1
|
Pamungkas KKP, Fureraj I, Assies L, Sakai N, Mercier V, Chen XX, Vauthey E, Matile S. Core-Alkynylated Fluorescent Flippers: Altered Ultrafast Photophysics to Track Thick Membranes. Angew Chem Int Ed Engl 2024; 63:e202406204. [PMID: 38758302 DOI: 10.1002/anie.202406204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Fluorescent flippers have been introduced as small-molecule probes to image membrane tension in living systems. This study describes the design, synthesis, spectroscopic and imaging properties of flippers that are elongated by one and two alkynes inserted between the push and the pull dithienothiophene domains. The resulting mechanophores combine characteristics of flippers, reporting on physical compression in the ground state, and molecular rotors, reporting on torsional motion in the excited state, to take their photophysics to new level of sophistication. Intensity ratios in broadened excitation bands from differently twisted conformers of core-alkynylated flippers thus report on mechanical compression. Lifetime boosts from ultrafast excited-state planarization and lifetime drops from competitive intersystem crossing into triplet states report on viscosity. In standard lipid bilayer membranes, core-alkynylated flippers are too long for one leaflet and tilt or extend into disordered interleaflet space, which preserves rotor-like torsional disorder and thus weak, blue-shifted fluorescence. Flipper-like planarization occurs only in highly ordered membranes of matching leaflet thickness, where they light up and selectively report on these thick membranes with red-shifted, sharpened excitation maxima, high intensity and long lifetime.
Collapse
Affiliation(s)
| | - Ina Fureraj
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Lea Assies
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | - Xiao-Xiao Chen
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
3
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
4
|
García-Calvo J, Chen XX, Sakai N, Matile S, Torres T. Subphthalocyanine-flipper dyads for selective membrane staining. Phys Chem Chem Phys 2024; 26:4759-4765. [PMID: 38252531 PMCID: PMC10829537 DOI: 10.1039/d3cp05476d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
The design, synthesis and evaluation of a subphthalocyanine-flipper (SubPc-Flipper) amphiphilic dyad is reported. This dyad combines two fluorophores that function in the visible region (420-800 nm) for the simultaneous sensing of both ordered and disordered lipidic membranes. The flipper probes part of the dyad possesses mechanosensitivity, long fluorescence lifetimes (τ = 3.5-5 ns) and selective staining of ordered membranes. On the other hand, subphthalocyanines (SubPc) are short-lifetime (τ = 1-2.5 ns) fluorophores that are insensitive to membrane tension. As a result of a Förster Resonance Energy Transfer (FRET) process, the dyad not only retains the mechanosensitivity of flippers but also demonstrates high selectivity and emission in different kinds of lipidic membranes. The dyad exhibits high emission and sensitivity to membrane tension (Δτ = 3.5 ns) when tested in giant unilamellar vesicles (GUVs) with different membrane orders. Overall, the results of this study represent a significant advancement in the applications of flippers and dyads in mechanobiology.
Collapse
Affiliation(s)
- José García-Calvo
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de Madrid Cantoblanco, 28049-Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
- IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Xiao-Xiao Chen
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Tomás Torres
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de Madrid Cantoblanco, 28049-Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
- IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
5
|
Chen XX, Gomila RM, García-Arcos JM, Vonesch M, Gonzalez-Sanchis N, Roux A, Frontera A, Sakai N, Matile S. Fluorogenic In Situ Thioacetalization: Expanding the Chemical Space of Fluorescent Probes, Including Unorthodox, Bifurcated, and Mechanosensitive Chalcogen Bonds. JACS AU 2023; 3:2557-2565. [PMID: 37772186 PMCID: PMC10523495 DOI: 10.1021/jacsau.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
Progress with fluorescent flippers, small-molecule probes to image membrane tension in living systems, has been limited by the effort needed to synthesize the twisted push-pull mechanophore. Here, we move to a higher oxidation level to introduce a new design paradigm that allows the screening of flipper probes rapidly, at best in situ. Late-stage clicking of thioacetals and acetals allows simultaneous attachment of targeting units and interfacers and exploration of the critical chalcogen-bonding donor at the same time. Initial studies focus on plasma membrane targeting and develop the chemical space of acetals and thioacetals, from acyclic amino acids to cyclic 1,3-heterocycles covering dioxanes as well as dithiolanes, dithianes, and dithiepanes, derived also from classics in biology like cysteine, lipoic acid, asparagusic acid, DTT, and epidithiodiketopiperazines. From the functional point of view, the sensitivity of membrane tension imaging in living cells could be doubled, with lifetime differences in FLIM images increasing from 0.55 to 1.11 ns. From a theoretical point of view, the complexity of mechanically coupled chalcogen bonding is explored, revealing, among others, intriguing bifurcated chalcogen bonds.
Collapse
Affiliation(s)
- Xiao-Xiao Chen
- Department
of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rosa M. Gomila
- Departament
de Química, Universitat de les Illes
Balears, SP-07122 Palma de Mallorca, Spain
| | | | - Maxime Vonesch
- Department
of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Aurelien Roux
- Department
of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, SP-07122 Palma de Mallorca, Spain
| | - Naomi Sakai
- Department
of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Collot M, Pfister S, Klymchenko AS. Advanced functional fluorescent probes for cell plasma membranes. Curr Opin Chem Biol 2022; 69:102161. [DOI: 10.1016/j.cbpa.2022.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
|
7
|
Tamura T, Hamachi I. Chemical biology tools for imaging-based analysis of organelle membranes and lipids. Curr Opin Chem Biol 2022; 70:102182. [PMID: 35779350 DOI: 10.1016/j.cbpa.2022.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Membrane biology studies have revealed that in addition to providing structural support for compartment formation and membrane protein function, subcellular biomembranes are also critically involved in many biological events. To facilitate our understanding of the functions, biophysical properties and structural dynamics of organelle membranes, various exciting chemical biology tools have recently emerged. This short review aims to describe the latest molecular probes for organelle membrane studies. In particular, we will feature chemical strategies to visualize and quantitatively analyze the dynamic propeties of organelle membranes and lipids and discuss current limitations and potential future directions of this challenging research area.
Collapse
Affiliation(s)
- Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; ERATO, Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
8
|
Sakai N, Assies L, Matile S. G‐Quartets, 4‐Way Junctions and Triple Helices but Not DNA Duplexes: Planarization of Twisted Push‐Pull Flipper Probes by Surface Recognition Rather Than Physical Compression. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naomi Sakai
- University of Geneva: Universite de Geneve Department of Organic Chemistry SWITZERLAND
| | - Lea Assies
- University of Geneva: Universite de Geneve Department of Organic Chemistry SWITZERLAND
| | - Stefan Matile
- University of Geneva Department of Organic Chemistry Quai Ernest-Ansermet 30 CH-1211 Geneva SWITZERLAND
| |
Collapse
|
9
|
Seiler DK, Hay JC. Genetically encoded fluorescent tools: Shining a little light on ER-to-Golgi transport. Free Radic Biol Med 2022; 183:14-24. [PMID: 35272000 PMCID: PMC9097910 DOI: 10.1016/j.freeradbiomed.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/11/2022]
Abstract
Since the first fluorescent proteins (FPs) were identified and isolated over fifty years ago, FPs have become commonplace yet indispensable tools for studying the constitutive secretory pathway in live cells. At the same time, genetically encoded chemical tags have provided a new use for much older fluorescent dyes. Innovation has also produced several specialized methods to allow synchronous release of cargo proteins from the endoplasmic reticulum (ER), enabling precise characterization of sequential trafficking steps in the secretory pathway. Without the constant innovation of the researchers who design these tools to control, image, and quantitate protein secretion, major discoveries about ER-to-Golgi transport and later stages of the constitutive secretory pathway would not have been possible. We review many of the tools and tricks, some 25 years old and others brand new, that have been successfully implemented to study ER-to-Golgi transport in intact and living cells.
Collapse
Affiliation(s)
- Danette Kowal Seiler
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, MT, 59812, USA
| | - Jesse C Hay
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
10
|
Yamakado T, Saito S. Ratiometric Flapping Force Probe That Works in Polymer Gels. J Am Chem Soc 2022; 144:2804-2815. [PMID: 35108003 DOI: 10.1021/jacs.1c12955] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film.
Collapse
Affiliation(s)
- Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Kotani R, Yokoyama S, Nobusue S, Yamaguchi S, Osuka A, Yabu H, Saito S. Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nat Commun 2022; 13:303. [PMID: 35027559 PMCID: PMC8758707 DOI: 10.1038/s41467-022-27972-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the transmission of nanoscale forces in the pico-to-nanonewton range is important in polymer physics. While physical approaches have limitations in analyzing the local force distribution in condensed environments, chemical analysis using force probes is promising. However, there are stringent requirements for probing the local forces generated before structural damage. The magnitude of those forces corresponds to the range below covalent bond scission (from 200 pN to several nN) and above thermal fluctuation (several pN). Here, we report a conformationally flexible dual-fluorescence force probe with a theoretically estimated threshold of approximately 100 pN. This probe enables ratiometric analysis of the distribution of local forces in a stretched polymer chain network. Without changing the intrinsic properties of the polymer, the force distribution was reversibly monitored in real time. Chemical control of the probe location demonstrated that the local stress concentration is twice as biased at crosslinkers than at main chains, particularly in a strain-hardening region. Due to the high sensitivity, the percentage of the stressed force probes was estimated to be more than 1000 times higher than the activation rate of a conventional mechanophore.
Collapse
Affiliation(s)
- Ryota Kotani
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Soichi Yokoyama
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Shunpei Nobusue
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | | | - Atsuhiro Osuka
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroshi Yabu
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
- PRESTO, Japan Science and Technology Agency, Kyoto, 606-8502, Japan.
| |
Collapse
|
12
|
López‐Andarias J, Eblighatian K, Pasquer QTL, Assies L, Sakai N, Hoogendoorn S, Matile S. Photocleavable Fluorescent Membrane Tension Probes: Fast Release with Spatiotemporal Control in Inner Leaflets of Plasma Membrane, Nuclear Envelope, and Secretory Pathway. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Javier López‐Andarias
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Krikor Eblighatian
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Quentin T. L. Pasquer
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Sascha Hoogendoorn
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
13
|
López‐Andarias J, Eblighatian K, Pasquer QTL, Assies L, Sakai N, Hoogendoorn S, Matile S. Photocleavable Fluorescent Membrane Tension Probes: Fast Release with Spatiotemporal Control in Inner Leaflets of Plasma Membrane, Nuclear Envelope, and Secretory Pathway. Angew Chem Int Ed Engl 2022; 61:e202113163. [PMID: 34734671 PMCID: PMC9299180 DOI: 10.1002/anie.202113163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Mechanosensitive flipper probes are attracting interest as fluorescent reporters of membrane order and tension in biological systems. We introduce PhotoFlippers, which contain a photocleavable linker and an ultralong tether between mechanophore and various targeting motifs. Upon irradiation, the original probe is released and labels the most ordered membrane that is accessible by intermembrane transfer. Spatiotemporal control from photocleavable flippers is essential to access open, dynamic or elusive membrane motifs without chemical or physical interference. For instance, fast release with light is shown to place the original small-molecule probes into the innermost leaflet of the nuclear envelope to image changes in membrane tension, at specific points in time of membrane trafficking along the secretory pathway, or in the inner leaflet of the plasma membrane to explore membrane asymmetry. These results identify PhotoFlippers as useful chemistry tools to enable research in biology.
Collapse
Affiliation(s)
- Javier López‐Andarias
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Krikor Eblighatian
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Quentin T. L. Pasquer
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Lea Assies
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Sascha Hoogendoorn
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
14
|
Assies L, García-Calvo J, Piazzolla F, Sanchez S, Kato T, Reymond L, Goujon A, Colom A, López-Andarias J, Straková K, Mahecic D, Mercier V, Riggi M, Jiménez-Rojo N, Roffay C, Licari G, Tsemperouli M, Neuhaus F, Fürstenberg A, Vauthey E, Hoogendoorn S, Gonzalez-Gaitan M, Zumbuehl A, Sugihara K, Gruenberg J, Riezman H, Loewith R, Manley S, Roux A, Winssinger N, Sakai N, Pitsch S, Matile S. Flipper Probes for the Community. Chimia (Aarau) 2021; 75:1004-1011. [PMID: 34920768 DOI: 10.2533/chimia.2021.1004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This article describes four fluorescent membrane tension probes that have been designed, synthesized, evaluated, commercialized and applied to current biology challenges in the context of the NCCR Chemical Biology. Their names are Flipper-TR®, ER Flipper-TR®, Lyso Flipper-TR®, and Mito Flipper-TR®. They are available from Spirochrome.
Collapse
Affiliation(s)
- Lea Assies
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - José García-Calvo
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Francesca Piazzolla
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Samantha Sanchez
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Takehiro Kato
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Luc Reymond
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Spirochrome AG, Chalberwiesenstrasse 4, CH-8260 Stein am Rhein, Switzerland
| | - Antoine Goujon
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Adai Colom
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Javier López-Andarias
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Karolína Straková
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Dora Mahecic
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; École Polytechnique Fédérale de Lausanne - EPFL, SB Cubotron 427, CH-1015 Lausanne, Switzerland
| | - Vincent Mercier
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Margot Riggi
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva; Department of Molecular Biology, University of Geneva
| | - Noemi Jiménez-Rojo
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Chloé Roffay
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | | | - Maria Tsemperouli
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Frederik Neuhaus
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Alexandre Fürstenberg
- Department of Physical Chemistry, University of Geneva; Department of Inorganic and Analytical Chemistry, University of Geneva
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva
| | - Sascha Hoogendoorn
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Marcos Gonzalez-Gaitan
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Andreas Zumbuehl
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Kaori Sugihara
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Physical Chemistry, University of Geneva
| | - Jean Gruenberg
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Howard Riezman
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Robbie Loewith
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Molecular Biology, University of Geneva
| | - Suliana Manley
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; École Polytechnique Fédérale de Lausanne - EPFL, SB Cubotron 427, CH-1015 Lausanne, Switzerland
| | - Aurelien Roux
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Nicolas Winssinger
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Naomi Sakai
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Stefan Pitsch
- Spirochrome AG, Chalberwiesenstrasse 4, CH-8260 Stein am Rhein, Switzerland
| | - Stefan Matile
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland;,
| |
Collapse
|
15
|
Martinent R, Tawffik S, López-Andarias J, Moreau D, Laurent Q, Matile S. Dithiolane quartets: thiol-mediated uptake enables cytosolic delivery in deep tissue. Chem Sci 2021; 12:13922-13929. [PMID: 34760179 PMCID: PMC8549803 DOI: 10.1039/d1sc04828g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The cytosolic delivery of various substrates in 3D multicellular spheroids by thiol-mediated uptake is reported. This is important because most orthodox systems, including polycationic cell-penetrating peptides, fail to deliver efficiently into deep tissue. The grand principles of supramolecular chemistry, that is the pH dependence of dynamic covalent disulfide exchange with known thiols on the transferrin receptor, are proposed to account for transcytosis into deep tissue, while the known but elusive exchange cascades along the same or other partners assure cytosolic delivery in kinetic competition. For quantitative detection in the cytosol, the 2D chloroalkane penetration assay (CAPA) is translated to 3D deep tissue. The targeted delivery of quantum dots, otherwise already troublesome in 2D culture, and the controlled release of mechanophores are realized to exemplify the power of thiol-mediated uptake into spheroids. As transporters, dithiolane quartets on streptavidin templates are introduced as modular motifs. Built from two amino acids only, the varied stereochemistry and peptide sequence are shown to cover maximal functional space with minimal structural change, i.e., constitutional isomers. Reviving a classic in peptide chemistry, this templated assembly of β quartets promises to expand streptavidin biotechnology in new directions, while the discovery of general cytosolic delivery in deep tissue as an intrinsic advantage further enhances the significance and usefulness of thiol-mediated uptake.
Collapse
Affiliation(s)
- Rémi Martinent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Salman Tawffik
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Dimitri Moreau
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Quentin Laurent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| |
Collapse
|
16
|
Cantelli A, Malferrari M, Soldà A, Simonetti G, Forni S, Toscanella E, Mattioli EJ, Zerbetto F, Zanelli A, Di Giosia M, Zangoli M, Barbarella G, Rapino S, Di Maria F, Calvaresi M. Human Serum Albumin-Oligothiophene Bioconjugate: A Phototheranostic Platform for Localized Killing of Cancer Cells by Precise Light Activation. JACS AU 2021; 1:925-935. [PMID: 34467339 PMCID: PMC8395684 DOI: 10.1021/jacsau.1c00061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 05/05/2023]
Abstract
The electronic, optical, and redox properties of thiophene-based materials have made them pivotal in nanoscience and nanotechnology. However, the exploitation of oligothiophenes in photodynamic therapy is hindered by their intrinsic hydrophobicity that lowers their biocompatibility and availability in water environments. Here, we developed human serum albumin (HSA)-oligothiophene bioconjugates that afford the use of insoluble oligothiophenes in physiological environments. UV-vis and electrophoresis proved the conjugation of the oligothiophene sensitizers to the protein. The bioconjugate is water-soluble and biocompatible, does not have any "dark toxicity", and preserves HSA in the physiological monomeric form, as confirmed by dynamic light scattering and circular dichroism measurements. In contrast, upon irradiation with ultralow light doses, the bioconjugate efficiently produces reactive oxygen species (ROS) and leads to the complete eradication of cancer cells. Real-time monitoring of the photokilling activity of the HSA-oligothiophene bioconjugate shows that living cells "explode" upon irradiation. Photodependent and dose-dependent apoptosis is one of the primary mechanisms of cell death activated by bioconjugate irradiation. The bioconjugate is a novel theranostic platform able to generate ROS intracellularly and provide imaging through the fluorescence of the oligothiophene. It is also a real-time self-reporting system able to monitor the apoptotic process. The induced phototoxicity is strongly confined to the irradiated region, showing localized killing of cancer cells by precise light activation of the bioconjugate.
Collapse
Affiliation(s)
- Andrea Cantelli
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Marco Malferrari
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Alice Soldà
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Giorgia Simonetti
- IRCCS
Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli, 40, 47014 Meldola, FC, Italy
| | - Sonny Forni
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Edoardo Toscanella
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Edoardo J. Mattioli
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Alberto Zanelli
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Mattia Zangoli
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
- Mediteknology
srl, Via Piero Gobetti,
101, 40129 Bologna, Italy
| | - Giovanna Barbarella
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
- Mediteknology
srl, Via Piero Gobetti,
101, 40129 Bologna, Italy
| | - Stefania Rapino
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Francesca Di Maria
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
- Mediteknology
srl, Via Piero Gobetti,
101, 40129 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| |
Collapse
|
17
|
García-Calvo J, López-Andarias J, Sakai N, Matile S. The primary dipole of flipper probes. Chem Commun (Camb) 2021; 57:3913-3916. [PMID: 33871529 DOI: 10.1039/d1cc00860a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite their growing popularity in biology to image membrane tension, central design principles of flipper probes have never been validated. Here we report that upon deletion of their primary dipole, from electron-poor and electron-rich dithienothiophenes, absorptions blue-shift, lifetimes shorten dramatically, and mechanosensitivity in cells vanishes not partially, but completely.
Collapse
Affiliation(s)
- José García-Calvo
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland.
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland.
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|