1
|
Jung H, Choi J, Kim D, Lee JH, Ihee H, Kim D, Chang S. Photoinduced Group Transposition via Iridium-Nitrenoid Leading to Amidative Inner-Sphere Aryl Migration. Angew Chem Int Ed Engl 2024; 63:e202408123. [PMID: 38871650 DOI: 10.1002/anie.202408123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
We herein report a fundamental mechanistic investigation into photochemical metal-nitrenoid generation and inner-sphere transposition reactivity using organometallic photoprecursors. By designing Cp*Ir(hydroxamate)(Ar) complexes, we induced photo-initiated ligand activation, allowing us to explore the amidative σ(Ir-aryl) migration reactivity. A combination of experimental mechanistic studies, femtosecond transient absorption spectroscopy, and density functional theory (DFT) calculations revealed that the metal-to-ligand charge transfer enables the σ(N-O) cleavage, followed by Ir-acylnitrenoid generation. The final inner-sphere σ(Ir-aryl) group migration results in a net amidative group transposition.
Collapse
Affiliation(s)
- Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungkweon Choi
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Daniel Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong Hoon Lee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Palermo AP, Zhang S, Okrut A, Schöttle C, Grosso-Giordano NA, Runnebaum RC, Edwards KC, Guan E, Ertler D, Solovyov A, Kistler JD, Aydin C, Lu J, Busygin I, Dixon DA, Gates BC, Katz A. Remotely Bonded Bridging Dioxygen Ligands Enhance Hydrogen Transfer in a Silica-Supported Tetrairidium Cluster Catalyst. J Am Chem Soc 2024; 146:3773-3784. [PMID: 38301281 DOI: 10.1021/jacs.3c10660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A longstanding challenge in catalysis by noble metals has been to understand the origin of enhancements of rates of hydrogen transfer that result from the bonding of oxygen near metal sites. We investigated structurally well-defined catalysts consisting of supported tetrairidium carbonyl clusters with single-atom (apical iridium) catalytic sites for ethylene hydrogenation. Reaction of the clusters with ethylene and H2 followed by O2 led to the onset of catalytic activity as a terminal CO ligand at each apical Ir atom was removed and bridging dioxygen ligands replaced CO ligands at neighboring (basal-plane) sites. The presence of the dioxygen ligands caused a 6-fold increase in the catalytic reaction rate, which is explained by the electron-withdrawing capability induced by the bridging dioxygen ligands, consistent with the inference that reductive elimination is rate-determining. Electronic-structure calculations demonstrate an additional role of the dioxygen ligands, changing the mechanism of hydrogen transfer from one involving equatorial hydride ligands to that involving bridging hydride ligands. This mechanism is made evident by an inverse kinetic isotope effect observed in ethylene hydrogenation reactions with H2 and, alternatively, with D2 on the cluster incorporating the dioxygen ligands and is a consequence of quasi-equilibrated hydrogen transfer in this catalyst. The same mechanism accounts for rate enhancements induced by the bridging dioxygen ligands for the catalytic reaction of H2 with D2 to give HD. We posit that the mechanism involving bridging hydride ligands facilitated by oxygen ligands remote from the catalytic site may have some generality in catalysis by oxide-supported noble metals.
Collapse
Affiliation(s)
- Andrew P Palermo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Shengjie Zhang
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Alexander Okrut
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Christian Schöttle
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Nicolás A Grosso-Giordano
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Ron C Runnebaum
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Kyle C Edwards
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Erjia Guan
- Department of Materials Science and Engineering, University of California, Davis, California 95616, United States
| | - Daniel Ertler
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Andrew Solovyov
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Joseph D Kistler
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ceren Aydin
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jing Lu
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Igor Busygin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - David A Dixon
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Kim J, Park Y, Chirik PJ. Iridium-Catalyzed Hydrogenation of a Phenoxy Radical to the Phenol: Overcoming Catalyst Deactivation with Visible Light Irradiation. Inorg Chem 2023; 62:19582-19592. [PMID: 37980598 DOI: 10.1021/acs.inorgchem.3c02918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Piano-stool iridium hydride complexes bearing phenylpyridine ligands are effective precatalysts for promoting the formation of element-hydrogen bonds using H2 as the stoichiometric H-atom source. Irradiation with blue light resulted in a profound enhancement of catalyst turnover for the iridium-catalyzed hydrogenation of the aryloxyl radical 2,4,6-tBu3-C6H2O• to the corresponding phenol. Monitoring the progress of the reaction revealed the formation of an iridium 3,3-dimethyl-2,3-dihydrobenzofuranyl compound arising from two C-H activation events following the proton-coupled electron transfer (PCET) step. Under thermal conditions, this compound was inactive for catalytic aryloxide hydrogenation, representing a deactivation pathway. Irradiation with blue light under H2 released the free heterocycle and regenerated the piano-stool iridium hydride precatalyst, establishing a pathway for catalyst recovery and overall enhanced turnover.
Collapse
Affiliation(s)
- Junho Kim
- Department of Chemistry, Princeton University, Frick Laboratory 292, Princeton, New Jersey 08544, United States
| | - Yoonsu Park
- Department of Chemistry, Princeton University, Frick Laboratory 292, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Frick Laboratory 292, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Liu DH, Nagashima K, Liang H, Yue XL, Chu YP, Chen S, Ma J. Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2023; 62:e202312203. [PMID: 37803457 DOI: 10.1002/anie.202312203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kyogo Nagashima
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Hui Liang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue-Lin Yue
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yun-Peng Chu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Park Y, Zhong H, Pabst TP, Kim J, Chirik PJ. Pentamethylcyclopentadienyl Metalloradical Iron Complexes Containing Redox Noninnocent α-Diimine-Type Ligands: Synthesis, Molecular, and Electronic Structures. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Yoonsu Park
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongyu Zhong
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P. Pabst
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Kim S, Kim J, Zhong H, Panetti GB, Chirik PJ. Catalytic N–H Bond Formation Promoted by a Ruthenium Hydride Complex Bearing a Redox-Active Pyrimidine-Imine Ligand. J Am Chem Soc 2022; 144:20661-20671. [DOI: 10.1021/jacs.2c07800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sangmin Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Grace B. Panetti
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Mejuto C, Ibáñez-Ibáñez L, Guisado-Barrios G, Mata JA. Visible-Light-Promoted Iridium(III)-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles at Room Temperature. ACS Catal 2022; 12:6238-6245. [PMID: 35633898 PMCID: PMC9128065 DOI: 10.1021/acscatal.2c01224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Indexed: 12/14/2022]
Abstract
![]()
An effective visible-light-promoted
iridium(III)-catalyzed hydrogen
production from N-heterocycles is described. A single iridium complex
constitutes the photocatalytic system playing a dual task, harvesting
visible-light and facilitating C–H cleavage and H2 formation at room temperature and without additives. The presence
of a chelating C–N ligand combining a mesoionic carbene ligand
along with an amido functionality in the IrIII complex
is essential to attain the photocatalytic transformation. Furthermore,
the IrIII complex is also an efficient catalyst for the
thermal reverse process under mild conditions, positioning itself
as a proficient candidate for liquid organic hydrogen carrier technologies
(LOHCs). Mechanistic studies support a light-induced formation of
H2 from the Ir–H intermediate as the operating mode
of the iridium complex.
Collapse
Affiliation(s)
- Carmen Mejuto
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| | - Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| | - Gregorio Guisado-Barrios
- Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jose A. Mata
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| |
Collapse
|
8
|
Nakano T, Abe T, Matsumoto T, Kimura K, Nakamura G, Hayami S, Shiota Y, Yoshizawa K, Ogo S. Light-driven oxidation of CH 4 to C 1 chemicals catalysed by an organometallic Ru complex with O 2. RSC Adv 2022; 12:12253-12257. [PMID: 35496339 PMCID: PMC9050190 DOI: 10.1039/d2ra01772e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
CH4 conversion is one of the most challenging chemical reactions due to its inertness in terms of physical and chemical properties. We have achieved photo-induced C–H bond breaking of CH4 and successive C–O bond formation to form CH3OH concomitant with HCHO by an organometallic Ru complex with O2. We have achieved aerobic transformation of methane to C1 chemicals catalysed by a homogeneous organometallic catalyst with light energy input.![]()
Collapse
Affiliation(s)
- Tatsuya Nakano
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tsukasa Abe
- Institute for Materials Chemistry and Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takahiro Matsumoto
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) Kawaguchi 332-0012 Japan
| | - Kento Kimura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Genta Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shinya Hayami
- Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|