1
|
Cao X, Feng H, Yu L, Shi L, Yan N. A facile synthesis of N-doped carbon encapsulated multimetallic carbonitride as a robust electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2025; 679:703-709. [PMID: 39476624 DOI: 10.1016/j.jcis.2024.10.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Electrocatalytic water splitting is a promising solution for generating clean hydrogen. Transition metal compounds are among the most extensively investigated catalysts developed to date for water oxidation in alkaline media, a process also known as the oxygen evolution reaction (OER). However, the application of these catalysts was constrained by insufficient stability arising from surface oxidation and metal dissolution under high OER potential. In this work, we developed a facile approach using urea-based gel as the precursor of preparing a series of multimetallic carbonitride particles which were encapsulated by N-doped carbon (NC). In particular, (MoCoFeNiZr)CN@NC core-shell structure delivered a low overpotential of 246 mV at a current density of 10 mA cm-2 in 1 M KOH during OER. Importantly, operando differential electrochemical mass spectrometry (DEMS), together with multiple microscopic and spectroscopic analyses, indicated that the NC shells effectively maintained the crystalline stability of carbonitride via suppressing the surface reconstruction during catalysis. The highly graphitic NC also demonstrates excellent stability against oxidation. This work shows a promising strategy of stabilizing electrocatalyst at high anodic potential, paving the way for the development of robust electrode materials for energy conversion.
Collapse
Affiliation(s)
- Xiaojuan Cao
- School of Electronics and Electrical Engineering, Wuhan Textile University, Wuhan 430200, Hubei, China; Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei, China
| | - Haozhou Feng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei, China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Ning Yan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei, China; Shenzhen Research Institute of Wuhan University, Shenzhen 518057, Guangdong, China.
| |
Collapse
|
2
|
Zhu Y, Tang Z, Yuan L, Li B, Shao Z, Guo W. Beyond conventional structures: emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis. Chem Soc Rev 2024. [PMID: 39661069 DOI: 10.1039/d3cs01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The core of clean energy technologies such as fuel cells, water electrolyzers, and metal-air batteries depends on a series of oxygen and hydrogen-based electrocatalysis reactions, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), which necessitate cost-effective electrocatalysts to improve their energy efficiency. In the recent decade, complex metal oxides (beyond simple transition metal oxides, spinel oxides and ABO3 perovskite oxides) have emerged as promising candidate materials with unexpected electrocatalytic activities for oxygen and hydrogen electrocatalysis owing to their special crystal structures and unique physicochemical properties. In this review, the current progress in complex metal oxides for ORR, OER, and HER electrocatalysis is comprehensively presented. Initially, we present a brief description of some fundamental concepts of the ORR, OER, and HER and a detailed description of complex metal oxides, including their physicochemical characteristics, synthesis methods, and structural characterization. Subsequently, we present a thorough overview of various complex metal oxides reported for ORR, OER, and HER electrocatalysis thus far, such as double/triple/quadruple perovskites, perovskite hydroxides, brownmillerites, Ruddlesden-Popper oxides, Aurivillius oxides, lithium/sodium transition metal oxides, pyrochlores, metal phosphates, polyoxometalates and other specially structured oxides, with emphasis on the designed strategies for promoting their performance and structure-property-performance relationships. Moreover, the practical device applications of complex metal oxides in fuel cells, water electrolyzers, and metal-air batteries are discussed. Finally, some concluding remarks summarizing the challenges, perspectives, and research trends of this topic are presented. We hope that this review provides a clear overview of the current status of this emerging field and stimulate future efforts to design more advanced electrocatalysts.
Collapse
Affiliation(s)
- Yinlong Zhu
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zheng Tang
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Lingjie Yuan
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Bowen Li
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zongping Shao
- School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia.
| | - Wanlin Guo
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
3
|
Xie C, Chen W, Wang Y, Yang Y, Wang S. Dynamic evolution processes in electrocatalysis: structure evolution, characterization and regulation. Chem Soc Rev 2024; 53:10852-10877. [PMID: 39382539 DOI: 10.1039/d3cs00756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Reactions on electrocatalytic interfaces often involve multiple processes, including the diffusion, adsorption, and conversion of reaction species and the interaction between reactants and electrocatalysts. Generally, these processes are constantly changing rather than being in a steady state. Recently, dynamic evolution processes on electrocatalytic interfaces have attracted increasing attention owing to their significant roles in catalytic reaction kinetics. In this review, we aim to provide insights into the dynamic evolution processes in electrocatalysis to emphasize the importance of unsteady-state processes in electrocatalysis. Specifically, the dynamic structure evolution of electrocatalysts, methods for the characterization of the dynamic evolution and the strategies for the regulation of the dynamic evolution for improving electrocatalytic performance are summarized. Finally, the conclusion and outlook on the research on dynamic evolution processes in electrocatalysis are presented. It is hoped that this review will provide a deeper understanding of dynamic evolution in electrocatalysis, and studies of electrocatalytic reaction processes and kinetics on the unsteady-state microscopic spatial and temporal scales will be given more attention.
Collapse
Affiliation(s)
- Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yahui Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
4
|
Wang H, Chen X, Chen B, Zhao Y, Zhang B. Development of a spiropyran-assisted cellulose aerogel with switchable wettability as oil sorbent for oil spill cleanup. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171451. [PMID: 38438027 DOI: 10.1016/j.scitotenv.2024.171451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
This research presents the successful development and optimization of a spiropyran-assisted cellulose aerogel (CNF-SP) aerogel with UV-induced switchable wettability, and the evaluation of its performance as an effective oil sorbent for oil spill cleanup. The aerogel initially exhibited strong hydrophobicity (124°) and showed UV-induced switchable wettability due to the photo-response structure of spiropyran. Upon UV irradiation, the hydrophobicity of the aerogel could be switched to hydrophilicity (31°), while visible light irradiation could restore its hydrophobicity. The three-dimensional (3D) porous structure of the CNF-SP aerogel combined with the hydrophobic properties of spiropyranol led to its great oil adsorption performance (27-30 g/g of oil adsorption ratio). The central composite design (CCD) was applied to optimize the aerogel and investigate the effects of raw material ratio (i.e., carboxymethyl cellulose, carboxyethyl spiropyran, polyvinyl alcohol, and nano zinc oxide) on the oil sorption performance of the aerogel. The optimized CNF-SP aerogel demonstrated a high oil sorption efficiency, particularly in acid and cold environments. Moreover, the switchable function indicated that the aerogel exhibited reusability and renewability, with the added benefit of UV-induced oil recovery.
Collapse
Affiliation(s)
- Hongjie Wang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Department of Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Xiujuan Chen
- Department of Civil Engineering, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Department of Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Yuming Zhao
- Department of Chemistry, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Department of Civil Engineering, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
5
|
Wu YH, Janák M, Abdala PM, Borca CN, Wach A, Kierzkowska A, Donat F, Huthwelker T, Kuznetsov DA, Müller CR. Probing Surface Transformations of Lanthanum Nickelate Electrocatalysts during Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:11887-11896. [PMID: 38529556 DOI: 10.1021/jacs.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Monitoring the spontaneous reconstruction of the surface of metal oxides under electrocatalytic reaction conditions is critical to identifying the active sites and establishing structure-activity relationships. Here, we report on a self-terminated surface reconstruction of Ruddlesden-Popper lanthanum nickel oxide (La2NiO4+δ) that occurs spontaneously during reaction with alkaline electrolyte species. Using a combination of high-resolution scanning transmission electron microscopy (HR-STEM), surface-sensitive X-ray photoelectron spectroscopy (XPS), and soft X-ray absorption spectroscopy (sXAS), as well as electrochemical techniques, we identify the structure of the reconstructed surface layer as an amorphous (oxy)hydroxide phase that features abundant under-coordinated nickel sites. No further amorphization of the crystalline oxide lattice (beyond the ∼2 nm thick layer formed) was observed during oxygen evolution reaction (OER) cycling experiments. Notably, the formation of the reconstructed surface layer increases the material's oxygen evolution reaction (OER) activity by a factor of 45 when compared to that of the pristine crystalline surface. In contrast, a related perovskite phase, i.e., LaNiO3, did not show noticeable surface reconstruction, and also no increase in its OER activity was observed. This work provides detailed insight into a surface reconstruction behavior dictated by the crystal structure of the parent oxide and highlights the importance of surface dynamics under reaction conditions.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Marcel Janák
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Anna Wach
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 30-392 Kraków, Poland
| | - Agnieszka Kierzkowska
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Thomas Huthwelker
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Zou A, Tang Y, Wu C, Li J, Meng H, Wang Z, Ma Y, An H, Zhong H, Zhang Q, Zhang X, Xue J, Wang X, Wu J. Understanding the Origin of Reconstruction in Transition Metal Oxide Oxygen Evolution Reaction Electrocatalysts. CHEMSUSCHEM 2024; 17:e202301195. [PMID: 37743254 DOI: 10.1002/cssc.202301195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Electrochemical water splitting to generate hydrogen energy fills a gap in the intermittency issues for wind and sunlight power. Transition metal (TM) oxides have attracted significant interest in water oxidation due to their availability and excellent activity. Typically, the transitional metal oxyhydroxides species derived from these metal oxides are often acknowledged as the real catalytic species, due to the irreversible structural reconstruction. Hence, in order to innovatively design new catalyst, it is necessary to provide a comprehensive understanding for the origin of surface reconstruction. In this review, the most recent developments in the reconstruction of transition metal-based oxygen evolution reaction electrocatalysts were introduced, and various chemical driving forces behind the reconstruction mechanism were discussed. At the same time, specific strategies for modulating pre-catalysts to achieve controllable reconfiguration, such as metal substituting, increase of structural defect sites, were summarized. At last, the issues for the further understanding and optimization of transition metal oxides compositions based on structural reconstruction were provided.
Collapse
Affiliation(s)
- Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ying Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research, Singapore, 627833, Singapore
| | - Junhua Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Haoyan Meng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhen Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifan Ma
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Hang An
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Xin Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Xiaopeng Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Monai M, Jenkinson K, Melcherts AEM, Louwen JN, Irmak EA, Van Aert S, Altantzis T, Vogt C, van der Stam W, Duchoň T, Šmíd B, Groeneveld E, Berben P, Bals S, Weckhuysen BM. Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis. Science 2023; 380:644-651. [PMID: 37167405 DOI: 10.1126/science.adf6984] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Reducible supports can affect the performance of metal catalysts by the formation of suboxide overlayers upon reduction, a process referred to as the strong metal-support interaction (SMSI). A combination of operando electron microscopy and vibrational spectroscopy revealed that thin TiOx overlayers formed on nickel/titanium dioxide catalysts during 400°C reduction were completely removed under carbon dioxide hydrogenation conditions. Conversely, after 600°C reduction, exposure to carbon dioxide hydrogenation reaction conditions led to only partial reexposure of nickel, forming interfacial sites in contact with TiOx and favoring carbon-carbon coupling by providing a carbon species reservoir. Our findings challenge the conventional understanding of SMSIs and call for more-detailed operando investigations of nanocatalysts at the single-particle level to revisit static models of structure-activity relationships.
Collapse
Affiliation(s)
- Matteo Monai
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, Netherlands
| | - Kellie Jenkinson
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Angela E M Melcherts
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, Netherlands
| | - Jaap N Louwen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, Netherlands
| | - Ece A Irmak
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Sandra Van Aert
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | | | - Charlotte Vogt
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, Netherlands
| | - Ward van der Stam
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, Netherlands
| | - Tomáš Duchoň
- Peter-Grünberg-Institut 6, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Břetislav Šmíd
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, 180 00 Prague, Czech Republic
| | | | - Peter Berben
- BASF Nederland B.V., 3454 PK De Meern, Netherlands
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, Netherlands
| |
Collapse
|
10
|
Gao J, Li Y, Li H, Chen T, Xiao H, Chen X. Symmetric structured porous supported mixed conductor ceramic membrane boosting oxygen permeation flux. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Timoshenko J, Haase FT, Saddeler S, Rüscher M, Jeon HS, Herzog A, Hejral U, Bergmann A, Schulz S, Roldan Cuenya B. Deciphering the Structural and Chemical Transformations of Oxide Catalysts during Oxygen Evolution Reaction Using Quick X-ray Absorption Spectroscopy and Machine Learning. J Am Chem Soc 2023; 145:4065-4080. [PMID: 36762901 PMCID: PMC9951215 DOI: 10.1021/jacs.2c11824] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 02/11/2023]
Abstract
Bimetallic transition-metal oxides, such as spinel-like CoxFe3-xO4 materials, are known as attractive catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. Nonetheless, unveiling the real active species and active states in these catalysts remains a challenge. The coexistence of metal ions in different chemical states and in different chemical environments, including disordered X-ray amorphous phases that all evolve under reaction conditions, hinders the application of common operando techniques. Here, we address this issue by relying on operando quick X-ray absorption fine structure spectroscopy, coupled with unsupervised and supervised machine learning methods. We use principal component analysis to understand the subtle changes in the X-ray absorption near-edge structure spectra and develop an artificial neural network to decipher the extended X-ray absorption fine structure spectra. This allows us to separately track the evolution of tetrahedrally and octahedrally coordinated species and to disentangle the chemical changes and several phase transitions taking place in CoxFe3-xO4 catalysts and on their active surface, related to the conversion of disordered oxides into spinel-like structures, transformation of spinels into active oxyhydroxides, and changes in the degree of spinel inversion in the course of the activation treatment and under OER conditions. By correlating the revealed structural changes with the distinct catalytic activity for a series of CoxFe3-xO4 samples, we elucidate the active species and OER mechanism.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Felix T. Haase
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Sascha Saddeler
- Institute
of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Martina Rüscher
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Hyo Sang Jeon
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Antonia Herzog
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Uta Hejral
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Arno Bergmann
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Stephan Schulz
- Institute
of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Beatriz Roldan Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
12
|
Adiga P, Wang L, Wong C, Matthews BE, Bowden ME, Spurgeon SR, Sterbinsky GE, Blum M, Choi MJ, Tao J, Kaspar TC, Chambers SA, Stoerzinger KA, Du Y. Correlation between oxygen evolution reaction activity and surface compositional evolution in epitaxial La 0.5Sr 0.5Ni 1-xFe xO 3-δ thin films. NANOSCALE 2023; 15:1119-1127. [PMID: 36594352 DOI: 10.1039/d2nr05373j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La0.5Sr0.5Ni1-xFexO3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance, suggesting common motifs of the active surface with high surface area systems.
Collapse
Affiliation(s)
- Prajwal Adiga
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331, USA.
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Cindy Wong
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331, USA.
| | - Bethany E Matthews
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Mark E Bowden
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Steven R Spurgeon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - George E Sterbinsky
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Monika Blum
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Min-Ju Choi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Jinhui Tao
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Tiffany C Kaspar
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Kelsey A Stoerzinger
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331, USA.
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| |
Collapse
|
13
|
Shin H, Yoo JM, Sung YE, Chung DY. Dynamic Electrochemical Interfaces for Energy Conversion and Storage. JACS AU 2022; 2:2222-2234. [PMID: 36311833 PMCID: PMC9597595 DOI: 10.1021/jacsau.2c00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical energy conversion and storage are central to developing future renewable energy systems. For efficient energy utilization, both the performance and stability of electrochemical systems should be optimized in terms of the electrochemical interface. To achieve this goal, it is imperative to understand how a tailored electrode structure and electrolyte speciation can modify the electrochemical interface structure to improve its properties. However, most approaches describe the electrochemical interface in a static or frozen state. Although a simple static model has long been adopted to describe the electrochemical interface, atomic and molecular level pictures of the interface structure should be represented more dynamically to understand the key interactions. From this perspective, we highlight the importance of understanding the dynamics within an electrochemical interface in the process of designing highly functional and robust energy conversion and storage systems. For this purpose, we explore three unique classes of dynamic electrochemical interfaces: self-healing, active-site-hosted, and redox-mediated interfaces. These three cases of dynamic electrochemical interfaces focusing on active site regeneration collectively suggest that our understanding of electrochemical systems should not be limited to static models but instead expanded toward dynamic ones with close interactions between the electrode surface, dissolved active sites, soluble species, and reactants in the electrolyte. Only when we begin to comprehend the fundamentals of these dynamics through operando analyses can electrochemical conversion and storage systems be advanced to their full potential.
Collapse
Affiliation(s)
- Heejong Shin
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, Seoul National University (SNU), Seoul 08826, Republic
of Korea
| | - Ji Mun Yoo
- Department
of Mechanical and Process Engineering, ETH
Zurich, 8092 Zurich, Switzerland
| | - Yung-Eun Sung
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, Seoul National University (SNU), Seoul 08826, Republic
of Korea
| | - Dong Young Chung
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Weber ML, Lole G, Kormanyos A, Schwiers A, Heymann L, Speck FD, Meyer T, Dittmann R, Cherevko S, Jooss C, Baeumer C, Gunkel F. Atomistic Insights into Activation and Degradation of La 0.6Sr 0.4CoO 3-δ Electrocatalysts under Oxygen Evolution Conditions. J Am Chem Soc 2022; 144:17966-17979. [PMID: 36130265 PMCID: PMC9545157 DOI: 10.1021/jacs.2c07226] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
stability of perovskite oxide catalysts for the oxygen
evolution
reaction (OER) plays a critical role in their applicability in water
splitting concepts. Decomposition of perovskite oxides under applied
potential is typically linked to cation leaching and amorphization
of the material. However, structural changes and phase transformations
at the catalyst surface were also shown to govern the activity of
several perovskite electrocatalysts under applied potential. Hence,
it is crucial for the rational design of durable perovskite catalysts
to understand the interplay between the formation of active surface
phases and stability limitations under OER conditions. In the present
study, we reveal a surface-dominated activation and deactivation mechanism
of the prominent electrocatalyst La0.6Sr0.4CoO3−δ under steady-state OER conditions. Using a
multiscale microscopy and spectroscopy approach, we identify the evolving
Co-oxyhydroxide as catalytically active surface species and La-hydroxide
as inactive species involved in the transient degradation behavior
of the catalyst. While the leaching of Sr results in the formation
of mixed surface phases, which can be considered as a part of the
active surface, the gradual depletion of Co from a self-assembled
active CoO(OH) phase and the relative enrichment of passivating La(OH)3 at the electrode surface result in the failure of the perovskite
catalyst under applied potential.
Collapse
Affiliation(s)
- Moritz L Weber
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Gaurav Lole
- Institute of Materials Physics, University of Göttingen, Göttingen 37077, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen 37077, Germany
| | - Attila Kormanyos
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen 91058, Germany
| | - Alexander Schwiers
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Lisa Heymann
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Florian D Speck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen 91058, Germany.,Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Tobias Meyer
- Institute of Materials Physics, University of Göttingen, Göttingen 37077, Germany
| | - Regina Dittmann
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen 91058, Germany
| | - Christian Jooss
- Institute of Materials Physics, University of Göttingen, Göttingen 37077, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen 37077, Germany
| | - Christoph Baeumer
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany.,Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Felix Gunkel
- Peter Grünberg Institute (PGI-7) and Jülich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
15
|
Li H, Han X, Zhao W, Azhar A, Jeong S, Jeong D, Na J, Wang S, Yu J, Yamauchi Y. Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction. MATERIALS HORIZONS 2022; 9:1788-1824. [PMID: 35485940 DOI: 10.1039/d2mh00075j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemical water splitting is a promising technology for hydrogen production and sustainable energy conversion, but the existing electrolytic cells lack a sufficient number of robust and highly active anodic electrodes for the oxygen evolution reaction (OER). Electrochemical synthesis technology provides a feasible route for the preparation of independent OER electrodes with high utilization of active sites, fast mass transfer, and a simple preparation process. A comprehensive review of the electrochemical synthesis of nano/microstructure transition metal-based OER materials is provided. First, some fundamentals of electrochemical synthesis are introduced, including electrochemical synthesis strategies, electrochemical synthesis substrates, the electrolyte used in electrochemical synthesis, and the combination of electrochemical synthesis and other synthesis methods. Second, the morphology and properties of electrochemical synthetic materials are summarized and introduced from the viewpoint of structural design. Then, the latest progress regarding the development of transition metal-based OER electrocatalysts is reviewed, including the classification of metals/alloys, oxides, hydroxides, sulfides, phosphides, selenides, and other transition metal compounds. In addition, the oxygen evolution mechanism and rate-determining steps of transition metal-based catalysts are also discussed. Finally, the advantages, challenges, and opportunities regarding the application of electrochemical techniques in the synthesis of transition metal-based OER electrocatalysts are summarized. This review can provide inspiration for researchers and promote the development of water splitting technology.
Collapse
Affiliation(s)
- Huixi Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xue Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Wen Zhao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Alowasheeir Azhar
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Seunghwan Jeong
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea.
| | - Deugyoung Jeong
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea.
| | - Jongbeom Na
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea.
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Shengping Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Crudden C. Eranda Nikolla Selected to Receive the 2022 ACS Catalysis Lectureship Award. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|