1
|
Wang RH, Li B, Gou MB, Luo ZQ, Liu B, Li Y, Kong X, He Q, He S, Li JF, Huang J, Wang J, Zhang J, Tang L. Redox-Neutral Coupling of Allyl Alcohols with Trifluoromethyl Ketones via Synergistic Ni-Ti Bimetallic Catalysis. Org Lett 2024; 26:7408-7413. [PMID: 39186015 DOI: 10.1021/acs.orglett.4c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A redox-neutral coupling of allyl alcohols with trifluoromethyl ketones has been developed via Ni-Ti bimetallic catalysis. This innovative method allows for the efficient synthesis of various β-tertiary trifluoromethyl alcohol-substituted ketones with yields of up to 98%. The reaction is scalable and compatible with a wide range of substrates, including complex bioactive molecules. Mechanistic studies suggest that the rate-determining step involving β-H elimination and the presence of the Ti-based Lewis acid, as well as a hydroxyl group on the substrates, is crucial for driving the reactivity of this transformation.
Collapse
Affiliation(s)
- Rong-Hua Wang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medcial University, 550014 Guiyang, P. R. China
| | - Bo Li
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Ming-Bai Gou
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Zhen-Qi Luo
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Bin Liu
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Yong Li
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Xiangkai Kong
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Qing He
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Siyu He
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Jiang-Fei Li
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, 241002 Wuhu, P. R. China
| | - Jiayu Huang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Jianta Wang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Jiquan Zhang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medcial University, 550014 Guiyang, P. R. China
| |
Collapse
|
2
|
Beng TK, Kaur J, Anosike IS, Rentfro B, Newgard S. Revisiting the 1,3-azadiene-succinic anhydride annulation reaction for the stereocontrolled synthesis of allylic 2-oxopyrrolidines bearing up to four contiguous stereocenters. RSC Adv 2024; 14:16678-16684. [PMID: 38784414 PMCID: PMC11110166 DOI: 10.1039/d4ra03156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Polysubstituted 2-oxopyrrolidines bearing at least two contiguous stereocenters constitute the core of several pharmaceuticals, including clausenamide (antidementia). Here, we describe a flexible annulation strategy, which unites succinic anhydride and 1,3-azadienes to produce allylic 2-oxopyrrolidines bearing contiguous stereocenters. The approach is chemoselective, efficient, modular, scalable, and diastereoselective. The scalable nature of the reactions offers the opportunity for post-diversification, leading to incorporation of motifs with either known pharmaceutical value or that permit subsequent conversion to medicinally relevant entities.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jasleen Kaur
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Ifeyinwa S Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Benjamin Rentfro
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Shae Newgard
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
3
|
Ghosh S, Rooj A, Chakrabortty R, Ganesh V. Ni-Catalyzed Diastereoconvergent Intramolecular Alkene-Aldehyde Reductive Coupling: A Route to syn-Chromanols. Org Lett 2024; 26:4024-4029. [PMID: 38669085 DOI: 10.1021/acs.orglett.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
We demonstrate for the first time a nickel-catalyzed diastereoconvergent reductive coupling of a heteroatom-attached allyl moiety with aldehydes, viz., O-allyl, O-cinnamyl salicylaldehydes, and others, to afford syn-chromanols exclusively. The reaction proceeds through a [2 + 2 + 1] oxidative cycloaddition involving the active catalyst. This method is applicable to both terminal and internal olefin substrates. The formal syntheses of CP-199.330, CP-199.331, and CP-85.958 have been demonstrated. Control experiments, mass spectrometric analysis, and DFT studies supported the plausible mechanism and the origin of exclusive syn-selectivity.
Collapse
Affiliation(s)
- Sudipta Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Arnab Rooj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rajesh Chakrabortty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Venkataraman Ganesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
4
|
Zhang T, Jiang S, Qian MY, Zhou QL, Xiao LJ. Ligand-Controlled Regiodivergent Nickel-Catalyzed Hydroaminoalkylation of Unactivated Alkenes. J Am Chem Soc 2024; 146:3458-3470. [PMID: 38270100 DOI: 10.1021/jacs.3c13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Ligand modulation of transition-metal catalysts to achieve optimal reactivity and selectivity in alkene hydrofunctionalization is a fundamental challenge in synthetic organic chemistry. Hydroaminoalkylation, an atom-economical approach for alkylating amines using alkenes, is particularly significant for amine synthesis in the pharmaceutical, agrochemical, and fine chemical industries. However, the existing methods usually require specific substrate combinations to achieve precise regio- and stereoselectivity, which limits their practical utility. Protocols allowing for regiodivergent hydroaminoalkylation from the same starting materials, controlling both regiochemical and stereochemical outcomes, are currently absent. Herein, we report a ligand-controlled, regiodivergent nickel-catalyzed hydroaminoalkylation of unactivated alkenes with N-sulfonyl amines. The reaction initiates with amine dehydrogenation and involves aza-nickelacycle intermediates. Tritert-butylphosphine promotes branched regioselectivity and syn diastereoselectivity, whereas ethyldiphenylphosphine enables linear selectivity, yielding regioisomers with inverse orientation. Systematic evaluation of diverse monodentate phosphine ligands reveals distinct regioselectivity cliffs, and % Vbur (min), a ligand steric descriptor, was established as a predictive parameter correlating ligand structure to regioselectivity. Computational investigations supported experimental findings, offering mechanistic insights into the origins of regioselectivity. Our method provides an efficient and predictable route for amine synthesis, demonstrating broad substrate scope, excellent tolerance toward various functional groups, and practical advantages. These include the use of readily available starting materials and cost-effective nickel(II) salts as precatalysts.
Collapse
Affiliation(s)
- Tianze Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Shan Jiang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Meng-Ying Qian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Ohashi M, Ando K, Murakami S, Michigami K, Ogoshi S. N-Heterocyclic Carbenes with Polyfluorinated Groups at the 4- and 5-Positions from [3 + 2] Cycloadditions between Formamidinates and cis-1,2-Difluoroalkene Derivatives. J Am Chem Soc 2023; 145:23098-23108. [PMID: 37749910 DOI: 10.1021/jacs.3c06331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
We herein report the formation of fluorinated N-heterocyclic carbenes (NHCFs) that bear fluorine atoms at the 4- and 5-positions of the imidazol-2-ylidene ring. Treatment of sodium N,N'-bis(aryl)formamidinates with tetrafluoroethylene followed by the addition of LiBF4 induced a [3 + 2] cycloaddition to afford 4,5-difluorinated imidazolium salts, which served as the precursors for 4,5-difluorinated NHCs. A key feature of this procedure is its applicability to other perfluorinated compounds, which enabled us to incorporate polyfluorinated functional groups at 4- and 5-positions on the imidazol-2-ylidene skeleton. Thus, employing octafluorocyclopentene and hexafluorobenzene led to the formation of 4,4,5,5,6,6-hexafluoro-1,3-diaryl-3,4,5,6-tetrahydrocyclopenta[d]imidazolium (CypIPrF·HBF4) and 4,5,6,7-tetrafluoro-1,3-diarylbenzimidazolium (BIPrF·HBF4) salts, respectively. A thorough NMR analysis of these NHCFs, their selenium adducts, and their tricarbonyl nickel complexes, (NHCF)Ni(CO)3, demonstrated that the fluorine substituents, contrary to expectations, tend to act as electron donors owing to the considerable positive mesomeric effect, while the perfluorocyclopentene-fused and tetrafluorobenzo-fused rings are pure electron acceptors due to their strong negative inductive effect. The unique and increased π-accepting character of the perfluorocyclopentene-fused and tetrafluorobenzo-fused NHCFs in both stoichiometric and catalytic reactions is further demonstrated by employing (NHCF)Ni(CO)3 and (NHCF)AuCl species, respectively. Moreover, an analysis of the % buried volume (%Vbur) values clearly suggests that the modification of the NHC backbone with polyfluorinated groups can drastically alter the electronic properties of the NHC ligand without substantially changing its steric properties. Our experimental results were further corroborated by a series of computational calculations.
Collapse
Affiliation(s)
- Masato Ohashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531 Osaka, Japan
| | - Kota Ando
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871 Osaka, Japan
| | - Shoichi Murakami
- Department of Chemistry, Faculty of Science, Osaka Prefecture University, Sakai 599-8531 Osaka, Japan
| | - Kenichi Michigami
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531 Osaka, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871 Osaka, Japan
| |
Collapse
|
6
|
Do M, Anosike SI, Beng TK. Diastereospecific arylation and cascade deconstructive amidation/thioesterification of readily available lactam-fused bromolactones. RSC Adv 2023; 13:25691-25698. [PMID: 37649665 PMCID: PMC10463012 DOI: 10.1039/d3ra04690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
An intrinsic goal when designing synthetic methodology is to identify approaches whereby readily accessible precursors are converted into an array of products, which efficiently tap into new 3D-chemical space. In these studies, readily available bicyclic lactam-bromolactones have been interrogated in several fragment growth protocols by utilizing the halogen and lactone motifs as versatile linchpins for strategic construction of C-C, C-N, C-O, and C-S bonds. Diastereospecific C(sp3)-C(sp2) Kumada coupling of sterically imposing [5,5]-bicyclic lactam-bromolactones with several aryl Grignard reagents, under palladium catalysis, furnishes diarylmethane-tethered lactam-lactones in synthetically attractive yields, stereoinvertive fashion, and with a tolerance for many functional groups. When [5,6]-bicyclic lactam-bromolactones, which are prone to β-hydride elimination are employed, efficient arylation is observed only under Co(acac)3-catalyzed conditions. Importantly, these [5,6]-bicyclic lactam-bromolactones undergo retentive arylation, independent of the transition metal catalyst. A base-mediated cascade deconstructive amidation of the [5,6]-bicyclic lactam-bromolactones with primary aliphatic amines proceeds efficiently to afford epoxide-tethered lactam carboxamides, which bear four contiguous stereocenters. Furthermore, an unusual route to homoallylic thioesters has been uncovered through deconstructive contra-thermodynamic thioesterification of the lactam-fused bromolactone precursors.
Collapse
Affiliation(s)
- Minh Do
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Stella I Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
7
|
Tang L, Luo Y, Sheng C, Xie F, Zhang W. Cu-Catalyzed Asymmetric Kinetic Boron Conjugate Addition of γ-Substituted α,β-Unsaturated γ-Lactams. Angew Chem Int Ed Engl 2023; 62:e202304640. [PMID: 37070236 DOI: 10.1002/anie.202304640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
Chiral α,β-unsaturated γ-lactams bearing simple γ- substituents are found in biologically active molecules and natural products, however, their synthesis still remains difficult. Herein, we report an efficient kinetic resolution (KR) of γ-substituted α,β-unsaturated γ-lactams via a Cu-catalyzed asymmetric boron conjugate addition, which also leads to the efficient synthesis of chiral β-hydroxy-γ-lactams with β,γ-stereogenic carbon centers. The KR proceeded smoothly with a wide range of γ-alkyl or aryl substituted substrates including those bearing aromatic heterocycles and different N-protected substrates in up to 347 of s value. Their highly versatile transformations, synthetic utility in biologically active molecules, and inhibitory activities against cisplatin-sensitive ovarian cancer cell A2780 have also been demonstrated. Differing from the well-known mechanism involving Cu-B species in Cu-catalyzed boron conjugate additions, our mechanistic studies using density functional theory (DFT) calculations and experiments indicate that a Lewis acid CuI -catalyzed mechanism is the likely pathway in the catalytic reaction.
Collapse
Affiliation(s)
- Liang Tang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Cheng Sheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fang Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
8
|
Deng YH, Zhang CB, Sun JJ, Xu WL, Fu JY. A regioselective [3 + 2] cycloaddition reaction of 2-benzylidene-1-indenones with functional olefins to access indanone-fused 2D/3D skeletons. Org Biomol Chem 2023; 21:4388-4392. [PMID: 37161754 DOI: 10.1039/d3ob00559c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The regioselective [3 + 2] cycloaddition reaction of 2-benzylidene-1-indenones with functional olefins was established with DABCO as a base under mild conditions. Using this approach, a series of diversely substituted indanone-fused cyclopentane polycycles with highly crowded multiple substituents were synthesized in high yields.
Collapse
Affiliation(s)
- Yi-Hang Deng
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Chuan-Bao Zhang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
- School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450052, China
| | - Jun-Jie Sun
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Wen-Li Xu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Ji-Ya Fu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
9
|
Huang HG, Zheng YQ, Zhong D, Deng JL, Liu WB. Reductive Aza-Pauson-Khand Reaction of Nitriles. J Am Chem Soc 2023; 145:10463-10469. [PMID: 37129915 DOI: 10.1021/jacs.3c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
γ-Lactams are valuable heterocycles in synthetic chemistry and drug development. Here, we report a reductive aza-Pauson-Khand reaction (aza-PKR) of an alkyne, a nitrile, and Co2(CO)8. A wide array of bicyclic α,β-unsaturated γ-lactams containing two adjacent stereocenters, including an all-carbon quaternary center, from alkyne-tethered malononitriles are efficiently accessed in high diastereoselectivity. Preliminary mechanistic investigations by experiments and DFT calculations reveal that the reaction undergoes an aza-PKR process followed by a in situ reduction. The reducing reagent generated in situ from water also provides a practical tool for deuterium incorporation into the γ-position of lactams using D2O as the deuterium source. This study represents a new mode for [2 + 2 + 1] cycloaddition that enables the direct use of nitrile in aza-heterocycle synthesis.
Collapse
Affiliation(s)
- Hong-Gui Huang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qing Zheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Dayou Zhong
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jiang-Lian Deng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Wang T, You Y, Wang ZH, Zhao JQ, Zhang YP, Yin JQ, Zhou MQ, Cui BD, Yuan WC. Copper-Catalyzed Diastereo- and Enantioselective Decarboxylative [3 + 2] Cyclization of Alkyne-Substituted Cyclic Carbamates with Azlactones: Access to γ-Butyrolactams Bearing Two Vicinal Tetrasubstituted Carbon Stereocenters. Org Lett 2023. [PMID: 36800376 DOI: 10.1021/acs.orglett.3c00075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A copper-catalyzed diastereo- and enantioselective decarboxylative [3 + 2] cyclization reaction of alkyne-substituted cyclic carbamates with azlactones has been established. A range of optically pure γ-butyrolactams bearing two vicinal tetrasubstituted carbon stereocenters were obtained in high yields with good to excellent stereoselectivities (up to 99% yield, 99:1 dr, and 99% ee). This is the first example of asymmetric synthesis γ-butyrolactams containing sterically congested vicinal tetrasubstituted stereocenters via a decarboxylative cyclization pathway.
Collapse
Affiliation(s)
- Ting Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jun-Qing Yin
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Bao-Dong Cui
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Quinodoz P, Lumbroso A, Lachia M, Screpanti C, Rendine S, Horoz B, Bozoflu M, Catak S, Fonné‐Pfister R, Hermann K, De Mesmaeker A. Stereoselective Synthesis and Biological Profile of All Stereoisomers of Lactam Analogues of Strigolactones GR24 and GR18. Helv Chim Acta 2023. [DOI: 10.1002/hlca.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pierre Quinodoz
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Alexandre Lumbroso
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Mathilde Lachia
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Claudio Screpanti
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Stefano Rendine
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Beyza Horoz
- Bogazici University, Department of Chemistry, Bebek 34342 Istanbul Turkey
| | - Mert Bozoflu
- Bogazici University, Department of Chemistry, Bebek 34342 Istanbul Turkey
| | - Saron Catak
- Bogazici University, Department of Chemistry, Bebek 34342 Istanbul Turkey
| | - Raymonde Fonné‐Pfister
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Katrin Hermann
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Alain De Mesmaeker
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| |
Collapse
|
12
|
Tian Q, Yin X, Sun R, Wu X, Li Y. The lower the better: Efficient carbonylative reactions under atmospheric pressure of carbon monoxide. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Yu R, Cai S, Li C, Fang X. Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022; 61:e202200733. [DOI: 10.1002/anie.202200733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Song‐Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
14
|
Ishida Y, Nishikata T. Radical/Iminium Domino Strategy (RIDS) for Rapid Construction of Sterically Congested γ‐Lactam‐Based Multiheterocycles. Chemistry 2022; 28:e202201047. [DOI: 10.1002/chem.202201047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuto Ishida
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| |
Collapse
|
15
|
Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Wu X, Luan B, Zhao W, He F, Wu XY, Qu J, Chen Y. Catalytic Desymmetric Dicarbofunctionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202111598. [PMID: 35286744 DOI: 10.1002/anie.202111598] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The construction of multi-stereocenters by a transition metal-catalyzed cross-coupling reaction is a major challenge. The catalytic desymmetric functionalization of unactivated alkenes remains largely unexplored. Herein, we disclose -a desymmetric dicarbofunctionalization of 1,6-dienes via a nickel-catalyzed reductive cross-coupling reaction. The leverage of the underdeveloped chiral 8-Quinox enables the Ni-catalyzed desymmetric carbamoylalkylation of both unactivated mono- and disubstituted alkenes to form pyrrolidinone bearing two nonadjacent stereogenic centers in high enantio- and stereoselectivitives with broad functional-group tolerance. The synthetic application of pyrrolidinones allows the rapid access to complex chiral fused-heterocycles.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
17
|
Feng W, Liu X, Xiao L, Zhou Q. Synthesis of Tricyclic [1,2‐
a
]Indoles via Nickel‐Catalyzed Intramolecular Imine‐Alkene Coupling. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Min Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Xian‐Ming Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Li‐Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 People's Republic of China
| |
Collapse
|
18
|
Wu X, Luan B, Zhao W, He F, Wu X, Qu J, Chen Y. Catalytic Desymmetric Dicarbofunctionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Wenyu Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xin‐Yan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
19
|
Wu FP, Wu XF. Catalyst-controlled selective borocarbonylation of benzylidenecyclopropanes: regiodivergent synthesis of γ-vinylboryl ketones and β-cyclopropylboryl ketones. Chem Sci 2022; 13:4321-4326. [PMID: 35509466 PMCID: PMC9006926 DOI: 10.1039/d2sc00840h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Regioselective catalytic multi-functionalization reactions enable the rapid synthesis of complexed products from the same precursors. In this communication, we present a method for the regiodivergent borocarbonylation of benzylidenecyclopropanes with aryl iodides. Various γ-vinylboryl ketones and β-cyclopropylboryl ketones were produced in moderate to good yields with excellent regioselectivity from the same substrates. The choice of the catalyst is key for the regioselectivity control: γ-vinylboryl ketones were produced selectively with IPrCuCl and Pd(dppp)Cl2 as the catalytic system, while the corresponding β-cyclopropylboryl ketones were obtained in high regioselectivity with Cu(dppp)Cl, [Pd(η3-cinnamyl)Cl]2 and xantphos as the catalytic system. Moreover, γ-vinylboryl ketones and β-cyclopropylboryl ketones were successfully transformed into several other value-added products. A novel procedure for regiodivergent borocarbonylation of benzylidenecyclopropanes has been developed. A variety of valuable γ-vinylboryl ketones and β-cyclopropylboryl ketones can be obtained selectively in excellent yields.![]()
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
20
|
Zhang JL, Ma R, Zhao HH, Xu PF. Enantioselective construction of spiro-tetrahydroquinoline scaffolds through asymmetric catalytic cascade reactions. Chem Commun (Camb) 2022; 58:3493-3496. [PMID: 35191451 DOI: 10.1039/d2cc00502f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient and concise strategy has been successfully developed for merging spiro-tetrahydroquinoline with spiro-benzofuranone into a single new skeleton through asymmetric catalytic cascade reactions catalyzed by quinine-derived chiral bifunctional squaramide organocatalysts. In this approach, differently substituted spiro-tetrahydroquinoline derivatives were smoothly obtained with high yields, and excellent diastereoselectivities and enantioselectivities (up to 99% yield, up to >20 : 1 dr, up to >99% ee, 40 examples) under mild reaction conditions.
Collapse
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Rui Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Huan-Huan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
21
|
Li B, Xu H, Dang Y, Houk KN. Dispersion and Steric Effects on Enantio-/Diastereoselectivities in Synergistic Dual Transition-Metal Catalysis. J Am Chem Soc 2022; 144:1971-1985. [DOI: 10.1021/jacs.1c12664] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Nakashima Y, Ishimaru S, Nishikata T. Trans-selective cyclizations of alpha-bromocarboxamides and E/ Z-mixed internal olefins catalyzed by a Fe salt. Chem Commun (Camb) 2022; 58:11977-11980. [DOI: 10.1039/d2cc04796a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe a protocol for trans-selective cyclizations of α-bromocarboxamides and E/Z-mixed internal olefins catalyzed by a Fe salt.
Collapse
Affiliation(s)
- Yusei Nakashima
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Shinya Ishimaru
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
23
|
Li M, Cui Y, Xu Z, Chen X, Feng J, Wang M, Yao P, Wu Q, Zhu D. Asymmetric Synthesis of
N
‐Substituted γ‐Amino Esters and γ‐Lactams Containing α,γ‐Stereogenic Centers via a Stereoselective Enzymatic Cascade. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ming Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Yunfeng Cui
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Zefei Xu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Xi Chen
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Park Tianjin 300308 People's Republic of China
| |
Collapse
|
24
|
Jiang LL, Hu SJ, Xu Q, Zheng H, Wei WT. Radical Cyclization of 1,n-Enynes and 1,n-Dienes for the Synthesis of 2-Pyrrolidone. Chem Asian J 2021; 16:3068-3081. [PMID: 34423568 DOI: 10.1002/asia.202100829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/14/2021] [Indexed: 12/17/2022]
Abstract
2-Pyrrolidones have aroused enormous interest as a useful structural moiety in drug discovery; however, not only does their syntheses suffer from low selectivity and yield, but also it requires high catalyst loadings. The radical cyclization of 1,n-enynes and 1,n-dienes has demonstrated to be an attractive method for the synthesis of 2-pyrrolidones due to its mild reaction conditions, fewer steps, higher atom economy, excellent functional group compatibility, and high regioselectivity. Furthermore, radical receptors with unsaturated bonds (i. e. 1,n-enynes and 1,n-dienes) play a crucial role in realizing radical cyclization because of the ability to selectively introduce one or more radical sources. In this review, we discuss representative examples of methods involving the radical cyclization of 1,n-enynes and 1,n-dienes published in the last five years and discuss each prominent reaction design and mechanism, providing favorable tools for the synthesis of valuable 2-pyrrolidone for a variety of applications.
Collapse
Affiliation(s)
- Li-Lin Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Sen-Jie Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
25
|
Ni-catalyzed hydroalkylation of olefins with N-sulfonyl amines. Nat Commun 2021; 12:5881. [PMID: 34620857 PMCID: PMC8497516 DOI: 10.1038/s41467-021-26194-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022] Open
Abstract
Hydroalkylation, the direct addition of a C(sp3)–H bond across an olefin, is a desirable strategy to produce valuable, complex structural motifs in functional materials, pharmaceuticals, and natural products. Herein, we report a reliable method for accessing α-branched amines via nickel-catalyzed hydroalkylation reactions. Specifically, by using bis(cyclooctadiene)nickel (Ni(cod)2) together with a phosphine ligand, we achieved a formal C(sp3)–H bond insertion reaction between olefins and N-sulfonyl amines without the need for an external hydride source. The amine not only provides the alkyl motif but also delivers hydride to the olefin by means of a nickel-engaged β–hydride elimination/reductive elimination process. This method provides a platform for constructing chiral α-branched amines by using a P-chiral ligand, demonstrating its potential utility in organic synthesis. Notably, a sulfonamidyl boronate complex formed in situ under basic conditions promotes ring-opening of the azanickellacycle reaction intermediate, leading to a significant improvement of the catalytic efficiency. Catalytic addition of a carbon chain and a hydrogen across a double bond has often required an added hydride source. Here the authors show a method to add alkanes with an amino functionality to olefins, wherein a nickel catalyst uses the amine itself as the hydride source, obviating an external hydride reagent.
Collapse
|
26
|
Ge Y, Chen X, Dong Y, Wang HN, Li Y, Chen G. Access to benzene-modified 2 nd generation strigolactams and GR24 by merging C-H olefination with decarboxylative Giese cyclization. Org Biomol Chem 2021; 19:7141-7146. [PMID: 34364308 DOI: 10.1039/d1ob01234g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we reported an efficient and general synthetic route to assemble benzene-modified 2nd generation strigolactams and GR24. The key features of this synthesis include a palladium-catalyzed ortho-selective olefination of the commercially available substituted N-Boc phenylalanine and a decarboxylative Giese radical cyclization. The bioactivities of these compounds to stimulate the seed germination of Orobanche aegyptiaca parasitic weed were also analysed. 2nd generation strigolactam 15f derived from para-OMe phenylalanine showed superior bioactivity to the original unsubstituted 15b.
Collapse
Affiliation(s)
- Yuhua Ge
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
27
|
Ogoshi S, Ashida K, Hoshimoto Y. Ni(0)-Catalyzed Synthesis of Polycyclic α,β-Unsaturated γ-Lactams via Intramolecular Carbonylative Cycloaddition of Yne-imines with CO. Synlett 2021. [DOI: 10.1055/s-0040-1707308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractA Ni(0)-catalyzed intramolecular carbonylative cycloaddition between 1,5-yne-imines and carbon monoxide (CO) is disclosed. When Ni(CO)3PCy3 was employed as a pre-catalyst, a variety of polycyclic α,β-unsaturated γ-lactams were prepared in up to 78% yield with 100% atom efficiency. Aza-nickelacycles, generated by the oxidative cyclization of yne-imines on the Ni(0) center, were experimentally confirmed as key intermediates. Moreover, diastereoselective transformations of the obtained products to afford highly substituted polycyclic γ-lactams with three contiguous carbon stereocenters are reported.
Collapse
|
28
|
Huang JH, Si Y, Dong XY, Wang ZY, Liu LY, Zang SQ, Mak TCW. Symmetry Breaking of Atomically Precise Fullerene-like Metal Nanoclusters. J Am Chem Soc 2021; 143:12439-12444. [PMID: 34355894 DOI: 10.1021/jacs.1c05568] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we report a neutral fullerene-like core-shell homosilver Ag13@Ag20 nanocluster that is fully protected by an achiral bidentate thiolate ligand (9,12-dimercapto-1,2-closo-carborane, C2B10H10S2H2), which crystallizes in centrosymmetric space group R3̅. Continuous Cu doping in the dodecahedral shell first induced symmetry breaking to generate chiral Ag13@Ag20-nCun (6 ≥ n ≥ 2) containing two acetonitrile ligands in space group P212121, and then produced symmetric all-thiolated Ag13@Ag20-nCun (20 ≥ n ≥ 13) in the higher space group Im3̅. The selectively copper-doped Ag13@Ag20-nCun (6 ≥ n ≥ 2) cluster has its structure reorganized to a lower symmetry that shows chiroptical activity. Moreover, structural distortion of Ag13@Ag20-nCun (6 ≥ n ≥ 2) further expanded in chiral R-/S-propylene oxide, which induced a more prominent core-based CD response. This work revealed a novel mechanism of chirality generation at the atomic level through asymmetric shell-doping of metal nanoclusters, which provides new insight into the origin of chirality in inorganic nanostructures.
Collapse
Affiliation(s)
- Jia-Hong Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yubing Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
29
|
Yang HY, Yao YH, Chen M, Ren ZH, Guan ZH. Palladium-Catalyzed Markovnikov Hydroaminocarbonylation of 1,1-Disubstituted and 1,1,2-Trisubstituted Alkenes for Formation of Amides with Quaternary Carbon. J Am Chem Soc 2021; 143:7298-7305. [PMID: 33970621 DOI: 10.1021/jacs.1c03454] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroaminocarbonylation of alkenes is one of the most promising yet challenging methods for the synthesis of amides. Herein, we reported the development of a novel and effective Pd-catalyzed Markovnikov hydroaminocarbonylation of 1,1-disubstituted or 1,1,2-trisubstituted alkenes with aniline hydrochloride salts to afford amides bearing an α quaternary carbon. The reaction makes use of readily available starting materials, tolerates a wide range of functional groups, and provides a facile and straightforward approach to a diverse array of amides bearing an α quaternary carbon. Mechanistic investigations suggested that the reaction proceeded through a palladium hydride pathway. The hydropalladation and CO insertion are reversible, and the aminolysis is probably the rate-limiting step.
Collapse
Affiliation(s)
- Hui-Yi Yang
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ya-Hong Yao
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ming Chen
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
30
|
Pedersen SS, Donslund AS, Mikkelsen JH, Bakholm OS, Papp F, Jensen KB, Gustafsson MBF, Skrydstrup T. A Nickel(II)-Mediated Thiocarbonylation Strategy for Carbon Isotope Labeling of Aliphatic Carboxamides. Chemistry 2021; 27:7114-7123. [PMID: 33452676 DOI: 10.1002/chem.202005261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/15/2022]
Abstract
A series of pharmaceutically relevant small molecules and biopharmaceuticals bearing aliphatic carboxamides have been successfully labeled with carbon-13. Key to the success of this novel carbon isotope labeling technique is the observation that 13 C-labeled NiII -acyl complexes, formed from a 13 CO insertion step with NiII -alkyl intermediates, rapidly react in less than one minute with 2,2'-dipyridyl disulfide to quantitatively form the corresponding 2-pyridyl thioesters. Either the use of 13 C-SilaCOgen or 13 C-COgen allows for the stoichiometric addition of isotopically labeled carbon monoxide. Subsequent one-pot acylation of a series of structurally diverse amines provides the desired 13 C-labeled carboxamides in good yields. A single electron transfer pathway is proposed between the NiII -acyl complexes and the disulfide providing a reactive NiIII -acyl sulfide intermediate, which rapidly undergoes reductive elimination to the desired thioester. By further optimization of the reaction parameters, reaction times down to only 11 min were identified, opening up the possibility of exploring this chemistry for carbon-11 isotope labeling. Finally, this isotope labeling strategy could be adapted to the synthesis of 13 C-labeled liraglutide and insulin degludec, representing two antidiabetic drugs.
Collapse
Affiliation(s)
- Simon S Pedersen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Jesper H Mikkelsen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Oskar S Bakholm
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Florian Papp
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Kim B Jensen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Magnus B F Gustafsson
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
31
|
Sun X, Dong X, Yang Y, Fu J, Wang Y, Li Z, Liu Y, Liu H. Palladium-catalyzed cascade 5-exo-trig radical cyclization/aromatic C-H alkylation with unactivated alkyl iodides. Org Biomol Chem 2021; 19:2676-2680. [PMID: 33710245 DOI: 10.1039/d1ob00346a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel and convenient palladium-catalyzed cascade 5-exo-trig radical cyclization/aromatic C-H alkylation with unactivated alkyl iodides has been described. This strategy provides an efficient access to a variety of 3a-methyl-1,2,3,3a,4,8b-hexahydroindeno[1,2-b]pyrrole derivatives, which facilitate access to a series of medically important heterocyclic bioactive molecules. This protocol involves mild catalytic reaction conditions and shows high functional group tolerance with high stereoselectivity. Mechanistic investigations reveal that an alkyl radical pathway is involved in this reaction.
Collapse
Affiliation(s)
- Xi Sun
- School of Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255049, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ariga K, Shionoya M. Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200362] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Li L, Liu YC, Shi H. Nickel-Catalyzed Enantioselective α-Alkenylation of N-Sulfonyl Amines: Modular Access to Chiral α-Branched Amines. J Am Chem Soc 2021; 143:4154-4161. [PMID: 33691068 DOI: 10.1021/jacs.1c00622] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chiral α-branched amines are common structural motifs in functional materials, pharmaceuticals, and chiral catalysts. Therefore, developing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein, we describe an atom-economical, modular method for a nickel-catalyzed enantioselective α-alkenylation of readily available linear N-sulfonyl amines with alkynes to afford a wide variety of allylic amines without the need for exogenous oxidants, reductants, or activating reagents. The method provides a platform for constructing chiral α-branched amines as well as derivatives such as α-amino amides and β-amino alcohols, which can be conveniently accessed from the newly introduced alkene. Given the generality, versatility, and high atom economy of this method, we anticipate that it will have broad synthetic utility.
Collapse
Affiliation(s)
- Lun Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yu-Cheng Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
34
|
Wu LS, Ding Y, Han YQ, Shi BF. Asymmetric Synthesis of γ-Lactams Containing α,β-Contiguous Stereocenters via Pd(II)-Catalyzed Cascade Methylene C(sp3)–H Alkenylation/Aza-Wacker Cyclization. Org Lett 2021; 23:2048-2051. [DOI: 10.1021/acs.orglett.1c00204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Le-Song Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ye-Qiang Han
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
35
|
Wu FP, Wu XF. Ligand-Controlled Copper-Catalyzed Regiodivergent Carbonylative Synthesis of α-Amino Ketones and α-Boryl Amides from Imines and Alkyl Iodides. Angew Chem Int Ed Engl 2021; 60:695-700. [PMID: 32991025 DOI: 10.1002/anie.202012251] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Regioselective transformation is among the long-standing challenges in organic synthesis. In this communication, a copper-catalyzed selectivity controlled regiodivergent borocarbonylation of imines with alkyl iodides has been developed. Various α-amino ketones and α-boryl amides were produced in moderate to good yields from the same substrates. The choice of the ligand is key for the regioselectivity control: α-amino ketones were produced selectively in good yields with (p-CF3 C6 H4 )3 P as the ligand, whereas the corresponding α-boryl amides were obtained with high regioselectivities when using Me IMes as the ligand.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
36
|
|
37
|
Wu F, Wu X. Ligand‐Controlled Copper‐Catalyzed Regiodivergent Carbonylative Synthesis of α‐Amino Ketones and α‐Boryl Amides from Imines and Alkyl Iodides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fu‐Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
38
|
Wu X, Qu J, Chen Y. Quinim: A New Ligand Scaffold Enables Nickel-Catalyzed Enantioselective Synthesis of α-Alkylated γ-Lactam. J Am Chem Soc 2020; 142:15654-15660. [DOI: 10.1021/jacs.0c07126] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
39
|
Chen M, Wang X, Yang P, Kou X, Ren Z, Guan Z. Palladium‐Catalyzed Enantioselective Heck Carbonylation with a Monodentate Phosphoramidite Ligand: Asymmetric Synthesis of (+)‐Physostigmine, (+)‐Physovenine, and (+)‐Folicanthine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ming Chen
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xucai Wang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Pengfei Yang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xun Kou
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Zhi‐Hui Ren
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Zheng‐Hui Guan
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
40
|
Chen M, Wang X, Yang P, Kou X, Ren ZH, Guan ZH. Palladium-Catalyzed Enantioselective Heck Carbonylation with a Monodentate Phosphoramidite Ligand: Asymmetric Synthesis of (+)-Physostigmine, (+)-Physovenine, and (+)-Folicanthine. Angew Chem Int Ed Engl 2020; 59:12199-12205. [PMID: 32239787 DOI: 10.1002/anie.202003288] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Indexed: 12/30/2022]
Abstract
Reported herein is the development of the first enantioselective monodentate ligand assisted Pd-catalyzed domino Heck carbonylation reaction with CO. The highly enantioselective domino Heck carbonylation of N-aryl acrylamides and various nucleophiles, including arylboronic acids, anilines, and alcohols, in the presence of CO was achieved. A novel monodentate phosphoramidite ligand, Xida-Phos, has been developed for this reaction and it displays excellent reactivity and enantioselectivity. The reaction employs readily available starting materials, tolerates a wide range of functional groups, and provides straightforward access to a diverse array of enantioenriched oxindoles having β-carbonyl-substituted all-carbon quaternary stereocenters, thus providing a facile and complementary method for the asymmetric synthesis of bioactive hexahydropyrroloindole and its dimeric alkaloids.
Collapse
Affiliation(s)
- Ming Chen
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xucai Wang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Pengfei Yang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xun Kou
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|