1
|
Wu RK, Zhang SQ, Hong X. Post-Transition State Bifurcation Controls Torsional Selectivity in Radical Addition of Allenes. Chemistry 2024:e202403316. [PMID: 39262303 DOI: 10.1002/chem.202403316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z- and E-allylic radicals via the post-transition state allylic single bond torsion. Interestingly, dynamic Z/E-selectivity favors the Z-allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty-five radical additions of mono-substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di-substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors.
Collapse
Affiliation(s)
- Rong-Kai Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan Province, 453007, China
| |
Collapse
|
2
|
Murakami T, Hayashi D, Kikuma Y, Yamaki K, Takayanagi T. Temperature effects on the branching dynamics in the model ambimodal (6 + 4)/(4 + 2) intramolecular cycloaddition reaction. J Comput Chem 2024. [PMID: 39166899 DOI: 10.1002/jcc.27484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
C14H20 (tetradecapentaene) is a simple model system exhibiting post transition-state behavior, wherein both the (6 + 4) and (4 + 2) cycloaddition products are formed from one ambimocal transition state structure. We studied the bifurcation dynamics starting from the two ambimodal transition state structures, the chair-form and boat-form, using the quasi-classical trajectory, classical molecular dynamics, and ring-polymer molecular dynamics methods on the parameter-optimized semiempirical GFN2-xTB potential energy surface. It was found that the calculated branching fractions differ between the chair-form and boat-form due to the different nature in the IRC pathways. We also investigated the effects of temperature on bifurcation dynamics and found that, at higher temperatures, trajectories stay longer in the intermediate region of the potential energy surface.
Collapse
Affiliation(s)
- Tatsuhiro Murakami
- Department of Chemistry, Saitama University, Saitama, Japan
- Department of Materials & Life Sciences, Faculty of Science & Technology, Sophia University, Tokyo, Japan
| | - Daiki Hayashi
- Department of Chemistry, Saitama University, Saitama, Japan
| | - Yuya Kikuma
- Department of Chemistry, Saitama University, Saitama, Japan
| | - Keita Yamaki
- Department of Chemistry, Saitama University, Saitama, Japan
| | | |
Collapse
|
3
|
Kuan KY, Hsu CP. Predicting Selectivity with a Bifurcating Surface: Inaccurate Model or Inaccurate Statistics of Dynamics? J Phys Chem A 2024; 128:6798-6805. [PMID: 39099446 PMCID: PMC11331512 DOI: 10.1021/acs.jpca.4c04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Reactions on post-transition-state bifurcation (PTSB) energy surfaces are an important class of reaction in which classical rate theories, such as the transition state theory, fail to account for the selectivity. Quasiclassical trajectory molecular dynamic (QCT-MD) simulation is an important computational approach to understanding reactions mechanisms, especially for reactions that cannot be predicted from conventional rate theories. However, the applicability of direct dynamic simulations is hampered by huge computational costs for collecting a statistically meaningful set of trajectories, making it difficult to compare simulation results with theoretical or physical insights-based predictions (non-MD predictions). In this work, we examine the PTSB of Schmidt-Aubé reactions studied by Tantillo and co-workers. With machine-learning using kernel-ridge regression (KRR) to predict atomic forces, statistical reliability was enhanced by significantly increasing the number of trajectories. With KRR, the bottleneck of simulating dynamics (atomic forces in QCT-MD with density functional theory) was accelerated more than 100-fold. We found that this KRR-aided QCT-MD approach is successful in predicting branching ratios with a much larger number of trajectories. With our approach, statistical errors are greatly reduced, and hypothetical non-MD models for predicting selectivity are tested with much higher confidence. By comparison with non-MD models, dynamical properties that affect branching ratios become more clearly described.
Collapse
Affiliation(s)
- Kai-Yuan Kuan
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chao-Ping Hsu
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Physics
Division, National Center for Theoretical
Sciences, 1, Section
4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
4
|
Kadiyam RK, Sangolkar AA, Faizan M, Pawar R. Bispericyclic Ambimodal Dimerization of Pentafulvene: The Origin of Asynchronicity and Kinetic Selectivity of the Endo Transition State. J Org Chem 2024; 89:6813-6825. [PMID: 38661667 DOI: 10.1021/acs.joc.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The propensity of fulvenes to undergo dimerization has long been known, although the in-depth mechanism and electronic behavior during dimerization are still elusive. Herein, we made an attempt to gain insights into the reactivity of pentafulvene for Diels-Alder (DA) and [6 + 4]-cycloadditions via conventional and ambimodal routes. The result emphasizes that pentafulvene dimerization preferentially proceeds through a unique bifurcation mechanism where two DA pathways merge together to produce two degenerate [4 + 2]-cycloadducts from a single TS. Despite the [6 + 4]-cycloadduct being thermodynamically preferred, [4 + 2]-cycloaddition reactions are kinetically driven. Singlet biradicaloid is involved in through-space 6e- delocalization as a secondary orbital interaction that originates asynchronicity and stabilizes the bispericyclic transition state (TS). The transformation of various actively participating intrinsic bonding orbitals (IBOs) unambiguously forecasts the formation of multiple products from a single TS and rationalizes the mechanism of ambimodal reactions that are rather difficult to probe with other analyses. The changes in active IBOs clearly distinguish the conventional reactions from bifurcation reactions and can be employed to characterize and confirm the ambimodal mechanism. This report gains a crucial theoretical insight into the mechanism of bifurcation, the origin of asynchronicity, and electronic behavior in ambimodal TS, which will certainly be of enormous value for future studies.
Collapse
Affiliation(s)
- Rama Krishna Kadiyam
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Akanksha Ashok Sangolkar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Mohmmad Faizan
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Ravinder Pawar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| |
Collapse
|
5
|
Schaefer AJ, Ess DH. Vibrational synchronization and its reaction pathway influence from an entropic intermediate in a dirhodium catalyzed allylic C-H activation/Cope rearrangement reaction. Phys Chem Chem Phys 2024; 26:11386-11394. [PMID: 38586933 DOI: 10.1039/d4cp00657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In reactions with consecutive transition states without an intermediate, and an energy surface bifurcation, atomic motion generally determines product selectivity. Understanding this dynamic-based selectivity can be straightforward if there is extremely fast descent from the first transition state to a product. However, in cases where a nonstatistical roaming/entropic intermediate occurs prior to product formation the motion that influences selectivity can be difficult to identify. Here we report quasiclassical direct dynamics trajectories for the dirhodium catalyzed reaction between styryldiazoacetate and 1,4-cyclohexadiene and prior experiments by Davies showed competitive allylic C-H insertion and Cope products. Trajectories confirmed the proposed energy surface bifurcation and revealed that dirhodium vinylcarbenoid when reacting with 1,4-cyclohexadiene can induce either a dynamically concerted pathway or a dynamically stepwise pathway with a nonstatistical entropic tight ion-pair intermediate. In the dynamically stepwise reaction pathway C-H insertion versus Cope selectivity is highly influenced by whether or not vibrational synchronization occurs in the nonstatistical entropic intermediate. This vibrational synchronization highlights the possible need for an entropic intermediate to have organized transition state-like motion to proceed to a product.
Collapse
Affiliation(s)
- Anthony J Schaefer
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, USA.
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, USA.
| |
Collapse
|
6
|
Zhang P, Yu ZX. Dynamically or Kinetically Controlled? Computational Study of the Mechanisms of Electrophilic Aminoalkenylation of Heteroaromatics with Keteniminium Ions. J Org Chem 2024; 89:4326-4335. [PMID: 38506441 DOI: 10.1021/acs.joc.3c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Quantum chemical calculations and molecular dynamics simulations were applied to study the electrophilic aminoalkenylation of heteroaromatics with keniminium ions. Post-transition state bifurcation (PTSB) was found in the electrophilic addition step for the aminoalkenylation of pyrroles and indoles, and the selectivity for these reactions was dynamically controlled. However, the aminoalkenylation of furan was kinetically controlled because no apparent PTSB was found in the electrophilic addition step. The substituents on the keteniminium ions can also affect the dynamic results for the aminoalkenylations to pyrroles: the C2-aminoalkenylated product is much more favored over the C3-aminoalkenylated product for keteniminium ions with electron-donating substituents, while the product ratio (C2 product/C3 product) decreased when stronger electron-withdrawing substituents were applied.
Collapse
Affiliation(s)
- Pan Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Li H, Mansoori Kermani M, Ottochian A, Crescenzi O, Janesko BG, Truhlar DG, Scalmani G, Frisch MJ, Ciofini I, Adamo C. Modeling Multi-Step Organic Reactions: Can Density Functional Theory Deliver Misleading Chemistry? J Am Chem Soc 2024; 146:6721-6732. [PMID: 38413362 DOI: 10.1021/jacs.3c12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Many organic reactions are characterized by a complex mechanism with a variety of transition states and intermediates of different chemical natures. Their correct and accurate theoretical characterization critically depends on the accuracy of the computational method used. In this work, we study a complex ambimodal cycloaddition with five transition states, two intermediates, and three products, and we ask whether density functional theory (DFT) can provide a correct description of this type of complex and multifaceted reaction. Our work fills a gap in that most systematic benchmarks of DFT for chemical reactions have considered much simpler reactions. Our results show that many density functionals not only lead to seriously large errors but also differ from one another in predicting whether the reaction is ambimodal. Only a few of the available functionals provide a balanced description of the complex and multifaceted reactions. The parameters varied in the tested functionals are the ingredients, the treatment of medium-range and nonlocal correlation energy, and the inclusion of Hartree-Fock exchange. These results show a clear need for more benchmarks on the mechanisms of large molecules in complex reactions.
Collapse
Affiliation(s)
- Hanwei Li
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris F-75005, France
| | - Maryam Mansoori Kermani
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Alistar Ottochian
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris F-75005, France
| | - Orlando Crescenzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Napoli 80126, Italy
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | | | | | - Ilaria Ciofini
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris F-75005, France
| | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris F-75005, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, Paris F-75005, France
| |
Collapse
|
8
|
Lam CC, Goodman JM. Reaction dynamics as the missing puzzle piece: the origin of selectivity in oxazaborolidinium ion-catalysed reactions. Chem Sci 2023; 14:12355-12365. [PMID: 37969604 PMCID: PMC10631253 DOI: 10.1039/d3sc03009a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023] Open
Abstract
The selectivity in a group of oxazaborolidinium ion-catalysed reactions between aldehyde and diazo compounds cannot be explained using transition state theory. VRAI-selectivity, developed to predict the outcome of dynamically controlled reactions, can account for both the chemo- and the stereo-selectivity in these reactions, which are controlled by reaction dynamics. Subtle modifications to the substrate or catalyst substituents alter the potential energy surface, leading to changes in predominant reaction pathways and altering the barriers to the major product when reaction dynamics are considered. In addition, this study suggests an explanation for the mysterious inversion of enantioselectivity resulting from the inclusion of an orthoiPrO group in the catalyst.
Collapse
Affiliation(s)
- Ching Ching Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan M Goodman
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
9
|
Sengupta A, Houk KN. Origins of Periselectivity and Regioselectivity in Ambimodal Tripericyclic [8+6]/[6+4]/[4+2] Intramolecular Cycloadditions of a Heptafulvenyl-Fulvene. J Phys Chem A 2023; 127:7976-7983. [PMID: 37713722 DOI: 10.1021/acs.jpca.3c05656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Quantum mechanical calculations and molecular dynamics simulations have elucidated the reaction mechanism for intramolecular cycloadditions of a heptafulvenyl-fulvene tethered by a trimethylene chain. Prior experiments by Liu and Houk reported the formation of only an endo-[8+6] cycloadduct at 185 °C. Liu et al. later reported an exo-[4+2] Diels-Alder cycloadduct as the major product at 140 °C (Tetrahedron, 1999, 55, 9171). Cycloadditions involve Diels-Alder and an ambimodal intramolecular tripericyclic [8+6]/[6+4]/[4+2] cycloaddition. The mechanistic details explain the experimental reports of temperature dependence on the periselectivity of intramolecular cycloadditions. Additional calculations with multireference-based methods CASSCF and NEVPT2 highlight the artifacts of DFT methods and single-reference wavefunction-based CCSD(T) in the description of complete potential energy surface involving various cycloadditions of the heptafulvenyl-fulvene.
Collapse
Affiliation(s)
- Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Murakami T, Ibuki S, Hashimoto Y, Kikuma Y, Takayanagi T. Dynamics study of the post-transition-state-bifurcation process of the (HCOOH)H + → CO + H 3O +/HCO + + H 2O dissociation: application of machine-learning techniques. Phys Chem Chem Phys 2023; 25:14016-14027. [PMID: 37161528 DOI: 10.1039/d3cp00252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The process of protonated formic acid dissociating from the transition state was studied using ring-polymer molecular dynamics (RPMD), classical MD, and quasi-classical trajectory (QCT) simulations. Temperature had a strong influence on the branching fractions for the HCO+ + H2O and CO + H3O+ dissociation channels. The RPMD and classical MD simulations showed similar behavior, but the QCT dynamics were significantly different owing to the excess energies in the quasi-classical trajectories. Machine-learning analysis identified several key features in the phase information of the vibrational motions at the transition state. We found that the initial configuration and momentum of a hydrogen atom connected to a carbon atom and the shrinking coordinate of the CO bond at the transition state play a role in the dynamics of HCO+ + H2O production.
Collapse
Affiliation(s)
- Tatsuhiro Murakami
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
- Department of Materials & Life Sciences, Faculty of Science & Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Shunichi Ibuki
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| | - Yu Hashimoto
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| | - Yuya Kikuma
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
11
|
Zhang P, Yu ZX. Kinetic, Thermodynamic, and Dynamic Control in Normal vs. Cross [2 + 2] Cycloadditions of Ene-Keteniminium Ions: Computational Understanding, Prediction, and Experimental Verification. J Am Chem Soc 2023; 145:9634-9645. [PMID: 37075170 DOI: 10.1021/jacs.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Almost all reported intramolecular [2 + 2] reactions of ene-keteniminium ions gave normal [2 + 2] products with a fused bicycle framework, but not cross [2 + 2] products with a bicyclo[3.1.1]heptane skeleton, a highly pursued bioisostere in pharmaceutical chemistry. How to rationalize this and design new cross [2 + 2] reactions? Theoretical studies using density functional theory, high-level ab initio single-point energy calculations, and molecular dynamics showed that this [2 + 2] reaction has all three patterns of regiochemical control: the reaction is controlled either kinetically, thermodynamically, or dynamically. A carbocation model of forming endo and exo carbocations has been proposed to rationalize the reaction outcomes, revealing that the tethers (between alkenes and keteniminium ions), substituents (on the alkenes), and alkene configurations in ene-keteniminium ions play critical roles. These understandings were further used to predict that introducing a substituent in the terminal position of alkene with a trans configuration in ene-keteniminium ions can realize the cross [2 + 2] reaction, which is dynamically controlled for alkyl substituents or kinetically controlled for aryl substituents. These and more other predictions were realized experimentally, and many cross [2 + 2] products with a bicyclo[3.1.1]heptane skeleton can be achieved. Both molecular dynamics and new experiments have also been applied to correct a key but misassigned [2 + 2] product reported in the literature, further supporting the insightful mechanisms reported here.
Collapse
Affiliation(s)
- Pan Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Kee CW. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis-Challenges and Opportunities. Molecules 2023; 28:1715. [PMID: 36838703 PMCID: PMC9966076 DOI: 10.3390/molecules28041715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023] Open
Abstract
Through the lens of organocatalysis and phase transfer catalysis, we will examine the key components to calculate or predict catalysis-performance metrics, such as turnover frequency and measurement of stereoselectivity, via computational chemistry. The state-of-the-art tools available to calculate potential energy and, consequently, free energy, together with their caveats, will be discussed via examples from the literature. Through various examples from organocatalysis and phase transfer catalysis, we will highlight the challenges related to the mechanism, transition state theory, and solvation involved in translating calculated barriers to the turnover frequency or a metric of stereoselectivity. Examples in the literature that validated their theoretical models will be showcased. Lastly, the relevance and opportunity afforded by machine learning will be discussed.
Collapse
Affiliation(s)
- Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
13
|
Martin-Somer A, Xue XS, Jamieson CS, Zou Y, Houk K. Computational Design of a Tetrapericyclic Cycloaddition and the Nature of Potential Energy Surfaces with Multiple Bifurcations. J Am Chem Soc 2023; 145:4221-4230. [PMID: 36757329 PMCID: PMC9951208 DOI: 10.1021/jacs.2c12871] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 02/10/2023]
Abstract
An ambimodal transition state (TS) that leads to formation of four different pericyclic reaction products ([4 + 6]-, [2 + 8]-, [8 + 2]-, and [6 + 4]-cycloadducts) without any intervening minima has been designed and explored with DFT computations and quasiclassical molecular dynamics. Direct dynamics simulations propagated from the ambimodal TS show the evolution of trajectories to give the four cycloadducts. The topography of the PES is a key factor in product selectivity. A good correlation is observed between geometrical resemblance of the products to the ambimodal TS (measured by the RMSD) and the ratio of products formed in the dynamics simulations.
Collapse
Affiliation(s)
- Ana Martin-Somer
- Departamento
de Química Física Aplicada, Facultad de Ciencias, Módulo
13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid, Spain
| | - Xiao-Song Xue
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cooper S. Jamieson
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yike Zou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - K.N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Tao Z, Qiu T, Subotnik JE. Symmetric Post-Transition State Bifurcation Reactions with Berry Pseudomagnetic Fields. J Phys Chem Lett 2023; 14:770-778. [PMID: 36652556 DOI: 10.1021/acs.jpclett.2c02668] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We investigate how the Berry force (i.e., the pseudomagnetic force operating on nuclei as induced by electronic degeneracy and spin-orbit coupling (SOC)) might modify a post-transition state bifurcation (PTSB) reaction path and affect product selectivity for situations when multiple products share the same transition state. To estimate the magnitude of this effect, Langevin dynamics are performed on a model system with a valley-ridge inflection (VRI) point in the presence of a magnetic field (that mimics the Berry curvature). We also develop an analytic model for such selectivity that depends on key parameters such as the surface topology, the magnitude of the Berry force, and the nuclear friction. Within this dynamical model, static electronic structure calculations (at the level of generalized Hartree-Fock with spin-orbit coupling (GHF+SOC) theory) suggest that electronic spin induced Berry force effects may indeed lead to noticeable changes in methoxy radical isomerization.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tian Qiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Guo W, Hare SR, Chen SS, Saunders CM, Tantillo DJ. C-H Insertion in Dirhodium Tetracarboxylate-Catalyzed Reactions despite Dynamical Tendencies toward Fragmentation: Implications for Reaction Efficiency and Catalyst Design. J Am Chem Soc 2022; 144:17219-17231. [PMID: 36098581 DOI: 10.1021/jacs.2c07681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rh-catalyzed C-H insertion reactions to form β-lactones suffer from post-transition state bifurcations, with the same transition states leading to ketones and ketenes via fragmentation in addition to β-lactones. In such a circumstance, traditional transition state theory cannot predict product selectivity, so we employed ab initio molecular dynamics simulations to do so and provide a framework for rationalizing the origins of said selectivity. Weak interactions between the catalyst and substrate were studied using energy decomposition and noncovalent interaction analyses, which unmasked an important role of the 2-bromophenyl substituent that has been used in multiple β-lactone-forming C-H insertion reactions. Small and large catalysts were shown to behave differently, with the latter providing a means of overcoming dynamically preferred fragmentation by lowering the barrier for the recombination of the product fragments in the grip of the large catalyst active site cavity.
Collapse
Affiliation(s)
- Wentao Guo
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Stephanie R Hare
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Shu-Sen Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Carla M Saunders
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
16
|
Unsleber JP, Grimmel SA, Reiher M. Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. J Chem Theory Comput 2022; 18:5393-5409. [PMID: 35926118 PMCID: PMC11516015 DOI: 10.1021/acs.jctc.2c00193] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/28/2022]
Abstract
Fueled by advances in hardware and algorithm design, large-scale automated explorations of chemical reaction space have become possible. Here, we present our approach to an open-source, extensible framework for explorations of chemical reaction mechanisms based on the first-principles of quantum mechanics. It is intended to facilitate reaction network explorations for diverse chemical problems with a wide range of goals such as mechanism elucidation, reaction path optimization, retrosynthetic path validation, reagent design, and microkinetic modeling. The stringent first-principles basis of all algorithms in our framework is key for the general applicability that avoids any restrictions to specific chemical systems. Such an agile framework requires multiple specialized software components of which we present three modules in this work. The key module, Chemoton, drives the exploration of reaction networks. For the exploration itself, we introduce two new algorithms for elementary-step searches that are based on Newton trajectories. The performance of these algorithms is assessed for a variety of reactions characterized by a broad chemical diversity in terms of bonding patterns and chemical elements. Chemoton successfully recovers the vast majority of these. We provide the resulting data, including large numbers of reactions that were not included in our reference set, to be used as a starting point for further explorations and for future reference.
Collapse
Affiliation(s)
- Jan P. Unsleber
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stephanie A. Grimmel
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Bestwick JS, Jones DJ, Jones HE, Kalomenopoulos PG, Szabla R, Lawrence AL. Total Synthesis and Prediction of Ulodione Natural Products Guided by DFT Calculations. Angew Chem Int Ed Engl 2022; 61:e202207004. [PMID: 35670364 PMCID: PMC9401604 DOI: 10.1002/anie.202207004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/11/2022]
Abstract
A biomimetic synthetic strategy has resulted in a two-step total synthesis of (±)-ulodione A and the prediction of two potential natural products, (±)-ulodiones C and D. This work was guided by computational investigations into the selectivity of a proposed biosynthetic Diels-Alder dimerization, which was then utilized in the chemical synthesis. This work highlights how biosynthetic considerations can both guide the design of efficient synthetic strategies and lead to the anticipation of new natural products.
Collapse
Affiliation(s)
- Jacob S. Bestwick
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - David J. Jones
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Helen E. Jones
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
- Current address: Oncology R&DAstraZenecaCambridgeCB4 0WGUK
| | - Panagiotis G. Kalomenopoulos
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
- Current address: Process ChemistryPharmaronHoddesdonEN11 9FHUK
| | - Rafal Szabla
- Department of Physical and Quantum ChemistryFaculty of ChemistryWrocław University of Science and TechnologyWrocławPoland
| | - Andrew L. Lawrence
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
18
|
Pandey P, Keshavamurthy S. Dynamic matching ‐ revisiting the Carpenter model. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Priyanka Pandey
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| | | |
Collapse
|
19
|
Melville J, Hargis C, Davenport MT, Hamilton RS, Ess DH. Machine Learning Analysis of Dynamic‐Dependent Bond Formation in Trajectories with Consecutive Transition States. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jesse Melville
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah USA
| | - Cal Hargis
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah USA
| | - Michael T. Davenport
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah USA
| | - R. Spencer Hamilton
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah USA
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah USA
| |
Collapse
|
20
|
Bestwick JS, Jones DJ, Jones HE, Kalomenopoulos PG, Szabla R, Lawrence AL. Total Synthesis and Prediction of Ulodione Natural Products Guided by DFT Calculations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jacob S. Bestwick
- The University of Edinburgh EaStCHEM School of Chemistry UNITED KINGDOM
| | - David J. Jones
- The University of Edinburgh EaStCHEM School of Chemistry UNITED KINGDOM
| | - Helen E. Jones
- The University of Edinburgh EaStCHEM School of Chemistry UNITED KINGDOM
| | | | - Rafal Szabla
- Wroclaw University of Science and Technology: Politechnika Wroclawska Department of Physical and Quantum Chemistry POLAND
| | - Andrew Leslie Lawrence
- University of Edinburgh EaStCHEM School of Chemistry Joseph Black BuildingDavid Brewster Road EH9 3FJ Edinburgh UNITED KINGDOM
| |
Collapse
|
21
|
Park KHK, Frank N, Duarte F, Anderson EA. Collective Synthesis of Illudalane Sesquiterpenes via Cascade Inverse Electron Demand (4 + 2) Cycloadditions of Thiophene S, S-Dioxides. J Am Chem Soc 2022; 144:10017-10024. [PMID: 35609003 PMCID: PMC9185749 DOI: 10.1021/jacs.2c03304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiophene S,S-dioxides are underutilized tools for the de novo construction of benzene rings in organic synthesis. We report a collective synthesis of nine illudalane sesquiterpenes using bicyclic thiophene S,S-dioxides as generalized precursors to the indane core of the natural products. Exploiting furans as unusual dienophiles in this inverse electron demand Diels-Alder cascade, this concise and convergent approach enables the synthesis of these targets in as little as five steps. Theoretical studies rationalize the reactivity of thiophene S,S-dioxides with both electron-poor and electron-rich dienophiles and reveal reaction pathways involving either nonpolar pericyclic or bifurcating ambimodal cycloadditions. Overall, this work demonstrates the wider potential of thiophene S,S-dioxides as convenient and flexible precursors to polysubstituted arenes.
Collapse
Affiliation(s)
- Kun Ho Kenny Park
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Nils Frank
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Fernanda Duarte
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Edward A Anderson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
22
|
Goodman JM, Blanke G, Kraut H. Analysing a billion reactions with the RInChI. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The RInChI is a canonical identifier for reactions which is widely used in reaction databases. It can be used to handle large collections of reactions and to link information from diverse data sources. How much information can it handle? Studies of the SAVI database, which contains more than a billion reactions, demonstrate that the RInChI is useful in analysing such a large collection of molecular data, and the reduced form of the Web-RInChIKey contains enough information to be an effective differentiator of reactions. Issues of NH tautomerism and stereochemistry are handled effectively. The RInChI illustrates that some of the properties of the algorithmically-generated SAVI database differ from SPRESI, which is a collection of experimental data. The RInChI has different properties to Reaction SMILES and both approaches provide useful and distinct information. We recommend that the RInChI be included in data models for reactions.
Collapse
Affiliation(s)
- Jonathan M. Goodman
- Yusuf Hamied Department of Chemistry , Lensfield Road , Cambridge , CB2 1EW , UK
| | - Gerd Blanke
- StructurePendium Technologies GmbH , Reulsbergweg 5, D-45257 Essen , Germany
| | - Hans Kraut
- InfoChem GmbH , Aschauerstr. 30, D-81549 Munich , Germany
| |
Collapse
|
23
|
Tsutsumi T, Ono Y, Taketsugu T. Reaction Space Projector (ReSPer) for Visualizing Dynamic Reaction Routes Based on Reduced-Dimension Space. Top Curr Chem (Cham) 2022; 380:19. [PMID: 35266073 DOI: 10.1007/s41061-022-00377-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
To analyze chemical reaction dynamics based on a reaction path network, we have developed the "Reaction Space Projector" (ReSPer) method with the aid of the dimensionality reduction method. This program has two functions: the construction of a reduced-dimensionality reaction space from a molecular structure dataset, and the projection of dynamic trajectories into the low-dimensional reaction space. In this paper, we apply ReSPer to isomerization and bifurcation reactions of the Au5 cluster and succeed in analyzing dynamic reaction routes involved in multiple elementary reaction processes, constructing complicated networks (called "closed islands") of nuclear permutation-inversion (NPI) isomerization reactions, and elucidating dynamic behaviors in bifurcation reactions with reference to bundles of trajectories. Interestingly, in the second application, we find a correspondence between the contribution ratios in the ability to visualize and the symmetry of the morphology of closed islands. In addition, the third application suggests the existence of boundaries that determine the selectivity in bifurcation reactions, which was discussed in the phase space. The ReSPer program is a versatile and robust tool to clarify dynamic reaction mechanisms based on the reduced-dimensionality reaction space without prior knowledge of target reactions.
Collapse
Affiliation(s)
- Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yuriko Ono
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
24
|
Tremblay MT, Yang ZJ. The effect of zero‐point energy in simulating organic reactions with post‐transition state bifurcation. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Zhongyue J. Yang
- Department of Chemistry Vanderbilt University Nashville Tennessee USA
- Center for Structural Biology Vanderbilt University Nashville Tennessee USA
- Vanderbilt Institute of Chemical Biology Vanderbilt University Nashville Tennessee USA
- Data Science Institute Vanderbilt University Nashville Tennessee USA
| |
Collapse
|
25
|
Mandal N, Das A, Hajra C, Datta A. Stereoelectronic and dynamical effects dictate nitrogen inversion during valence isomerism in benzene imine. Chem Sci 2022; 13:704-712. [PMID: 35173935 PMCID: PMC8769061 DOI: 10.1039/d1sc04855d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
Non-classical processes such as heavy-atom tunneling and post transition-state dynamics govern stereoselectivity for benzene imine ⇌ 1H-azepine.
Collapse
Affiliation(s)
- Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ankita Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Chandralekha Hajra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
26
|
Wang X, Zhang C, Jiang Y, Wang W, Zhou Y, Chen Y, Zhang B, Tan RX, Ge HM, Yang ZJ, Liang Y. Influence of Water and Enzyme on the Post-Transition State Bifurcation of NgnD-Catalyzed Ambimodal [6+4]/[4+2] Cycloaddition. J Am Chem Soc 2021; 143:21003-21009. [PMID: 34851644 DOI: 10.1021/jacs.1c10760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme NgnD catalyzes an ambimodal cycloaddition that bifurcates to [6+4]- and [4+2]-adducts. Both products have been isolated in experiments, but it remains unknown how enzyme and water influence the bifurcation selectivity at the femtosecond time scale. Here, we study the impact of water and enzyme on the post-transition state bifurcation of NgnD-catalyzed [6+4]/[4+2] cycloaddition by integrating quantum mechanics/molecular mechanics quasiclassical dynamics simulations and biochemical assays. The ratio of [6+4]/[4+2] products significantly differs in the gas phase, water, and enzyme. Biochemical assays were employed to validate computational predictions. The study informs how water and enzyme affect the bifurcation selectivity through perturbation of the reaction dynamics in the femtosecond time scale, revealing the fundamental roles of condensed media in dynamically controlling the chemical selectivity for biosynthetic reactions.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Chun Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuan Zhou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
27
|
Bharadwaz P, Maldonado-Domínguez M, Srnec M. Bifurcating reactions: distribution of products from energy distribution in a shared reactive mode. Chem Sci 2021; 12:12682-12694. [PMID: 34703554 PMCID: PMC8494029 DOI: 10.1039/d1sc02826j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022] Open
Abstract
Bifurcating reactions yield two different products emerging from one single transition state and are therefore archetypal examples of reactions that cannot be described within the framework of the traditional Eyring's transition state theory (TST). With the growing number and importance of these reactions in organic and biosynthetic chemistry, there is also an increasing demand for a theoretical tool that would allow for the accurate quantification of reaction outcome at low cost. Here, we introduce such an approach that fulfils these criteria, by evaluating bifurcation selectivity through the energy distribution within the reactive mode of the key transition state. The presented method yields an excellent agreement with experimentally reported product ratios and predicts the correct selectivity for 89% of nearly 50 various cases, covering pericyclic reactions, rearrangements, fragmentations and metal-catalyzed processes as well as a series of trifurcating reactions. With 71% of product ratios determined within the error of less than 20%, we also found that the methodology outperforms three other tested protocols introduced recently in the literature. Given its predictive power, the procedure makes reaction design feasible even in the presence of complex non-TST chemical steps. Reactive Mode Composition Factor (RMCF) analysis is a powerful tool to forecast the product distribution of bifurcating reactions through analysis of the kinetic energy distribution within the first transition state traversed by the reacting system.![]()
Collapse
Affiliation(s)
- Priyam Bharadwaz
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences Dolejškova 3 Prague 8 18223 Czech Republic
| | - Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences Dolejškova 3 Prague 8 18223 Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences Dolejškova 3 Prague 8 18223 Czech Republic
| |
Collapse
|
28
|
Tantillo DJ, Laconsay CJ. Melding of Experiment and Theory Illuminates Mechanisms of Metal-Catalyzed Rearrangements: Computational Approaches and Caveats. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1720451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThis review summarizes approaches and caveats in computational modeling of transition-metal-catalyzed sigmatropic rearrangements involving carbene transfer. We highlight contemporary examples of combined synthetic and theoretical investigations that showcase the synergy achievable by integrating experiment and theory.1 Introduction2 Mechanistic Models3 Theoretical Approaches and Caveats3.1 Recommended Computational Tools3.2 Choice of Functional and Basis Set3.3 Conformations and Ligand-Binding Modes3.4 Solvation4 Synergy of Experiment and Theory – Case Studies4.1 Metal-Bound or Free Ylides?4.2 Conformations and Ligand-Binding Modes of Paddlewheel Complexes4.3 No Metal, Just Light4.4 How To ‘Cope’ with Nonstatistical Dynamic Effects5 Outlook
Collapse
|
29
|
Young TA, Johnston-Wood T, Deringer VL, Duarte F. A transferable active-learning strategy for reactive molecular force fields. Chem Sci 2021; 12:10944-10955. [PMID: 34476072 PMCID: PMC8372546 DOI: 10.1039/d1sc01825f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022] Open
Abstract
Predictive molecular simulations require fast, accurate and reactive interatomic potentials. Machine learning offers a promising approach to construct such potentials by fitting energies and forces to high-level quantum-mechanical data, but doing so typically requires considerable human intervention and data volume. Here we show that, by leveraging hierarchical and active learning, accurate Gaussian Approximation Potential (GAP) models can be developed for diverse chemical systems in an autonomous manner, requiring only hundreds to a few thousand energy and gradient evaluations on a reference potential-energy surface. The approach uses separate intra- and inter-molecular fits and employs a prospective error metric to assess the accuracy of the potentials. We demonstrate applications to a range of molecular systems with relevance to computational organic chemistry: ranging from bulk solvents, a solvated metal ion and a metallocage onwards to chemical reactivity, including a bifurcating Diels-Alder reaction in the gas phase and non-equilibrium dynamics (a model SN2 reaction) in explicit solvent. The method provides a route to routinely generating machine-learned force fields for reactive molecular systems.
Collapse
Affiliation(s)
- Tom A Young
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Tristan Johnston-Wood
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Volker L Deringer
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford Oxford OX1 3QR UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
30
|
Kpante M, Wolf LM. Pathway Bifurcations in the Activation of Allylic Halides by Palladium and Their Influence on the Dynamics of η 1 and η 3 Allyl Intermediates. J Org Chem 2021; 86:9637-9650. [PMID: 34190566 DOI: 10.1021/acs.joc.1c00891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transition-metal-catalyzed allylic substitution often exhibits complex product selectivity patterns, which have been primarily attributed to π ↔ σ ↔ π isomerization of the η1 and η3 allyl intermediates. Product selectivity may be even further complicated if η1- and η3-allyls share a single transition state (TS), leading to their formation resulting in a post-transition-state bifurcation (PTSB). In this work, density functional theory calculations using ab initio molecular dynamics (AIMD) have been carried out that support the presence of a PTSB in Pd-catalyzed allylic halide activation directly influencing product selectivity. The AIMD results initiated from the TS predict the η1-allyl to be favored in the gas phase and a low dielectric (ε < 2.5) for trialkylphosphines, while the selectivity shifts toward the η3-allyl in higher dielectrics. The minimum energy path is also predicted to shift in product preference, consistent with the dynamics predictions. The bifurcation in allylic chloride activation is predicted to largely favor the η3-allyl at any solvent polarity. A PTSB was also discovered to be present in Ni and Pt allylic activation but with less bifurcation. These results offer a unique view into the mechanism of metal-catalyzed allylic substitution.
Collapse
Affiliation(s)
- Malkaye Kpante
- Department of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Lawrence M Wolf
- Department of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
31
|
Maley SM, Melville J, Yu S, Teynor MS, Carlsen R, Hargis C, Hamilton RS, Grant BO, Ess DH. Machine learning classification of disrotatory IRC and conrotatory non-IRC trajectory motion for cyclopropyl radical ring opening. Phys Chem Chem Phys 2021; 23:12309-12320. [PMID: 34018524 DOI: 10.1039/d1cp00612f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quasiclassical trajectory analysis is now a standard tool to analyze non-minimum energy pathway motion of organic reactions. However, due to the large amount of information associated with trajectories, quantitative analysis of the dynamic origin of reaction selectivity is complex. For the electrocyclic ring opening of cyclopropyl radical, more than 4000 trajectories were run showing that allyl radicals are formed through a mixture of disrotatory intrinsic reaction coordinate (IRC) motion as well as conrotatory non-IRC motion. Geometric, vibrational mode, and atomic velocity transition-state features from these trajectories were used for supervised machine learning analysis with classification algorithms. Accuracy >80% with a random forest model enabled quantitative and qualitative assessment of transition-state trajectory features controlling disrotatory IRC versus conrotatory non-IRC motion. This analysis revealed that there are two key vibrational modes where their directional combination provides prediction of IRC versus non-IRC motion.
Collapse
Affiliation(s)
- Steven M Maley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | - Jesse Melville
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | - Spencer Yu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | - Matthew S Teynor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | - Ryan Carlsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | - Cal Hargis
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | - R Spencer Hamilton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | - Benjamin O Grant
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| |
Collapse
|
32
|
Lee S, Goodman JM. VRAI-selectivity: calculation of selectivity beyond transition state theory. Org Biomol Chem 2021; 19:3940-3947. [PMID: 33949564 DOI: 10.1039/d1ob00234a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a growing number of organic reactions in the literature have shown selectivity controlled by reaction dynamics rather than by transition state theory. Such reactions are difficult to analyse because the transition state theory approach often does not capture the subtlety of the energy landscapes the compounds traverse and, therefore, cannot accurately predict the selectivity. We present an algorithm that can predict the major product and selectivity for a wide range of potential energy surfaces where the product distribution is influenced by reaction dynamics. The method requires as input calculation of the transition states, the intermediate (if present) and the product geometries. The algorithm is quick and simple to run and, except for two reactions with long alkyl chains, calculates selectivity more accurately than transition state theory alone.
Collapse
Affiliation(s)
- Sanha Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jonathan M Goodman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
33
|
Maeda S, Harabuchi Y. Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1538] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD), Hokkaido University Sapporo Hokkaido Japan
- Department of Chemistry, Faculty of Science Hokkaido University Sapporo Hokkaido Japan
- JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Sapporo Hokkaido Japan
- National Institute for Materials Science (NIMS) Research and Services Division of Materials Data and Integrated System (MaDIS) Tsukuba Ibaraki Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD), Hokkaido University Sapporo Hokkaido Japan
- Department of Chemistry, Faculty of Science Hokkaido University Sapporo Hokkaido Japan
- JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Sapporo Hokkaido Japan
| |
Collapse
|
34
|
Jamieson CS, Sengupta A, Houk KN. Cycloadditions of Cyclopentadiene and Cycloheptatriene with Tropones: All Endo-[6+4] Cycloadditions Are Ambimodal. J Am Chem Soc 2021; 143:3918-3926. [PMID: 33656318 DOI: 10.1021/jacs.0c13401] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cycloadditions of cyclopentadiene and cycloheptatriene with tropone are some of the earliest published examples of [6+4] cycloaddition reactions. We report quantum mechanical studies (ωB97X-D and DLPNO-CCSD(T)) of transition structures and products of these reactions, as well as quasi-classical molecular dynamics simulations of reaction trajectories. The study reveals that these cycloadditions involve ambimodal transition states resulting in a web of products by pericyclic interconversion pathways. Combined with these studies, calculations of simple parent systems and a thorough meta-analysis of literature examples reveal the general concept that all endo-[6+4] cycloadditions are ambimodal.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
35
|
Politano F, Sandoval AL, Uranga JG, Buján EI, Leadbeater NE. Using experimental and computational approaches to probe an unusual carbon-carbon bond cleavage observed in the synthesis of benzimidazole N-oxides. Org Biomol Chem 2021; 19:208-215. [PMID: 33179700 DOI: 10.1039/d0ob01797c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and computational studies have been performed in order to investigate an unusual carbon-carbon bond cleavage that occurs in the preparation of certain benzimidazole N-oxides from anilines. The key factor determining the outcome of the reaction was found to be the substituents on the amine functionality of the aniline.
Collapse
Affiliation(s)
- Fabrizio Politano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | | | | | | | | |
Collapse
|
36
|
Chuang HH, Tantillo DJ, Hsu CP. Construction of Two-Dimensional Potential Energy Surfaces of Reactions with Post-Transition-State Bifurcations. J Chem Theory Comput 2020; 16:4050-4060. [PMID: 32470303 DOI: 10.1021/acs.jctc.0c00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions with post-transition-state bifurcations (PTSBs) involve initial ambimodal transition-state structures followed by an unstable region leading to two possible products. PTSBs are seen in many organic, organometallic, and biosynthetic reactions, but analyzing the origins of selectivity for these reactions is challenging, in large part due to the complex nature of the potential energy surfaces involved, which precludes analyses based on single intrinsic reaction coordinate (IRC; steepest-descent path in mass-weighted coordinate). While selectivity can be predicted using molecular dynamics simulation, connecting results from such calculations to the topography of potential energy surfaces is difficult. In the present work, a method for generating two-dimensional potential energy surfaces for PTSBs is described. The first dimension starts with the IRC for the first transition-state structure, followed by a modified reaction coordinate that reaches the second transition-state structure, which interconverts the two products of a bifurcating reaction path. The IRC for the second transition-state structure constitutes the second dimension. In addition, a method for mapping trajectories from Born-Oppenheimer molecular dynamics simulations onto these surfaces is described. Both approaches are illustrated with representative examples from the field of organic chemistry. The 2D-PESs for five asymmetric cases tested have clear tilted topography after the first transition-state structure, and the tilted direction correlates well with the selectivity observed from previous dynamic simulation. Instead of selecting reaction coordinates by chemical intuition, our method provides a general means to construct two-dimensional potential energy surfaces for reactions with post-transition-state bifurcations.
Collapse
Affiliation(s)
- Hsiao-Han Chuang
- Department of Chemistry, National Taiwan University, 11529 Taipei, Taiwan.,Institute of Chemistry, Academia Sinica, 11529 Taipei, Taiwan.,Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, 11529 Taipei, Taiwan
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| |
Collapse
|