance.
Collapse
Affiliation(s)
- Miao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yi-Gang Weng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zi-Yao Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chen-Yi Ge
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
27
|
Kitao T, Uemura T. Polymers in Metal–Organic Frameworks: From Nanostructured Chain Assemblies to New Functional Materials. CHEM LETT 2020. [DOI: 10.1246/cl.200106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|