1
|
Dai H, Xu Z, Yang K, Zhou J, Wang J, Zhang Y, Shen Y, Liu X, Jiang Y, Xu W. A Multifunctional Tb(III)-Based Metal-Organic Framework for Chemical Conversion of CO 2, Fluorescence Sensing of Trace Water and Metamitron. Inorg Chem 2024; 63:24351-24362. [PMID: 39643950 DOI: 10.1021/acs.inorgchem.4c04353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The utilization of metal-organic frameworks (MOFs) as fluorescent sensors for the detection of environmental and chemical reagent pollutants as well as heterogeneous catalysis for CO2 conversion represents a crucial avenue of research with significant implications for the protection of human health. In this work, a Tb(III)-based three-dimensional metal-organic framework, [Tb(L)·4DMF]n (Tb-MOF) (H3L = 5'-(4-carboxy-3-hydroxyphenyl)-3,3″-dihydroxy-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid), has been structurally conformed by single-crystal X-ray crystallography. It possesses a 1D rhombus channel along the [010] direction, featuring a pore size of 6.02 × 9.13 Å. Tb-MOF was proved to be a multifunctional material for a fluorescent sensor and CO2 cycloaddition heterogeneous catalyst material. Fluorescence sensing studies revealed that Tb-MOF demonstrates high sensitivity, selectivity, and favorable regeneration properties, making it an effective chemosensor for detecting the metamitron (MMT) pesticide and trace water in organic solvents. The mechanism of fluorescence quenching by MMT and water was elucidated by a combination of XRD, UV-vis absorption spectra, IR spectra, theoretical calculations, and fluorescence lifetimes. The material was also utilized for the sensing of MMT and water in paper strips. Additionally, the open Tb3+ site as Lewis acidic centers makes Tb-MOF achieve efficiently catalytic conversion for CO2 and epoxides to cyclic carbonates. Moreover, a possible catalytic mechanism for the conversion of carbon dioxide to cyclic carbonates was proposed by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments. It also exhibited recyclability for up to five cycles without noticing an appreciable loss in sensing or catalytic efficiency.
Collapse
Affiliation(s)
- Huan Dai
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Zichen Xu
- Ningbo High School, Ningbo 315600, China
| | - Ke Yang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Jianchao Zhou
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Jing Wang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Yudong Shen
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Xiaolan Liu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Yue Jiang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Hart KD, Hollobaugh MJ, Battiste AM, Yun TY, Abraham AP, Hamidizirasefi M, Loscher IM, Chandler BD. Upside-Down Adsorption: The Counterintuitive Influences of Surface Entropy and Surface Hydroxyl Density on Hydrogen Spillover. J Am Chem Soc 2024; 146:30091-30103. [PMID: 39447137 DOI: 10.1021/jacs.4c07539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Although hydrogen spillover is often invoked to explain anomalies in catalysis, spillover remains a poorly understood phenomenon. Hydrogen spillover (H*) is best described as highly mobile H atom equivalents that arise when H2 migrates from a metal nanoparticle to an oxide or carbon support. In the 60 years since its discovery, few methods have become available to quantify or characterize H*-support interactions. We recently showed in situ infrared spectroscopy and volumetric chemisorption can quantify reversible H2 adsorption on Au/TiO2 catalysts, where adsorbed hydrogen exists as H* and interacts with titania surface hydroxyl (TiOH) groups. Here, we report parallel thermogravimetric analysis and Fourier transform infrared spectroscopy methods for systematically manipulating the surface TiOH density. We examine the role of surface hydroxylation on spillover thermodynamics using van't Hoff studies to determine apparent adsorption enthalpies and entropies at constant H* coverage, which is necessary to maintain constant H* translational entropy. Although surface TiOH groups are the likely adsorption sites, the data show removing hydroxyl groups increases spillover. This surprising finding─that adsorption increases as the adsorption site density decreases─is associated with improved thermodynamics on dehydroxylated surfaces. A strong adsorption enthalpy-entropy correlation implicates the changing surface entropy of the titania support itself (i.e., an initial state effect) is deeply intertwined with the H* configurational entropy. These effects are surprising and should apply to all low-coverage adsorbates where entropy terms dominate more traditional enthalpic considerations. Moreover, this study points toward a kinetic test for invoking spillover in a reaction mechanism: namely, in situ dehydroxylation should enhance spillover processes.
Collapse
Affiliation(s)
- Kelle D Hart
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Margaret J Hollobaugh
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Audrey M Battiste
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tae Yong Yun
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Angela Pathickal Abraham
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mohammad Hamidizirasefi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ian M Loscher
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bert D Chandler
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Wang C, Chu Y, Lei Q, Hu M, Deng F, Xu J, Dai W. In Situ Observation of Solvent-Mediated Cyclic Intermediates during the Alkene Epoxidation/Hydration over a Ti-Beta/H 2O 2 System. Angew Chem Int Ed Engl 2024; 63:e202404633. [PMID: 38509004 DOI: 10.1002/anie.202404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Solvent effects in catalytic reactions have received widespread attention as they can promote reaction rates and product selectivities by orders of magnitude. It is well accepted that the stable five-membered cyclic intermediates formed between the solvent molecules and Ti species are crucial to the alkene epoxidation in a heterogeneous Ti(IV)-H2O2 system. However, the direct spectroscopic evidence of these intermediates is still missing and the corresponding reaction pathway for the alkene epoxidation remains unclear. By combining in situ 13C MAS NMR, two-dimensional (2D) 1H-13C heteronuclear correlation (HETCOR) NMR spectroscopy and theoretical calculations, the five-membered ring structures, where the protic solvents (ROH), and aprotic solvent (acetone), coordinate and stabilize the active Ti species, are identified for the first time over Ti-Beta/H2O2 system. Moreover, the role of these cyclic intermediates in the alkene epoxidation/hydration conversion is clarified. These results provide new insights into the solvent effect in liquid-phase epoxidation/hydration reactions over Ti(IV)-H2O2 system.
Collapse
Affiliation(s)
- Chang Wang
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Qifeng Lei
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Weili Dai
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
4
|
Adams J, Chen H, Ricciardulli T, Vijayaraghavan S, Sampath A, Flaherty DW. Distinct Site Motifs Activate O 2 and H 2 on Supported Au Nanoparticles in Liquid Water. ACS Catal 2024; 14:3248-3265. [PMID: 38449529 PMCID: PMC10913054 DOI: 10.1021/acscatal.3c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Au nanoparticles catalyze the activation and conversion of small molecules with rates and kinetic barriers that depend on the dimensions of the nanoparticle, composition of the support, and presence of catalytically culpable water molecules that solvate these interfaces. Here, molecular interpretations of steady-state rate measurements, kinetic isotope effects, and structural characterizations reveal how the interface of Au nanoparticles, liquid water, and metal oxide supports mediate the kinetically relevant activation of H2 and sequential reduction of O2-derived intermediates during the formation of H2O2 and H2O. Rates of H2 consumption are 10-100 fold greater on Au nanoparticles supported on metal oxides (e.g., titania) compared to more inert and hydrophobic materials (carbon, boron nitride). Similarly, Au nanoparticles on reducible and Lewis acidic supports (e.g., lanthana) bind dioxygen intermediates more strongly and present lower barriers (<22 kJ mol-1) for O-O bond dissociation than inert interfaces formed with silica (>70 kJ mol-1). Selectivities for H2O2 formation increase significantly as the diameters of the Au nanoparticles increase because differences in nanoparticle size change the relative fractions of exposed sites that exist at Au-support interfaces. In contrast, site-normalized rates and barriers for H2 activation depend weakly on the size of Au nanoparticles and the associated differences in active site motifs. These findings suggest that H2O aids the activation of H2 at sites present across all surface Au atoms when nanoparticles are solvated by water. However, molecular O2 preferentially binds and dissociates at Au-support interfaces, leading to greater structure sensitivity for barriers of O-O dissociation across different support identities and sizes of Au nanoparticles. These insights differ from prior knowledge from studies of gas-phase reactions of H2 and O2 upon Au nanoparticle catalysts within dilute vapor pressures of water (10-4 to 0.1 kPa H2O), in which catalysis occurs at the perimeter of the Au-support interface. In contrast, contacting Au catalysts with liquid water (55.5 M H2O) expands catalysis to all surface Au atoms and enables appreciable H2O2 formation.
Collapse
Affiliation(s)
- Jason
S. Adams
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Haoyu Chen
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tomas Ricciardulli
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Sucharita Vijayaraghavan
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Abinaya Sampath
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - David W. Flaherty
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Lu L, Sun M, Wu T, Lu Q, Chen B, Chan CH, Wong HH, Huang B. Transition metal anchored on red phosphorus to enable efficient photocatalytic H 2 generation. Front Chem 2023; 11:1197010. [PMID: 37388947 PMCID: PMC10305857 DOI: 10.3389/fchem.2023.1197010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Transition metal (TM) single atom catalysts (SACs) are of great potential for photocatalytic H2 production because of their abundant catalytic active sites and cost-effectiveness. As a promising support material, red phosphorus (RP) based SACs are still rarely investigated. In this work, we have carried out systematic theoretical investigations by anchoring TM atoms (Fe, Co, Ni, Cu) on RP for efficient photocatalytic H2 generation. Our density functional theory (DFT) calculations have revealed that 3d orbitals of TM locate close to the Fermi level to guarantee efficient electron transfer for photocatalytic performances. Compared with pristine RP, the introduction of single atom TM on the surface exhibit narrowed bandgaps, resulting in easier spatial separation for photon-generated charge carriers and an extended photocatalytic absorption window to the NIR range. Meanwhile, the H2O adsorptions are also highly preferred on the TM single atoms with strong electron exchange, which benefits the subsequent water-dissociation process. Due to the optimized electronic structure, the activation energy barrier of water-splitting has been remarkably reduced in RP-based SACs, revealing their promising potential for high-efficiency H2 production. Our comprehensive explorations and screening of novel RP-based SACs will offer a good reference for further designing novel photocatalysts for high-efficiency H2 generation.
Collapse
Affiliation(s)
- Lu Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Qiuyang Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Baian Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Cheuk Hei Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Hon Ho Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Carbon-Strategic Catalysis, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Yun TY, Chandler BD. Surface Hydroxyl Chemistry of Titania- and Alumina-Based Supports: Quantitative Titration and Temperature Dependence of Surface Brønsted Acid-Base Parameters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6868-6876. [PMID: 36695465 DOI: 10.1021/acsami.2c20370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface hydroxyl groups on metal oxides play significant roles in catalyst synthesis and catalytic reactions. Despite the importance of surface hydroxyls in broader material applications, quantitative measurements of surface acid-base properties are not regularly reported. Here, we describe direct methods to quantify fundamental properties of surface hydroxyls on several titania- and alumina-based supports. Comparing commercially available anatase, rutile, P25, and P90 titania, thermogravimetric analysis (TGA) indicated that the total surface hydroxyl density varied by a factor of 2, and each surface hydroxyl is associated with approximately one weakly adsorbed water molecule. Proton-exchange site densities, determined at 25 °C with slurry acid-base titrations, led to several conclusions: (i) the intrinsic acidity/basicity of surface hydroxyls were similar regardless of the titania source; (ii) differences in the surface isoelectric point (IEP) were primarily attributable to differences in the surface concentration of acid and base sites; (iii) rutile has a higher surface concentration of basic hydroxyls, leading to a higher IEP; and (iv) P25 and P90 titania have slightly higher surface concentrationsof acidic hydroxyls relative to anatase or rutile. Temperature effects on surface acid-base properties are rarely reported yet are significant: from 5 to 65 °C, IEP values change by roughly one pH unit. The IEP changes were associated with large changes to the intrinsic acid-base equilibrium constants over this temperature range, rather than changes in the composition or concentration of the surface sites.
Collapse
Affiliation(s)
- Tae Yong Yun
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, United States
| | - Bert D Chandler
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania16802, United States
| |
Collapse
|
7
|
Longato A, Vanzan M, Colusso E, Corni S, Martucci A. Enhancing Tungsten Oxide Gasochromism with Noble Metal Nanoparticles: The Importance of the Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205522. [PMID: 36464497 DOI: 10.1002/smll.202205522] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Crystalline tungsten trioxide (WO3 ) thin films covered by noble metal (gold and platinum) nanoparticles are synthesized via wet chemistry and used as optical sensors for gaseous hydrogen. Sensing performances are strongly influenced by the catalyst used, with platinum (Pt) resulting as best. Surprisingly, it is found that gold (Au) can provide remarkable sensing activity that tuned out to be strongly dependent on the nanoparticle size: devices sensitized with smaller nanoparticles display better H2 sensing performance. Computational insight based on density functional theory calculations suggested that this can be related to processes occurring specifically at the Au nanoparticle-WO3 interface (whose extent is in fact dependent on the nanoparticle size), where the hydrogen dissociative adsorption turns out to be possible. While both experiments and calculations single out Pt as better than Au for sensing, the present work reveals how an exquisitely nanoscopic effect can yield unexpected sensing performance for Au on WO3 , and how these performances can be tuned by controlling the nanoscale features of the system.
Collapse
Affiliation(s)
- Alessandro Longato
- Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131, Italy
| | - Mirko Vanzan
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
| | - Elena Colusso
- Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, Modena, 41125, Italy
| | - Alessandro Martucci
- Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131, Italy
| |
Collapse
|
8
|
Deng C, Wang K, Qian X, Yao J, Xue N, Peng L, Guo X, Zhu Y, Ding W. Mild Oxidation of Toluene to Benzaldehyde by Air. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Changshun Deng
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kai Wang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaofeng Qian
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jun Yao
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Nianhua Xue
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Luming Peng
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xuefeng Guo
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
9
|
Aireddy D, Yu H, Cullen DA, Ding K. Elucidating the Roles of Amorphous Alumina Overcoat in Palladium-Catalyzed Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24290-24298. [PMID: 35584363 PMCID: PMC9164194 DOI: 10.1021/acsami.2c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Amorphous alumina overcoats generated by atomic layer deposition (ALD) have been shown to improve the selectivity and durability of supported metal catalysts in many reactions. Several mechanisms have been proposed to explain the enhanced catalytic performance, but the accessibilities of reactants through the amorphous overcoats remain elusive, which is crucial for understanding reaction mechanisms. Here, we show that an AlOx ALD overcoat is able to improve the alkene product selectivity of a supported Pd catalyst in acetylene (C2H2) hydrogenation. We further demonstrate that the AlOx ALD overcoat blocks the access of C2H2 (kinetic diameter of 0.33 nm), O2 (0.35 nm), and CO (0.38 nm) but allows H2 (0.29 nm) to access Pd surfaces. A H-D exchange experiment suggests that H2 might dissociate heterolytically at the Pd-AlOx interface. These findings are in favor of a hydrogen spillover mechanism.
Collapse
Affiliation(s)
- Divakar
R. Aireddy
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Haoran Yu
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David A. Cullen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Ding
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Gogia A, Mandal SK. Subtle Ligand Spacer Change in 2D Metal-Organic Framework Sheets for Dual Turn-On/Turn-Off Sensing of Acetylacetone and Turn-On Sensing of Water in Organic Solvents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16357-16368. [PMID: 35348313 DOI: 10.1021/acsami.2c02798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic framework (MOF)-based sensors for the detection of various analyte molecules has been a subject of absolute importance. However, most of these sensors rely on the turn-off (quenching) transduction response, while those reporting turn-on response are very rare. In this article, we have synthesized two new MOF-based sensors, {[Zn2(oxdz)2(tpbn)]·14H2O}n (1) and {[Zn2(oxdz)2(tpxn)]·10H2O·2C2H5OH}n (2), via the self-assembly of Zn(II) metal ions, a fluorogenic oxdz2- linker, and bis(tridentate) ligands (tpbn and tpxn) under ambient conditions. Their formation from such a self-assembly process has been evaluated on the basis of the geometry around the five-coordinated Zn(II), preferential meridional binding of the bis(tridentate) ligands, and diverse binding of the carboxylate groups in oxdz2-. Although 1 and 2 are isostructural, a difference in the transduction mechanism for the sensing of acetylacetone in organic solvents (turn-on for 1 and turn-off for 2) is observed and can be attributed to the spacer in the bis(tridentate) ligands. We have demonstrated the competing effect of the nonradiative interactions and photoinduced electron transfer toward the sensing mechanism. The results are well-supported by the Fourier transform infrared spectroscopy study, intensity versus concentration plots, spectral overlap measurements, time-resolved fluorescence studies, and MM2 and density functional theory calculations. Furthermore, we have showcased the utilization of 1 for the sensing of trace amounts of water in organic solvents.
Collapse
Affiliation(s)
- Alisha Gogia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli Post Office, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli Post Office, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
11
|
Affiliation(s)
- Divakar R. Aireddy
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kunlun Ding
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
12
|
Dietze EM, Chen L, Grönbeck H. Surface steps dominate the water formation on Pd(111) surfaces. J Chem Phys 2022; 156:064701. [DOI: 10.1063/5.0078918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Elisabeth M. Dietze
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, Göteborg, Sweden
| | - Lin Chen
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
13
|
Mine S, Toyao T, Hinuma Y, Shimizu KI. Understanding and controlling the formation of surface anion vacancies for catalytic applications. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00014h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic computational efforts aimed at calculating surface anion vacancy formation energies as important descriptors of catalytic performance are summarized.
Collapse
Affiliation(s)
- Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, 1-5, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, 1-5, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishigyo, Kyoto 615-8520, Japan
| | - Yoyo Hinuma
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda 563-8577, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, 1-5, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishigyo, Kyoto 615-8520, Japan
| |
Collapse
|
14
|
Mahdavi-Shakib A, Rich LC, Whittaker TN, Chandler BD. Hydrogen Adsorption at the Au/TiO2 Interface: Quantitative Determination and Spectroscopic Signature of the Reactive Interface Hydroxyl Groups at the Active Site. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akbar Mahdavi-Shakib
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lauren C. Rich
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Todd N. Whittaker
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
- Department of Chemical and Biological Engineering, The University of Colorado, Boulder, Colorado 80303, United States
| | - Bert D. Chandler
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Xia GJ, Wang YG. Solvent promotion on the metal-support interaction and activity of Pd@ZrO2 Catalyst: Formation of metal hydrides as the new catalytic active phase at the Solid-Liquid interface. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Potts DS, Bregante DT, Adams JS, Torres C, Flaherty DW. Influence of solvent structure and hydrogen bonding on catalysis at solid-liquid interfaces. Chem Soc Rev 2021; 50:12308-12337. [PMID: 34569580 DOI: 10.1039/d1cs00539a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Chris Torres
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Wang T, Chen W, Xia S, Ren Z, Dai D, Yang X, Zhou C. Anisotropic d-d Transition in Rutile TiO 2. J Phys Chem Lett 2021; 12:10515-10520. [PMID: 34677987 DOI: 10.1021/acs.jpclett.1c02931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The band gap state of TiO2, which is dominated by Ti3+ 3d character, is of great relevance to light absorption, electron trapping, charge recombination, and conduction band structure. Despite the importance, the explanation of the excitation from this state is controversial. To this end, the electronic structures of TiO2(110) and TiO2(011)-(2 × 1) have been systematically measured with two-photon photoemission spectroscopy. The results reveal the anisotropic nature of the electronic structure in rutile TiO2 at seemingly equivalent directions of [110] and [11̅0], the long axes of the TiO6 blocking unit. Although the resonant energy of these two d-d transitions is identical, the energy levels are systematically shifted by 0.1 eV. We propose this anisotropy originates from the broken symmetry of the rutile TiO2 crystals caused by the surface. The proposed asymmetry-caused electronic structure anisotropy could be generalized to other similar materials and may affect associated catalytic properties. This work provides an important benchmark for related calculations.
Collapse
Affiliation(s)
- Tianjun Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P.R. China
| | - Wei Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Shucai Xia
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Zefeng Ren
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P.R. China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P.R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P.R. China
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, P.R. China
| | - Chuanyao Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, Liaoning, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| |
Collapse
|
18
|
Manipulating Intermediates at the Au–TiO 2 Interface over InP Nanopillar Array for Photoelectrochemical CO 2 Reduction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Mahdavi-Shakib A, Kumar KBS, Whittaker TN, Xie T, Grabow LC, Rioux RM, Chandler BD. Kinetics of H 2 Adsorption at the Metal-Support Interface of Au/TiO 2 Catalysts Probed by Broad Background IR Absorbance. Angew Chem Int Ed Engl 2021; 60:7735-7743. [PMID: 33403732 DOI: 10.1002/anie.202013359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Indexed: 11/08/2022]
Abstract
H2 adsorption on Au catalysts is weak and reversible, making it difficult to quantitatively study. We demonstrate H2 adsorption on Au/TiO2 catalysts results in electron transfer to the support, inducing shifts in the FTIR background. This broad background absorbance (BBA) signal is used to quantify H2 adsorption; adsorption equilibrium constants are comparable to volumetric adsorption measurements. H2 adsorption kinetics measured with the BBA show a lower Eapp value (23 kJ mol-1 ) for H2 adsorption than previously reported from proxy H/D exchange (33 kJ mol-1 ). We also identify a previously unreported H-O-H bending vibration associated with proton adsorption on electronically distinct Ti-OH metal-support interface sites, providing new insight into the nature and dynamics of H2 adsorption at the Au/TiO2 interface.
Collapse
Affiliation(s)
| | - K B Sravan Kumar
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA.,Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA
| | - Todd N Whittaker
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
| | - Tianze Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lars C Grabow
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.,Texas Center for Superconductivity at the, University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bert D Chandler
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA.,Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
20
|
Hensley AJ, Bray J, Shangguan J, Chin YH(C, McEwen JS. Catalytic consequences of hydrogen addition events and solvent-adsorbate interactions during guaiacol-H2 reactions at the H2O-Ru(0 0 0 1) interface. J Catal 2021. [DOI: 10.1016/j.jcat.2020.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Mahdavi‐Shakib A, Kumar KBS, Whittaker TN, Xie T, Grabow LC, Rioux RM, Chandler BD. Kinetics of H
2
Adsorption at the Metal–Support Interface of Au/TiO
2
Catalysts Probed by Broad Background IR Absorbance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - K. B. Sravan Kumar
- Department of Chemistry Trinity University San Antonio TX 78212-7200 USA
- Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204-4004 USA
| | - Todd N. Whittaker
- Department of Chemistry Trinity University San Antonio TX 78212-7200 USA
| | - Tianze Xie
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Lars C. Grabow
- Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204-4004 USA
- Texas Center for Superconductivity at the University of Houston (TcSUH) University of Houston Houston TX 77204 USA
| | - Robert M. Rioux
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Bert D. Chandler
- Department of Chemistry Trinity University San Antonio TX 78212-7200 USA
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
22
|
Bates JS, Gounder R. Kinetic effects of molecular clustering and solvation by extended networks in zeolite acid catalysis. Chem Sci 2021; 12:4699-4708. [PMID: 34168752 PMCID: PMC8179612 DOI: 10.1039/d1sc00151e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/17/2021] [Indexed: 01/06/2023] Open
Abstract
Reactions catalyzed within porous inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media, causing turnover rates to depend strongly on interfacial structure and composition, collectively referred to as "solvent effects". Transition state theory treatments define how solvation phenomena enter kinetic rate expressions, and identify two distinct types of solvent effects that originate from molecular clustering and from the solvation of such clusters by extended solvent networks. We review examples from the recent literature that investigate reactions within microporous zeolite catalysts to illustrate these concepts, and provide a critical appraisal of open questions in the field where future research can aid in developing new chemistry and catalyst design principles.
Collapse
Affiliation(s)
- Jason S Bates
- Charles D. Davidson School of Chemical Engineering, Purdue University 480 Stadium Mall Drive West Lafayette IN 47907 USA
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University 480 Stadium Mall Drive West Lafayette IN 47907 USA
| |
Collapse
|
23
|
Zhao S, Lin L, Huang W, Zhang R, Wang D, Mu R, Fu Q, Bao X. Design of Lewis Pairs via Interface Engineering of Oxide-Metal Composite Catalyst for Water Activation. J Phys Chem Lett 2021; 12:1443-1452. [PMID: 33523659 DOI: 10.1021/acs.jpclett.0c03760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rational design and controlled construction of active centers remain grand challenges in heterogeneous catalysis, in particular for oxide catalysts with complex surface and interface structures. This work describes a facile way in the design of highly active Ni-O Lewis pairs for water activation where Ni and O sites act as Lewis acid and base, respectively. Surface science experiments indicate that dissociative adsorption of water occurs at edges of NiOx nanoislands grown on Au(111) and NiOx-Ni interfaces formed by further depositing metallic Ni layers along the edges of NiOx nanoislands. Enhanced activity of Ni-O Lewis pairs at the NiOx-Ni interface has been demonstrated by theoretical calculations, which are attributed to the higher Lewis acidity of metallic Ni sites and synergy of the metal and oxide components. Moreover, proton can migrate away from the NiOx-Ni interface and refresh the O base sites, leading to further hydroxylation of the neighboring Ni acid sites.
Collapse
Affiliation(s)
- Siqin Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wugen Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rankun Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Dongqing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Adams JS, Chemburkar A, Priyadarshini P, Ricciardulli T, Lu Y, Maliekkal V, Sampath A, Winikoff S, Karim AM, Neurock M, Flaherty DW. Solvent molecules form surface redox mediators in situ and cocatalyze O
2
reduction on Pd. Science 2021; 371:626-632. [DOI: 10.1126/science.abc1339] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/29/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Jason S. Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Ashwin Chemburkar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pranjali Priyadarshini
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Tomas Ricciardulli
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Yubing Lu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Vineet Maliekkal
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Abinaya Sampath
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Stuart Winikoff
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ayman M. Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| |
Collapse
|
25
|
Deo S, Janik MJ. Predicting an optimal oxide/metal catalytic interface for hydrodeoxygenation chemistry of biomass derivatives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00707f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex reaction paths, such as hydrodeoxygenation of multi-oxygenated reactants like furfuryl alcohol, can benefit from a close connection between multi-component (oxide–metal) catalytic sites.
Collapse
Affiliation(s)
- Shyam Deo
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- USA
| | - Michael J. Janik
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- USA
| |
Collapse
|
26
|
Wang S, Chen J, Li X, Ma T, He S. Catalytic CO Oxidation by O
2
Mediated with Single Gold Atom Doped Titanium Oxide Cluster Anions AuTi
2
O
4–6
−. Chemphyschem 2020; 21:2550-2556. [DOI: 10.1002/cphc.202000755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/16/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Si‐Dun Wang
- School of Chemistry and Chemical Engineering South China University of Technology 381 Wushan Road Tianhe District Guangzhou 510641 China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jiao‐Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| | - Xiao‐Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| | - Tong‐Mei Ma
- School of Chemistry and Chemical Engineering South China University of Technology 381 Wushan Road Tianhe District Guangzhou 510641 China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| |
Collapse
|
27
|
Bates JS, Bukowski BC, Greeley J, Gounder R. Structure and solvation of confined water and water-ethanol clusters within microporous Brønsted acids and their effects on ethanol dehydration catalysis. Chem Sci 2020; 11:7102-7122. [PMID: 33250979 PMCID: PMC7690318 DOI: 10.1039/d0sc02589e] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Water networks confined within zeolites solvate clustered reactive intermediates and must rearrange to accommodate transition states that differ in size and polarity, with thermodynamic penalties that depend on the shape of the confining environment.
Aqueous-phase reactions within microporous Brønsted acids occur at active centers comprised of water-reactant-clustered hydronium ions, solvated within extended hydrogen-bonded water networks that tend to stabilize reactive intermediates and transition states differently. The effects of these diverse clustered and networked structures were disentangled here by measuring turnover rates of gas-phase ethanol dehydration to diethyl ether (DEE) on H-form zeolites as water pressure was increased to the point of intrapore condensation, causing protons to become solvated in larger clusters that subsequently become solvated by extended hydrogen-bonded water networks, according to in situ IR spectra. Measured first-order rate constants in ethanol quantify the stability of SN2 transition states that eliminate DEE relative to (C2H5OH)(H+)(H2O)n clusters of increasing molecularity, whose structures were respectively determined using metadynamics and ab initio molecular dynamics simulations. At low water pressures (2–10 kPa H2O), rate inhibition by water (–1 reaction order) reflects the need to displace one water by ethanol in the cluster en route to the DEE-formation transition state, which resides at the periphery of water–ethanol clusters. At higher water pressures (10–75 kPa H2O), water–ethanol clusters reach their maximum stable size ((C2H5OH)(H+)(H2O)4–5), and water begins to form extended hydrogen-bonded networks; concomitantly, rate inhibition by water (up to –3 reaction order) becomes stronger than expected from the molecularity of the reaction, reflecting the more extensive disruption of hydrogen bonds at DEE-formation transition states that contain an additional solvated non-polar ethyl group compared to the relevant reactant cluster, as described by non-ideal thermodynamic formalisms of reaction rates. Microporous voids of different hydrophilic binding site density (Beta; varying H+ and Si–OH density) and different size and shape (Beta, MFI, TON, CHA, AEI, FAU), influence the relative extents to which intermediates and transition states disrupt their confined water networks, which manifest as different kinetic orders of inhibition at high water pressures. The confinement of water within sub-nanometer spaces influences the structures and dynamics of the complexes and extended networks formed, and in turn their ability to accommodate the evolution in polarity and hydrogen-bonding capacity as reactive intermediates become transition states in Brønsted acid-catalyzed reactions.
Collapse
Affiliation(s)
- Jason S Bates
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA . ;
| | - Brandon C Bukowski
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA . ;
| | - Jeffrey Greeley
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA . ;
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering , Purdue University , 480 Stadium Mall Drive , West Lafayette , IN 47907 , USA . ;
| |
Collapse
|