1
|
Sohail U, Pervaiz E, Khosa R, Ali M. Electrocatalytic activity of tungsten carbide hybrids with two different MOFs for water splitting: a comparative analysis. NANOSCALE ADVANCES 2024:d4na00289j. [PMID: 39170769 PMCID: PMC11333940 DOI: 10.1039/d4na00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024]
Abstract
Conventional energy resources are diminishing, and environmental pollution is constantly increasing because of the excessive use of fossil fuels to sustain the ever-increasing population and industrialization. This has raised concerns regarding a sustainable future. In the pursuit of addressing sustainability in industrial processes and energy systems, the production of green hydrogen is considered a promising and crucial solution to meet the growing energy demands. Water-splitting is one of the most effective technologies for producing clean and carbon-neutral hydrogen. Water-splitting is a scientifically emerging application, but it is commercially limited due to its economic non-viability. The sluggish kinetics and the high overpotential needed for the water-splitting reactions (HER and OER) have encouraged the scientific community to design electrocatalysts that address the concerns of low activity, efficiency and stability. Designing a hybrid catalyst using metal-organic frameworks (MOFs) with transition metal carbides can be a suitable approach to address the deficiencies of conventional water-splitting catalysts. In this study, we have designed and fabricated an electrocatalyst of tungsten carbide (WC) with two different MOFs (Zr-based and Fe-based) and explored their electrocatalytic activity for hydrogen generation in an alkaline medium. It should be noted that hybrids of tungsten carbide with a zirconia MOF (UiO-66) showed better electrocatalytic activity with low overpotentials of 104 mV (HER) and 152 mV (OER) at a current density of 10 mA cm-2. This superior activity of WC with the Zr-MOF in comparison to the Fe-MOF is due to the synergistic effect of Zr present in UiO-66 grown on the WC matrix. Moreover, UiO-66 provides a larger electrocatalytic active surface area, so available active sites are more in UiO-66 as compared to the Fe-MOF. These findings set the stage for the systematic development and production of bi-functional hybrid catalysts with the potential to be utilized in water-splitting processes.
Collapse
Affiliation(s)
- Umair Sohail
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 3324001027
| | - Erum Pervaiz
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 3324001027
| | - Rafiq Khosa
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 3324001027
| | - Maryum Ali
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 3324001027
| |
Collapse
|
2
|
Qin Y, Zhang L, Yang B, Hou R, Fu G, Huang T, Deng R, Zhang S, Meng X. Molten salt synthesis of 1T/2H mixed phase MoS 2 for boosting photocatalytic H 2 evolution via Schottky junction under EY-sensitized system. J Colloid Interface Sci 2024; 660:617-627. [PMID: 38266343 DOI: 10.1016/j.jcis.2024.01.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/01/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Clean H2 fuel obtained from the photocatalytic water splitting to hydrogen reaction could efficiently alleviate current energy crisis and the concomitant environmental pollution problems. Therefore, it is desirable to search for a highly efficient photocatalytic system to decrease the energy barrier of water splitting reaction. Herein, the 1T/2H mixed phase MoS2 sample with Schottky junction between contact interfaces is developed through molten salt synthesis for photocatalytic hydrogen production under a dye-sensitized system (Eosin Y-TEOA-MoS2) driven by the visible light. In mixed phase MoS2 sample, the photogenerated electrons of 2H-phase MoS2 migrated to the 1T-phase MoS2 are difficult to jump back because of the existence of Schottky barrier, which greatly suppresses the quenching of EY and therefore results in an enhanced hydrogen evolution performance. Therefore, the optimized MoS2 sample (MoS2-350) has an initial hydrogen evolution rate of 213 μmol h-1 and corresponding apparent quantum yield of 36.1 % at 420 nm, far higher than those of pure Eosin Y. It is strongly confirmed by the steady-state/time-resolved photoluminescence (PL) spectra and transient photocurrent response experiments. With the assistance of Density functional theory (DFT) calculation, the function of Schottky junction in photocatalytic hydrogen evolution reaction is well explained. In addition, a new and universal method (SVM curve) of judging oxidation or reduction quenching for photosensitizers is proposed.
Collapse
Affiliation(s)
- Yibo Qin
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Leilei Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Ruipeng Hou
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Gaoliang Fu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Tengfei Huang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Ruixue Deng
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, China.
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | - Xiangyu Meng
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| |
Collapse
|
3
|
Wang A, Du M, Ni J, Liu D, Pan Y, Liang X, Liu D, Ma J, Wang J, Wang W. Enhanced and synergistic catalytic activation by photoexcitation driven S-scheme heterojunction hydrogel interface electric field. Nat Commun 2023; 14:6733. [PMID: 37872207 PMCID: PMC10593843 DOI: 10.1038/s41467-023-42542-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
The regulation of heterogeneous material properties to enhance the peroxymonosulfate (PMS) activation to degrade emerging organic pollutants remains a challenge. To solve this problem, we synthesize S-scheme heterojunction PBA/MoS2@chitosan hydrogel to achieve photoexcitation synergistic PMS activation. The constructed heterojunction photoexcited carriers undergo redox conversion with PMS through S-scheme transfer pathway driven by the directional interface electric field. Multiple synergistic pathways greatly enhance the reactive oxygen species generation, leading to a significant increase in doxycycline degradation rate. Meanwhile, the 3D polymer chain spatial structure of chitosan hydrogel is conducive to rapid PMS capture and electron transport in advanced oxidation process, reducing the use of transition metal activator and limiting the leaching of metal ions. There is reason to believe that the synergistic activation of PMS by S-scheme heterojunction regulated by photoexcitation will provide a new perspective for future material design and research on enhancing heterologous catalysis oxidation process.
Collapse
Affiliation(s)
- Aiwen Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Meng Du
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jiaxin Ni
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xiongying Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland.
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| |
Collapse
|
4
|
Sanchis-Gual R, Coronado-Puchau M, Mallah T, Coronado E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Chemical Etching and Phase Transformation of Nickel-Cobalt Prussian Blue Analogs for Improved Solar-Driven Water-Splitting Applications. J Colloid Interface Sci 2023; 641:861-874. [PMID: 36966575 DOI: 10.1016/j.jcis.2023.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h-1) compared with the raw NCP-0 (0.64 mol g-1h-1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h-1, 25 times that of the NCP-0, without any cocatalysts.
Collapse
|
6
|
Wu W, Zhang Z, Sun L, Wei R, Gao L, Pan X, Zhang J, Yu J, Xiao G. Modulating microenvironment of active moiety in Prussian blue analogues via surface coordination to enhance CO2 photoreduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Cai M, Liu Y, Wang C, Lin W, Li S. Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Chang J, Li Q, Yan Y, Shi J, Zhou J, Lu M, Zhang M, Ding H, Chen Y, Li S, Lan Y. Covalent‐Bonding Oxidation Group and Titanium Cluster to Synthesize a Porous Crystalline Catalyst for Selective Photo‐Oxidation Biomass Valorization. Angew Chem Int Ed Engl 2022; 61:e202209289. [DOI: 10.1002/anie.202209289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jia‐Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Qi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Y. Yan
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Jing‐Wen Shi
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Jie Zhou
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Meng Lu
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Mi Zhang
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Hui‐Min Ding
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Yifa Chen
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Shun‐Li Li
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| | - Ya‐Qian Lan
- School of Chemistry South China Normal University Guangzhou 510006 P. R. China
| |
Collapse
|
9
|
Meng X, Xu S, Zhang C, Feng P, Li R, Guan H, Ding Y. Prussian Blue Type Cocatalysts for Enhancing the Photocatalytic Water Oxidation Performance of BiVO
4. Chemistry 2022; 28:e202201407. [DOI: 10.1002/chem.202201407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Shiming Xu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Chenchen Zhang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Pengfei Feng
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Rui Li
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Hongxia Guan
- School of Science and Technology Georgia Gwinnett College Lawrenceville GA, 30043 USA
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou Gansu 730000 P. R. China
| |
Collapse
|
10
|
Meng X, Wang S, Zhang C, Dong C, Li R, Li B, Wang Q, Ding Y. Boosting Hydrogen Evolution Performance of a CdS-Based Photocatalyst: In Situ Transition from Type I to Type II Heterojunction during Photocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Shuyan Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chenchen Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Congzhao Dong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Rui Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Bonan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 730000, China
| |
Collapse
|
11
|
Wang K, Xie H, Li Y, Wang G, Jin Z. Anchoring highly-dispersed ZnCdS nanoparticles on NiCo Prussian blue Analogue-derived cubic-like NiCoP forms an S-scheme heterojunction for improved hydrogen evolution. J Colloid Interface Sci 2022; 628:64-78. [DOI: 10.1016/j.jcis.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
12
|
Ahmad AA, Ulusoy Ghobadi TG, Ozbay E, Karadas F. 2D Network overtakes 3D for photocatalytic hydrogen evolution. Chem Commun (Camb) 2022; 58:9341-9344. [PMID: 35880477 DOI: 10.1039/d2cc02912j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3-Dimensional (3D) cyanide coordination polymers, typically known as Prussian blue Analogues (PBAs), have received great attention in catalysis due to their stability, easily tuned metal sites, and porosity. However, their high crystallinities and relatively low number of surface-active sites significantly hamper their intrinsic catalytic activities. Herein, we report the utilization of a 2-dimensional (2D) layered cobalt tetracyanonickelate, [Co-Ni], for the reduction of protons to H2. Relying on its exposed facets, layered morphology, and abundant surface-active sites, [Co-Ni] can efficiently convert water and sunlight to H2 in the presence of a ruthenium photosensitizer (Ru PS) with an optimal evolution rate of 30 029 ± 590 μmol g-1 h-1, greatly exceeding that of 3D Co-Fe PBA [Co-Fe] and Co-Co PBA [Co-Co]. Furthermore, [Co-Ni] retains its structural integrity throughout a 6 hour photocatalytic cycle, which is confirmed by XPS, PXRD, and Infrared analysis. This recent work reveals the excellent morphologic properties that promote [Co-Ni] as an attractive catalyst for the hydrogen evolution reaction (HER).
Collapse
Affiliation(s)
- Aliyu Aremu Ahmad
- Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey.
| | | | - Ekmel Ozbay
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.,Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey.,Department of Physics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Ferdi Karadas
- Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey. .,UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
13
|
Chang JN, Li Q, Yan Y, Shi JW, Zhou J, Lu M, Zhang M, Ding HM, Chen Y, Li SL, Lan YQ. Covalent Bonding Oxidation Group and Ti‐cluster to Synthesize a Porous Crystalline Catalyst for Selective Photo‐oxidation Biomass Valorization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Qi Li
- Nanjing Normal University College of Materials Science and Engineering CHINA
| | - Yong Yan
- South China Normal University school of chemistry CHINA
| | - Jing-Wen Shi
- Nanjing Normal University College of Materials Science and Engineering CHINA
| | - Jie Zhou
- South China Normal University school of chemistry CHINA
| | - Meng Lu
- South China Normal University school of chemistry CHINA
| | - Mi Zhang
- South China Normal University school of chemistry CHINA
| | - Hui-Min Ding
- Nanjing Normal University College of Materials Science and Engineering CHINA
| | - Yifa Chen
- South China Normal University school of chemistry CHINA
| | - Shun-Li Li
- South China Normal University school of chemistry CHINA
| | - Ya-Qian Lan
- South China Normal University school of chemistry Nanjing wenyuan road No. 1 51006 Guangzhou CHINA
| |
Collapse
|
14
|
Chen C, Xiong Y, Zhong X, Lan PC, Wei Z, Pan H, Su P, Song Y, Chen Y, Nafady A, Sirajuddin, Ma S. Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti‐MOF/COF Composites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheng‐Xia Chen
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Yang‐Yang Xiong
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Xin Zhong
- School of Chemical Engineering and Technology Hainan University Haikou 570228 China
| | - Pui Ching Lan
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Zhang‐Wen Wei
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hongjun Pan
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Pei‐Yang Su
- Institute of Environmental Research at Greater Bay Area Guangzhou University Guangzhou 510006 China
| | - Yujie Song
- School of Chemical Engineering and Technology Hainan University Haikou 570228 China
| | - Yi‐Fan Chen
- School of Chemical Engineering and Technology Hainan University Haikou 570228 China
| | - Ayman Nafady
- Department of Chemistry College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Sirajuddin
- HEJ Research Institute of Chemistry International Centre for Chemical and Biological Sciences University of Karachi 75270 Karachi Pakistan
| | - Shengqian Ma
- Department of Chemistry University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| |
Collapse
|
15
|
Xu B, Chen Z, Zhang G, Wang Y. On-Demand Atomic Hydrogen Provision by Exposing Electron-Rich Cobalt Sites in an Open-Framework Structure toward Superior Electrocatalytic Nitrate Conversion to Dinitrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:614-623. [PMID: 34914357 DOI: 10.1021/acs.est.1c06091] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic nitrate (NO3-) reduction to N2 via atomic hydrogen (H*) is a promising approach for advanced water treatment. However, the reduction rate and N2 selectivity are hindered by slow mass transfer and H* provision-utilization mismatch, respectively. Herein, we report an open-framework cathode bearing electron-rich Co sites with extraordinary H* provision performance, which was validated by electron spin resonance (ESR) and cyclic voltammetry (CV) tests. Benefiting from its abundant channels, NO3- has a greater opportunity to be efficiently transferred to the vicinity of the Co active sites. Owing to the enhanced mass transfer and on-demand H* provision, the nitrate removal efficiency and N2 selectivity of the proposed cathode were 100 and 97.89%, respectively, superior to those of noble metal-based electrodes. In addition, in situ differential electrochemical mass spectrometry (DEMS) indicated that ultrafast *NO2- to *NO reduction and highly selective *NO to *N2O or *N transformation played crucial roles during the NO3- reduction process. Moreover, the proposed electrochemical system can achieve remarkable N2 selectivity without the additional Cl- supply, thus avoiding the formation of chlorinated byproducts, which are usually observed in conventional electrochemical nitrate reduction processes. Environmentally, energy conservation and negligible byproduct release ensure its practicability for use in nitrate remediation.
Collapse
Affiliation(s)
- Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhixuan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
16
|
Mao G, Li C, Li Z, Xu M, Wu H, Liu Q. Efficient Charge Migration in TiO2@PB Nanorod Arrays with Core-shell Structure for Photoelectrochemical Water Splitting. CrystEngComm 2022. [DOI: 10.1039/d1ce01710a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the TiO2@Prussian-blue (PB)core-shell nanorod arrays for photoelectrochemical (PEC) application were designed and prepared via a facile hydrothermal and electrodeposition process. Due to the combined merits of anti-reflection structure of...
Collapse
|
17
|
Chen CX, Xiong YY, Zhong X, Lan PC, Wei ZW, Pan H, Su PY, Song Y, Chen YF, Nafady A, Uddin S, Ma S. Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti-MOF/COF Composite. Angew Chem Int Ed Engl 2021; 61:e202114071. [PMID: 34780112 DOI: 10.1002/anie.202114071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/12/2021] [Indexed: 02/05/2023]
Abstract
Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalysts, have shown great potentials in the field of solar energy conversion due to their well-studied photo-redox activity similar to TiO 2 and good optical responsiveness of linkers serving as the antenna to absorb visible-light. Although enormous efforts have been dedicated to developing Ti-MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, a covalent-integrated strategy has been implemented to construct a series of multivariate Ti-MOF/COF hybrid materials, PdTCPP⸦PCN-415(NH 2 )/TpPa (composites 1, 2, and 3), featuring excellent visible-light utilization, suitable band gap, and high surface area for photocatalytic H 2 production. Notably, the resulting composites demonstrated remarkably enhanced visible-light-driven photocatalytic H 2 evolution performance, especially for the composite 2 with the maximum H 2 evolution rate of 13.98 mmol g -1 h -1 (turn-over frequency (TOF) = 227 h -1 ), which is much higher than the prototypical counterparts, PdTCPP⸦PCN-415(NH 2 ) (0.21 mmol g -1 h -1 ) and TpPa (6.51 mmol g -1 h -1 ). Our work thereby suggests a new approach to develop highly efficient photocatalysts for photocatalytic H 2 evolution reaction and beyond.
Collapse
Affiliation(s)
- Cheng-Xia Chen
- University of North Texas, Department of Chemistry, UNITED STATES
| | | | - Xin Zhong
- Hainan University, School of Chemical Engineering and Technology, CHINA
| | - Pui Ching Lan
- University of North Texas, Department of Chemistry, UNITED STATES
| | | | - Hongjun Pan
- University of North Texas, Department of Chemistry, UNITED STATES
| | - Pei-Yang Su
- Guangzhou University, Institute of Environmental Research at Great Bay Area, CHINA
| | - Yujie Song
- Hainan University, School of Chemical Engineering and Technology, CHINA
| | - Yi-Fan Chen
- Hainan University, School of Chemical engineering and technology, CHINA
| | - Ayman Nafady
- King Saud University, Chemistry Department, SAUDI ARABIA
| | - Siraj Uddin
- University of Karachi, Institute of Chemistry, PAKISTAN
| | - Shengqian Ma
- University of North Texas, Department of Chemistry, 1508 W Mulberry St, 76201, Denton, UNITED STATES
| |
Collapse
|
18
|
Xiao B, Lv T, Zhao J, Rong Q, Zhang H, Wei H, He J, Zhang J, Zhang Y, Peng Y, Liu Q. Synergistic Effect of the Surface Vacancy Defects for Promoting Photocatalytic Stability and Activity of ZnS Nanoparticles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bin Xiao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Tianping Lv
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jianhong Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Qian Rong
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Hong Zhang
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Haitang Wei
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jingcheng He
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yumin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
19
|
Liu QY, Wang HD, Yuan YJ, Tang R, Bao L, Ma Z, Zhong J, Yu ZT, Zou Z. Visible-light-responsive Z-scheme system for photocatalytic lignocellulose-to-H 2 conversion. Chem Commun (Camb) 2021; 57:9898-9901. [PMID: 34494624 DOI: 10.1039/d1cc03807a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Z-scheme system was successfully constructed for visible-light-driven photocatalytic H2 production from lignocelluloses, the highest H2 evolution rate of this Z-scheme system is 5.3 and 1.6 μmol h-1 in α-cellulose and poplar wood chip aqueous solutions, respectively, under visible light irradiation.
Collapse
Affiliation(s)
- Qing-Yu Liu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Hao-Dong Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Rui Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Liang Bao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Zhanfeng Ma
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Jiasong Zhong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, People's Republic of China.
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, People's Republic of China.
| |
Collapse
|
20
|
Zhao X, Zhang X, Liang Y, Hu Z, Huang F. Porphyrin-Based Conjugated Polyelectrolytes for Efficient Photocatalytic Hydrogen Evolution. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xi Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuanying Liang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhicheng Hu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
21
|
Yan D, Xue Z, Chen F, Liu X, Yang Z, Pei Y, Zhou S, Zhao C. Exposed (002) facets and controllable thickness of CdS nanobelts drive desirable hydrogen-adsorption free energy (Δ GH) for boosting visible-light photocatalytic performance. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01385h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strategies of exposed CdS (002) facets and controllable thickness lead to a desirable value for ΔGH, which can improve the CdS photocatalytic activity.
Collapse
Affiliation(s)
- Dejian Yan
- Institute for Advanced Materials, North China Electric Power University, China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zhiyong Xue
- Institute for Advanced Materials, North China Electric Power University, China
| | - Feng Chen
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Xia Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhenhua Yang
- Key Laboratory of Low Dimensional Materials & Application Technology (Ministry of Education), School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Yong Pei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shaoxiong Zhou
- Institute for Advanced Materials, North China Electric Power University, China
| | - Caixian Zhao
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|