1
|
Chen Y, Hu Z, Shen Z, Xue X, Pu H. Preparation of superstructured comb polymers based on tadpole-shaped single-chain nanoparticles. Chem Sci 2024:d4sc05650g. [PMID: 39386903 PMCID: PMC11457303 DOI: 10.1039/d4sc05650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Compared with the formation of individual elements, the creation of superstructures often yields exceptional properties. This approach has been applied to assemble diverse synthetic building blocks (molecules, macromolecules, inorganic nanoparticles, etc.) into highly organized constructs. In the present study, a novel comb polymer superstructure is developed via the grafting of tadpole-shaped single-chain nanoparticles (T-SCNPs) onto a high-molecular-weight linear backbone (H-LP). The resulting superstructure (comb of T-SCNPs), which utilizes T-SCNPs as building blocks, exhibits distinct rheological behavior in solution. The influences of the microstructure and related parameters (specifically the relaxation time (τ R) and mesh size (ξ) of the entangled chains) on the macroscopic properties (modulus and viscosity) of this complex topological structure in solution are investigated. Compared with conventional comb macromolecules (comb of F-LPs) and blends of SCNPs with high-molecular-weight polymers (SCNPs&H-LP), T-SCNP combs exhibit significantly reduced chain entanglement, faster τ R, and larger ξ in solution, resulting in a substantially decreased viscosity (up to 90%). Furthermore, our research underscores the intricate relationship between these rheological properties and the size and concentration of grafted T-SCNPs. As the size or concentration of T-SCNPs increases, the mesh size of the entangled chains expands, which leads to increased τ R and decreased viscosity.
Collapse
Affiliation(s)
- Yangjing Chen
- Department of Polymer Materials, School of Materials Science & Engineering, Tongji University Shanghai 201804 China
| | - Zhiyu Hu
- Department of Polymer Materials, School of Materials Science & Engineering, Tongji University Shanghai 201804 China
| | - Zhigang Shen
- Sinopec Shanghai Research Institute of Petrochemical Technology Co., LTD. Shanghai 201208 China
| | - Xiaoqiang Xue
- Industrial College of Carbon Fiber and New Materials, School of Chemical Engineering and Materials, Changzhou Institute of Technology Changzhou Jiangsu 213000 China
| | - Hongting Pu
- Department of Polymer Materials, School of Materials Science & Engineering, Tongji University Shanghai 201804 China
| |
Collapse
|
2
|
Herranz M, Benito J, Foteinopoulou K, Karayiannis NC, Laso M. Polymorph Stability and Free Energy of Crystallization of Freely-Jointed Polymers of Hard Spheres. Polymers (Basel) 2023; 15:polym15061335. [PMID: 36987117 PMCID: PMC10058036 DOI: 10.3390/polym15061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The free energy of crystallization of monomeric hard spheres as well as their thermodynamically stable polymorph have been known for several decades. In this work, we present semianalytical calculations of the free energy of crystallization of freely-jointed polymers of hard spheres as well as of the free energy difference between the hexagonal closed packed (HCP) and face-centered cubic (FCC) polymorphs. The phase transition (crystallization) is driven by an increase in translational entropy that is larger than the loss of conformational entropy of chains in the crystal with respect to chains in the initial amorphous phase. The conformational entropic advantage of the HCP polymer crystal over the FCC one is found to be ΔschHCP-FCC≈0.331×10-5k per monomer (expressed in terms of Boltzmann's constant k). This slight conformational entropic advantage of the HCP crystal of chains is by far insufficient to compensate for the larger translational entropic advantage of the FCC crystal, which is predicted to be the stable one. The calculated overall thermodynamic advantage of the FCC over the HCP polymorph is supported by a recent Monte Carlo (MC) simulation on a very large system of 54 chains of 1000 hard sphere monomers. Semianalytical calculations using results from this MC simulation yield in addition a value of the total crystallization entropy for linear, fully flexible, athermal polymers of Δs≈0.93k per monomer.
Collapse
Affiliation(s)
- Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Javier Benito
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
3
|
Zhou D, Xu M, Gan Z, Yan XY, Ma Z, Zheng J, Dong XH. Discrete Diblock Copolymers with Precise Stereoconfiguration. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Zheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Shao Y, Han D, Tao Y, Feng F, Han G, Hou B, Liu H, Yang S, Fu Q, Zhang WB. Leveraging Macromolecular Isomerism for Phase Complexity in Janus Nanograins. ACS CENTRAL SCIENCE 2023; 9:289-299. [PMID: 36844495 PMCID: PMC9951285 DOI: 10.1021/acscentsci.2c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 06/18/2023]
Abstract
It remains intriguing whether macromolecular isomerism, along with competing molecular interactions, could be leveraged to create unconventional phase structures and generate considerable phase complexity in soft matter. Herein, we report the synthesis, assembly, and phase behaviors of a series of precisely defined regioisomeric Janus nanograins with distinct core symmetry. They are named B2DB2 where B stands for iso-butyl-functionalized polyhedral oligomeric silsesquioxanes (POSS) and D stands for dihydroxyl-functionalized POSS. While BPOSS prefers crystallization with a flat interface, DPOSS prefers to phase-separate from BPOSS. In solution, they form 2D crystals owing to strong BPOSS crystallization. In bulk, the subtle competition between crystallization and phase separation is strongly influenced by the core symmetry, leading to distinct phase structures and transition behaviors. The phase complexity was understood based on their symmetry, molecular packing, and free energy profiles. The results demonstrate that regioisomerism could indeed generate profound phase complexity.
Collapse
Affiliation(s)
- Yu Shao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Polymer
Chemistry & Physics of Ministry of Education, College of Chemistry
and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Di Han
- College
of Polymer Science & Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yangdan Tao
- College
of Polymer Science & Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fengfeng Feng
- Center
for Advanced Low-Dimension Materials, State Key Laboratory for Modification
of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Ge Han
- College
of Polymer Science & Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bo Hou
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Polymer
Chemistry & Physics of Ministry of Education, College of Chemistry
and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Hao Liu
- Center
for Advanced Low-Dimension Materials, State Key Laboratory for Modification
of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Shuguang Yang
- Center
for Advanced Low-Dimension Materials, State Key Laboratory for Modification
of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Qiang Fu
- College
of Polymer Science & Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wen-Bin Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Polymer
Chemistry & Physics of Ministry of Education, College of Chemistry
and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Ma Z, Zhou D, Xu M, Gan Z, Zheng T, Wang S, Tan R, Dong XH. Discrete Linear–Branched Block Copolymer with Broken Architectural Symmetry. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Tianyu Zheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Shuai Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Gan Z, Zhou D, Ma Z, Xu M, Xu Z, He J, Zhou J, Dong XH. Local Chain Feature Mandated Self-Assembly of Block Copolymers. J Am Chem Soc 2023; 145:487-497. [PMID: 36572645 DOI: 10.1021/jacs.2c10761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work demonstrates an effective and robust approach to regulate phase behaviors of a block copolymer by programming local features into otherwise homogeneous linear chains. A library of sequence-defined, isomeric block copolymers with globally the same composition but locally different side chain patterns were elaborately designed and prepared through an iterative convergent growth method. The precise chemical structure and uniform chain length rule out all inherent molecular defects associated with statistical distribution. The local features are found to exert surprisingly pronounced impacts on the self-assembly process, which have yet to be well recognized. While other molecular parameters remain essentially the same, simply rearranging a few methylene units among the alkyl side chains leads to strikingly different phase behaviors, bringing about (i) a rich diversity of nanostructures across hexagonally packed cylinders, Frank-Kasper A15 phase, Frank-Kasper σ phase, dodecagonal quasicrystals, and disordered state; (ii) a significant change of lattice dimension; and (iii) a substantial shift of order-to-disorder transition temperature (up to 40 °C). Different from the commonly observed enthalpy-dominated cases, the frustration due to the divergence between the native molecular geometry originating from side chain distribution and the local packing environment mandated by lattice symmetry is believed to play a pivotal role. Engineering the local chain feature introduces another level of structural complexity, opening up a new and effective pathway for modulating phase transition without changing the chemistry or composition.
Collapse
Affiliation(s)
- Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhuoqi Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawen He
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Liu Z, Wang S, Yang Z, Dong XH. Regioisomeric Giant Triblock Molecules: Role of the Linker. Macromol Rapid Commun 2023; 44:e2200509. [PMID: 35975733 DOI: 10.1002/marc.202200509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/23/2022] [Indexed: 01/11/2023]
Abstract
In this study, polyhedral oligomeric silsesquioxane (POSS) based giant triblock molecules with precisely defined regio-configuration are modularly prepared through highly efficient coupling reactions. The length of the linker connecting neighboring nanoparticles is elaborately designed to regulate the geometric constraints. The triblock molecules adopt a folded packing during phase separation, and the regio-configuration imparts direct influence on the self-assembly behaviors. The ortho-isomers form periodic structures with a larger domain size, larger interfacial curvature, and enhanced phase stability. The regio-effect is closely related to the length and symmetry of the linker. As the linker extends, the neighboring particles gradually decouple, and the regio-effect diminishes. The symmetry of the linker shows an even more profound impact. This work quantitatively scrutinized the role of the linker, opening an avenue for engineering the assembled structures with molecular precision.
Collapse
Affiliation(s)
- Zhongguo Liu
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Shuai Wang
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Ze Yang
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
8
|
Melkani A, Patapoff A, Paulose J. Delocalization of interacting directed polymers on a periodic substrate: Localization length and critical exponents from non-Hermitian spectra. Phys Rev E 2023; 107:014501. [PMID: 36797938 DOI: 10.1103/physreve.107.014501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023]
Abstract
We study a classical model of thermally fluctuating polymers confined to two dimensions, experiencing a grooved periodic potential, and subject to pulling forces both along and transverse to the grooves. The equilibrium polymer conformations are described by a mapping to a quantum system with a non-Hermitian Hamiltonian and with fermionic statistics generated by noncrossing interactions among polymers. Using molecular dynamics simulations and analytical calculations, we identify a localized and a delocalized phase of the polymer conformations, separated by a delocalization transition which corresponds (in the quantum description) to the breakdown of a band insulator when driven by an imaginary vector potential. We calculate the average tilt of the many-body system, at arbitrary shear values and filling density of polymer chains, in terms of the complex-valued non-Hermitian band structure. We find the critical shear value, the localization length, and the critical exponent by which the shear modulus diverges in terms of the branch points (exceptional points) in the band structure at which the bandgap closes. We also investigate the combined effects of non-Hermitian delocalization and localization due to both periodicity and disorder, uncovering preliminary evidence that while disorder favors localization at high values, it encourages delocalization at lower values.
Collapse
Affiliation(s)
- Abhijeet Melkani
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA.,Institute for Fundamental Science and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Jayson Paulose
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA.,Institute for Fundamental Science and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
9
|
Herranz M, Foteinopoulou K, Karayiannis NC, Laso M. Polymorphism and Perfection in Crystallization of Hard Sphere Polymers. Polymers (Basel) 2022; 14:polym14204435. [PMID: 36298013 PMCID: PMC9612263 DOI: 10.3390/polym14204435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
We present results on polymorphism and perfection, as observed in the spontaneous crystallization of freely jointed polymers of hard spheres, obtained in an unprecedentedly long Monte Carlo (MC) simulation on a system of 54 chains of 1000 monomers. Starting from a purely amorphous configuration, after an initial dominance of the hexagonal closed packed (HCP) polymorph and a transitory random hexagonal close packed (rHCP) morphology, the system crystallizes in a final, stable, face centered cubic (FCC) crystal of very high perfection. An analysis of chain conformational characteristics, of the spatial distribution of monomers and of the volume accessible to them shows that the phase transition is caused by an increase in translational entropy that is larger than the loss of conformational entropy of the chains in the crystal, compared to the amorphous state. In spite of the significant local re-arrangements, as reflected in the bending and torsion angle distributions, the average chain size remains unaltered during crystallization. Polymers in the crystal adopt ideal random walk statistics as their great length renders local conformational details, imposed by the geometry of the FCC crystal, irrelevant.
Collapse
Affiliation(s)
| | | | - Nikos Ch. Karayiannis
- Correspondence: (N.C.K.); (M.L.); Tel.: +34-910677318 (N.C.K.); +34-910677320 (M.L.)
| | - Manuel Laso
- Correspondence: (N.C.K.); (M.L.); Tel.: +34-910677318 (N.C.K.); +34-910677320 (M.L.)
| |
Collapse
|
10
|
Zhou D, Xu M, Ma Z, Gan Z, Zheng J, Tan R, Dong XH. Discrete Diblock Copolymers with Tailored Conformational Asymmetry: A Precise Model Platform to Explore Complex Spherical Phases. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Zheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
11
|
Mohamed MG, Kuo SW. Progress in the self-assembly of organic/inorganic polyhedral oligomeric silsesquioxane (POSS) hybrids. SOFT MATTER 2022; 18:5535-5561. [PMID: 35880446 DOI: 10.1039/d2sm00635a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This Review describes recent progress in the self-assembly of organic/inorganic POSS hybrids derived from mono-, di-, and multi-functionalized POSS cages. We highlight the self-assembled structures and physical properties of giant surfactants and chain-end- and side-chain-type hybrids derived from mono-functionalized POSS cages; main-chain-type hybrids derived from di-functionalized POSS cages; and star-shaped hybrids derived from multi-functionalized POSS cages; with various polymeric attachments, including polystyrene, poly(methyl methacrylate), phenolic, PVPh, and polypeptides.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
12
|
Liu Z, Wang S, Li G, Yang Z, Gan Z, Dong XH. Discrete Giant Polymeric Chain with Precise Sequence and Regio-configuration: A Concise Multiblock Model System. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongguo Liu
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Shuai Wang
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Gang Li
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Ze Yang
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Ma Z, Tan R, Gan Z, Zhou D, Yang Y, Zhang W, Dong XH. Modulation of the Complex Spherical Packings through Rationally Doping a Discrete Homopolymer into a Discrete Block Copolymer: A Quantitative Study. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yida Yang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Fractal Growth of Giant Amphiphiles in Langmuir-Blodgett Films. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Cai D, Li J, Ma Z, Gan Z, Shao Y, Xing Q, Tan R, Dong XH. Effect of Molecular Architecture and Symmetry on Self-Assembly: A Quantitative Revisit Using Discrete ABA Triblock Copolymers. ACS Macro Lett 2022; 11:555-561. [PMID: 35575328 DOI: 10.1021/acsmacrolett.1c00788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The inherent statistical heterogeneities associated with chain length, composition, and architecture of synthetic block copolymers compromise the quantitative interpretation of their self-assembly process. This study scrutinizes the contribution of molecular architecture on phase behaviors using discrete ABA triblock copolymers with precise chemical structure and uniform chain length. A group of discrete triblock copolymers with varying composition and symmetry were modularly synthesized through a combination of iterative growth methods and efficient coupling reactions. The symmetric ABA triblock copolymers self-assemble into long-range ordered structures with expanded domain spacings and enhanced phase stability, compared with the diblock counterparts snipped at the middle point. By tuning the relative chain length of two end blocks, the molecular asymmetry reduces the packing frustration, and thus increases the order-to-disorder transition temperature and enlarges the domain sizes. This study would serve as a quantitative model system to correlate the experimental observations with the theoretical assessments and to provide quantitative understandings for the relationship between molecular architecture and self-assembly.
Collapse
Affiliation(s)
- Dong Cai
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Jinbin Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yu Shao
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian Xing
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
16
|
Feng F, Shao Y, Wu W, Li X, Hong C, Jin L, Yue K, Zhang WB, Liu H. Crystallization of Precise Side-Chain Giant Molecules with Tunable Sequences and Functionalities. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fengfeng Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yu Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenjing Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Xiangqian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Chengyang Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Liang Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Kan Yue
- South China Advanced Institute of Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Duan S, Yang X, Yang Z, Liu Y, Shi Q, Yang Z, Wu H, Han Y, Wang Y, Shen H, Huang Z, Dong XH, Zhang Z. A Versatile Synthetic Platform for Discrete Oligo- and Polyesters Based on Optimized Protective Groups Via Iterative Exponential Growth. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suhua Duan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Xiaojie Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Ze Yang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, 510640 Guangzhou, China
| | - Yuxin Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Qiunan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Zhilin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Haibing Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Yue Han
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Yongquan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Hang Shen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Zhihao Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, 510640 Guangzhou, China
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, 215123 Suzhou, China
| |
Collapse
|
18
|
Zhou D, Xu M, Ma Z, Gan Z, Tan R, Wang S, Zhang Z, Dong XH. Precisely Encoding Geometric Features into Discrete Linear Polymer Chains for Robust Structural Engineering. J Am Chem Soc 2021; 143:18744-18754. [PMID: 34714634 DOI: 10.1021/jacs.1c09575] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular shape is an essential parameter that regulates the self-organization and recognition process, which has not yet been well appreciated and exploited in block polymers due to the lack of precise and efficient modulation methods. This work (i) develops a robust approach to break the intrinsic symmetry of linear polymers by introducing geometric features into otherwise homogeneous chains and (ii) quantitatively highlights the critical contribution of molecular geometry/architecture to the self-assembly behaviors. Iteratively connecting homologous monomers of different side chains according to pre-designed sequences generates discrete polymers with exact chemical structure, uniform chain length, and programmable side-chain gradient along the backbone, which transcribes into diverse shapes. The precise chemistry eliminates all the defects and heterogeneities, providing a delicate platform for fundamental inquiries into the role of molecular geometry. A rich collection of unconventional complex phases, including Frank-Kasper A15 and σ phases, as well as a dodecagonal quasicrystal phase, were captured in these rigorous single-component systems. The self-assembly behaviors are strikingly sensitive to subtle variations of geometry, such that simply migrating a few methylene units among the side chains would generate substantial differences in lattice size or phase stability, or even trigger a phase transition toward distinct structures. The phenomena can be rationalized with a geometric argument that nonuniform side chain distribution leads to conformational mismatch between two immiscible blocks, resulting in varied interfacial curvatures and distinct lattice symmetries. The profound contribution demonstrates that molecular geometry is an effective and robust parameter for structural engineering.
Collapse
Affiliation(s)
- Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shuai Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
19
|
Shao Y, Han D, Yan X, Hou B, Li Y, He J, Fu Q, Zhang W. Phase Behaviors of Multi‐tailed
B
2
AB
2
‐Type
Regio‐isomeric Giant Surfactants at the
Columnar‐Spherical
Boundary
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yu Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Di Han
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu Sichuan 610065 China
| | - Xiaojin Yan
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Soochow University Suzhou Jiangsu 215123 China
| | - Bo Hou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yiwen Li
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu Sichuan 610065 China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Soochow University Suzhou Jiangsu 215123 China
| | - Qiang Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu Sichuan 610065 China
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
20
|
Song Q, Dong Q, Dong XH, Zhu YL, Li W. Self-Assembly Behaviors of Giant Amphiphiles Containing Cubic Cage-like “Monomers”. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Qingliang Song
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
21
|
Zhang H, Zhou Z, Chen X, Yu B, Luo Z, Li X, Rahman MA, Sha Y. Sequence-Controlled Metallopolymers: Synthesis and Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hao Zhang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhou Zhou
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Chen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Yu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyang Luo
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Md Anisur Rahman
- Chemical Science Division, Oak Ridge National LaboratoryOak Ridge, Tennessee 37831-2008, United States
| | - Ye Sha
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
22
|
Liu Z, Chen X, Yang Z, Wang S, Gan Z, Li G, Dong XH. Precise Amphiphilic Giant Polymeric Chain Based on Nanosized Monomers with Exact Regio-Configuration. ACS NANO 2021; 15:12367-12374. [PMID: 34236829 DOI: 10.1021/acsnano.1c04486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymeric chains made of "giant" monomers at a larger length scale provide intriguing insights into the fundamental principles of polymer science. In this study, we modularly prepared a library of discrete amphiphilic polymeric chains using molecular nanoparticles as repeat units, with exact control of composition, chain length, surface property, and regio-configuration. These giant polymeric chains self-assembled into a rich collection of highly ordered phases. The precise chemical structure and uniform chain length eliminate all the inherent molecular "defects", while the nanosized monomer amplifies minute structural differences, providing an ideal platform for a systematic scrutiny of the self-assembly behaviors at a larger length scale. The compositional and regio-configurational contribution was carefully studied. The regio-regularity is found to have a direct and profound impact on the chain conformation, leading to a distinct molecular packing scheme and therefore shifting the phase boundaries. With increasing the length of the linker, the regio-constraint gradually diminishes, and the neighboring particles would eventually be decoupled.
Collapse
Affiliation(s)
- Zhongguo Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xin Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ze Yang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuai Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Gang Li
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
23
|
Zhou D, Xu M, Li J, Tan R, Ma Z, Dong XH. Effect of Chain Length on Polymer Stereocomplexation: A Quantitative Study. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinbin Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
24
|
Feng F, Guo D, Shao Y, Yan X, Yue K, Pan Z, Li X, Xiao D, Jin L, Zhang WB, Liu H. Thickness control of 2D nanosheets assembled from precise side-chain giant molecules. Chem Sci 2021; 12:5216-5223. [PMID: 34163758 PMCID: PMC8179583 DOI: 10.1039/d1sc00021g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The performance of 2D nanomaterials hinges on both the chemical compositions and the morphological structures across different length scales. Among all the three dimensions, thickness is the only one that falls into the nanometer scale and, to some extent, determines the intrinsic properties of 2D nanomaterials. In this study, we report the preparation and precise thickness control of 2D nanosheets assembled from a library of monodispersed amphiphilic giant molecules composed of functional polyhedral oligomeric silsesquioxanes (POSSs) as the side groups. Solution self-assembly of such giant molecules resulted in 2D nanosheets with similar structural configurations, where a bilayer of hydrophobic isobutyl POSS (BPOSS) is sandwiched by two monolayers of hydrophilic POSS bearing carboxylic acid groups (APOSS). The thickness of the obtained nanosheets could be tuned through adjusting the chemical compositions of the pendant POSS cages. Intriguingly, we found that the thickness of the 2D nanosheets was not necessarily proportional to the contour length of the giant molecule nor the total number of POSS cages tethered to the main chain. Indeed, the number ratio of BPOSS to APOSS, rather than the exact number, played a deterministic role in the thickness control. To explain the unusual thickness dependence, we built up a structure model with an in-plane orientation of the giant molecules in the nanosheets, from which a formula was further deduced to semi-quantitatively describe the inverse relationship between the overall thickness and the number ratio of BPOSS to APOSS.
Collapse
Affiliation(s)
- Fengfeng Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - Dong Guo
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron Akron Ohio 44325 USA
| | - Yu Shao
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Xiang Yan
- School of Materials Science and Engineering, Baise University Baise 533000 P. R. China
| | - Kan Yue
- South China Advanced Institute of Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Zhipeng Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - Xiangqian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - Dongcheng Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - Liang Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Hao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| |
Collapse
|