1
|
Dorfner MX, Brey D, Burghardt I, Ortmann F. Comparison of Matrix Product State and Multiconfiguration Time-Dependent Hartree Methods for Nonadiabatic Dynamics of Exciton Dissociation. J Chem Theory Comput 2024; 20:8767-8781. [PMID: 39364795 PMCID: PMC11500411 DOI: 10.1021/acs.jctc.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
The excited-state dynamics of organic molecules, molecular aggregates, and donor-acceptor clusters is typically governed by the interplay of electronic excitations and, due to their flexibility and soft bonding, by the interaction with their vibrations. This interaction in these systems can be characterized by a few relevant electronic states that are coupled to numerous vibrational normal modes, encompassing a vast configurational space of the molecules. The full quantum simulation of these type of systems has been long dominated by the multiconfiguration time-dependent Hartree (MCTDH) approach and its multilayer variants, which are considered the gold standard in the presence of electron-vibration coupling with a large number of modes. Recently, also the matrix product state ansatz (MPS) with appropriate time-evolution schemes has been applied to these types of Hamiltonians. In this article, we provide a numerical comparison of excited-state dynamics between the MCTDH and MPS approaches for two electron-vibration coupled systems. Notably, we consider two models for exciton dissociation at a P3HT:PCBM heterojunction, comprising two electronic states and 100 vibrational modes, and 26 electronic states and 113 vibrational modes, respectively. While both methods agree very well for the first model, more pronounced deviations are found for the second model. We trace back the divergence between the methods to the different way entanglement is treated.
Collapse
Affiliation(s)
- Maximilian
F. X. Dorfner
- TUM
School of Natural Sciences, Technische Universität
München, 85748 Garching bei München, Germany
| | - Dominik Brey
- Institut
für Physikalische und Theoretische Chemie, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Irene Burghardt
- Institut
für Physikalische und Theoretische Chemie, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Frank Ortmann
- TUM
School of Natural Sciences, Technische Universität
München, 85748 Garching bei München, Germany
| |
Collapse
|
2
|
Nuomin H, Wu J, Zhang P, Beratan DN. Efficient simulation of open quantum systems coupled to a reservoir through multiple channels. J Chem Phys 2024; 161:124114. [PMID: 39324530 DOI: 10.1063/5.0226183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
It is challenging to simulate open quantum systems that are connected to a reservoir through multiple channels. For example, vibrations may induce fluctuations in both energy gaps and electronic couplings, which represent two independent channels of system-bath couplings. Systems of this kind are ubiquitous in the processes of excited state radiationless decay. Combined with density matrix renormalization group (DMRG) and matrix product states (MPS) methods, we develop an interaction-picture chain mapping strategy for vibrational reservoirs to simulate the dynamics of these open systems, resulting in time-dependent spatially local system-bath couplings in the chain-mapped Hamiltonian. This transformation causes the entanglement generated by the system-bath interactions to be restricted within a narrow frequency window of vibrational modes, enabling efficient DMRG/MPS dynamical simulations. We demonstrate the utility of this approach by simulating singlet fission dynamics using a generalized spin-boson Hamiltonian with both diagonal and off-diagonal system-bath couplings. This approach generalizes an earlier interaction-picture chain mapping scheme, allowing for efficient and exact simulation of systems with multi-channel system-bath couplings using matrix product states, which may further our understanding of nonlocal exciton-phonon couplings in exciton transport and the non-Condon effect in energy and electron transfer.
Collapse
Affiliation(s)
- Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jiaxi Wu
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, California 91125, USA
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
3
|
Xu Y, Liu C, Ma H. Kylin-V: An open-source package calculating the dynamic and spectroscopic properties of large systems. J Chem Phys 2024; 161:052501. [PMID: 39087896 DOI: 10.1063/5.0220712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
Quantum dynamics simulation and computational spectroscopy serve as indispensable tools for the theoretical understanding of various fundamental physical and chemical processes, ranging from charge transfer to photochemical reactions. When simulating realistic systems, the primary challenge stems from the overwhelming number of degrees of freedom and the pronounced many-body correlations. Here, we present Kylin-V, an innovative quantum dynamics package designed for accurate and efficient simulations of dynamics and spectroscopic properties of vibronic Hamiltonians for molecular systems and their aggregates. Kylin-V supports various quantum dynamics and computational spectroscopy methods, such as time-dependent density matrix renormalization group and our recently proposed single-site and hierarchical mapping approaches, as well as vibrational heat-bath configuration interaction. In this paper, we introduce the methodologies implemented in Kylin-V and illustrate their performances through a diverse collection of numerical examples.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Li JW, Gleis A, von Delft J. Time-Dependent Variational Principle with Controlled Bond Expansion for Matrix Product States. PHYSICAL REVIEW LETTERS 2024; 133:026401. [PMID: 39073923 DOI: 10.1103/physrevlett.133.026401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 08/28/2023] [Accepted: 06/06/2024] [Indexed: 07/31/2024]
Abstract
We present a controlled bond expansion (CBE) approach to simulate quantum dynamics based on the time-dependent variational principle (TDVP) for matrix product states. Our method alleviates the numerical difficulties of the standard, fixed-rank one-site TDVP integrator by increasing bond dimensions on the fly to reduce the projection error. This is achieved in an economical, local fashion, requiring only minor modifications of standard one-site TDVP implementations. We illustrate the performance and accuracy of CBE-TDVP with several numerical examples on finite quantum lattices, including new results on bipolaron formation in the Peierls-Hubbard model and spin pumping via adiabatic flux insertion in a chiral spin liquid.
Collapse
Affiliation(s)
- Jheng-Wei Li
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG, Pheliqs, F-38000 Grenoble, France
| | | | | |
Collapse
|
5
|
Kang M, Nuomin H, Chowdhury SN, Yuly JL, Sun K, Whitlow J, Valdiviezo J, Zhang Z, Zhang P, Beratan DN, Brown KR. Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics. Nat Rev Chem 2024; 8:340-358. [PMID: 38641733 DOI: 10.1038/s41570-024-00595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/21/2024]
Abstract
Simulating the quantum dynamics of molecules in the condensed phase represents a longstanding challenge in chemistry. Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed. In this Review, we make a comparison between a noisy analog trapped-ion simulator and a few choice classical-digital methods on simulating the dynamics of a model molecular Hamiltonian with linear vibronic coupling. We describe several simple Hamiltonians that are commonly used to model molecular systems, which can be simulated with existing or emerging trapped-ion hardware. These Hamiltonians may serve as stepping stones towards the use of trapped-ion simulators for systems beyond the reach of classical-digital methods. Finally, we identify dynamical regimes in which classical-digital simulations seem to have the weakest performance with respect to analog-quantum simulations. These regimes may provide the lowest hanging fruit to make the most of potential quantum advantages.
Collapse
Affiliation(s)
- Mingyu Kang
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ke Sun
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Physics, Duke University, Durham, NC, USA
| | - Jacob Whitlow
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Jesús Valdiviezo
- Kenneth S. Pitzer Theory Center, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Departamento de Ciencias, Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - David N Beratan
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University, Durham, NC, USA.
| | - Kenneth R Brown
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Xu Y, Cheng Y, Song Y, Ma H. New Density Matrix Renormalization Group Approaches for Strongly Correlated Systems Coupled with Large Environments. J Chem Theory Comput 2023. [PMID: 37471519 DOI: 10.1021/acs.jctc.2c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Thanks to the high compression of the matrix product state (MPS) form of the wave function and the efficient site-by-site iterative sweeping optimization algorithm, the density matrix normalization group (DMRG) and its time-dependent variant (TD-DMRG) have been established as powerful computational tools in accurately simulating the electronic structure and quantum dynamics of strongly correlated molecules with a large number (101-2) of quantum degrees of freedom (active orbitals or vibrational modes). However, the quantitative characterization of the quantum many-body behaviors of realistic strongly correlated systems requires a further consideration of the interaction between the embedded active subsystem and the remaining correlated environment, e.g., a larger number (102-3) of external orbitals in electronic structure or infinite condensed-phase phononic modes in nucleus dynamics. To this end, we introduced three new post-DMRG and TD-DMRG approaches, namely (1) DMRG2sCI-MRCI and DMRG2sCI-ENPT by the reconstruction of selected configuration interaction (sCI) type of compact reference function from DMRG coefficients and the use of externally contracted MRCI (multireference configuration interaction) and Epstein-Nesbet perturbation theory (ENPT), without recourse to the expensive high order n-electron reduced density matrices (n-RDMs). (2) DMRG combined with RR-MRCI (renormalized residue-based MRCI), which improves the computational accuracy and efficiency of internally contracted (ic) MRCI by renormalizing the contracted bases with small-sized buffer environment(s) of a few external orbitals as probes based on quantum information theory. (3) HM (hierarchical mapping)-TD-DMRG in which a large environment is reduced to a small number of renormalized environmental modes (which accounts for the most vital system-environment interactions) through stepwise mapping transformation. These advances extend the efficacy of highly accurate DMRG/TD-DMRG computations to the quantitative characterization of the electronic structure and quantum dynamics in realistic strongly correlated systems coupled with large environments and are reviewed in this paper.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinxuan Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Komarova K. Density Matrix via Few Dominant Observables for the Ultrafast Non-Radiative Decay in Pyrazine. J Chem Theory Comput 2023; 19:746-757. [PMID: 36657738 PMCID: PMC11137821 DOI: 10.1021/acs.jctc.2c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 01/21/2023]
Abstract
Unraveling the density matrix of a non-stationary quantum state as an explicit function of a few observables provides a complementary view of quantum dynamics. We have recently developed a practical way to identify the minimal set of the dominant observables that govern the quantal dynamics even in the case of strong non-adiabatic effects and large anharmonicity [Komarova et al., J. Chem. Phys. 155, 204110 (2021)]. Fast convergence in the number of the dominant contributions is achieved when instead of the density matrix we describe the time-evolution of the surprisal, the logarithm of the density operator. In the present work, we illustrate the efficiency of the proposed approach using an example of the early time dynamics in pyrazine in a Hilbert space accounting for up to four vibrational normal modes, {Q10a, Q6a, Q1, and Q9a}, and two coupled electronic states, the optically dark B 1 3 u ( n π * ) and the bright B 1 2 u ( π π * ) states. Dynamics in four-dimensional (4D) configurational space involve 19,600 vibronic eigenstates. Our results reveal that the rate of the ultrafast population decay as well as the shape of the nuclear wave packets in 2D, accounting only for {Q10a,Q6a} normal modes, are accurately captured with only six dominant time-independent observables in the surprisal. Extension of the dynamics to 3D and 4D vibrational subspace requires only five additional constraints. The time-evolution of a quantum state in 4D vibrational space on two electronic states is thus compacted to only 11 time-dependent coefficients of these observables.
Collapse
Affiliation(s)
- Ksenia Komarova
- The Fritz Haber Center for Molecular
Dynamics and Institute of Chemistry, The
Hebrew University of Jerusalem, Jerusalem91904, Israel
| |
Collapse
|
8
|
Xu Y, Liu C, Ma H. Hierarchical Mapping for Efficient Simulation of Strong System-Environment Interactions. J Chem Theory Comput 2023; 19:426-435. [PMID: 36626721 DOI: 10.1021/acs.jctc.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quantum dynamics (QD) simulation is a powerful tool for interpreting ultrafast spectroscopy experiments and unraveling their microscopic mechanism in out-of-equilibrium excited state behaviors in various chemical, biological, and material systems. Although state-of-the-art numerical QD approaches such as the time-dependent density matrix renormalization group (TD-DMRG) already greatly extended the solvable system size of general linearly coupled exciton-phonon models with up to a few hundred phonon modes, the accurate simulation of larger system sizes or strong system-environment interactions is still computationally highly challenging. Based on quantum information theory (QIT), in this work, we realize that only a small number of effective phonon modes couple to the excitonic system directly regardless of a large or even infinite number of modes in the condensed phase environment. On top of the identified small number of direct effective modes, we propose a hierarchical mapping (HM) approach through performing block Lanczos transformations on the remaining indirect modes, which transforms the Hamiltonian matrix to a nearly block-tridiagonal form and eliminates the long-range interactions. Numerical tests on model spin-boson systems and realistic singlet fission models in a rubrene crystal environment with up to 7000 modes and strong system-environment interactions indicate HM can reduce the system size by 1-2 orders of magnitude and accelerate the calculation by ∼80% without losing accuracy.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Ren J, Li W, Jiang T, Wang Y, Shuai Z. Time‐dependent density matrix renormalization group method for quantum dynamics in complex systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| |
Collapse
|