1
|
Zhao A, Liu QY, Li ZY, Li XN, He SG. Reverse water-gas shift catalyzed by Rh nVO 3,4- ( n = 3-7) cluster anions under variable temperatures. Dalton Trans 2024; 53:8347-8355. [PMID: 38666520 DOI: 10.1039/d4dt00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
A fundamental understanding of the exact structural characteristics and reaction mechanisms of interface active sites is vital to engineering an energetic metal-support boundary in heterogeneous catalysis. Herein, benefiting from a newly developed high-temperature ion trap reactor, the reverse water-gas shift (RWGS) (CO2 + H2 → CO + H2O) catalyzed by a series of compositionally and structurally well-defined RhnVO3,4- (n = 3-7) clusters were identified under variable temperatures (298-773 K). It is discovered that the Rh5-7VO3,4- clusters can function more effectively to drive RWGS at relatively low temperatures. The experimentally observed size-dependent catalytic behavior was rationalized by quantum-chemical calculations; the framework of RhnVO3,4- is constructed by depositing the Rhn clusters on the VO3,4 "support", and a sandwiched base-acid-base [Rhout--Rhin+-VO3,4-; Rhout and Rhin represent the outer and inner Rh atoms, respectively] feature in Rh5-7VO3,4- governs the adsorption and activation of reactants as well as the facile desorption of the products. In contrast, isolated Rh5-7- clusters without the electronic modification of the VO3,4 "support" can only catalyze RWGS under relatively high-temperature conditions.
Collapse
Affiliation(s)
- An Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Yamaoka M, Tomozawa K, Sumiyoshi K, Ueda T, Ogo S. Efficient reverse water gas shift reaction at low temperatures over an iron supported catalyst under an electric field. Sci Rep 2024; 14:10216. [PMID: 38702478 PMCID: PMC11068772 DOI: 10.1038/s41598-024-61017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The development of high-performance Fe-based catalysts is attractive because Fe is a cost-effective and earth-abundant element. Application of an external electric field and an appropriate catalytic support to an Fe-based catalyst enabled the reverse water-gas shift reaction to proceed with high activity, selectivity, and durability even at the low temperature of 423 K. The Fe-supported catalyst showed superior CO selectivity (≈ 100%) compared to the Co- or Ni-supported catalyst. The apparent activation energy (5.9 kJ mol-1) over the Fe/Ce0.4Al0.1Zr0.5O2 catalyst under an electric field was much lower than that without an electric field (61.4 kJ mol-1).
Collapse
Affiliation(s)
- Masaki Yamaoka
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Keidai Tomozawa
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Koki Sumiyoshi
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Tadaharu Ueda
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, 783-8502, Japan
- MEDi Center, Kochi University, Kochi, 780-0842, Japan
| | - Shuhei Ogo
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan.
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
3
|
Zhang W, Sun J, Wang H, Cui X. Recent Advances in Hydrogenation of CO 2 to CO with Heterogeneous Catalysts Through the RWGS Reaction. Chem Asian J 2024; 19:e202300971. [PMID: 38278764 DOI: 10.1002/asia.202300971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
With the continuous increase in CO2 emissions, primarily from the combustion of coal and oil, the ecosystem faces a significant threat. Therefore, as an effective method to minimize the issue, the Reverse Water Gas Shift (RWGS) reaction which converts CO2 towards CO attracts much attention, is an environmentally-friendly method to mitigate climate change and lessen dependence on fossil fuels. Nevertheless, the inherent thermodynamic stability and kinetic inertness of CO2 is a big challenge under mild conditions. In addition, it remains another fundamental challenge in RWGS reaction owing to CO selectivity issue caused by CO2 further hydrogenation towards CH4 . Up till now, a series of catalysis systems have been developed for CO2 reduction reaction to produce CO. Herein, the research progress of the well-performed heterogeneous catalysts for the RWGS reaction were summarized, including the catalyst design, catalytic performance and reaction mechanism. This review will provide insights into efficient utilization of CO2 and promote the development of RWGS reaction.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, People's Republic of China
| | - Jiashu Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A, Yuquanlu, Beijing, 100049, People's Republic of China
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
4
|
Zhou C, Zhang J, Fu Y, Dai H. Recent Advances in the Reverse Water-Gas Conversion Reaction. Molecules 2023; 28:7657. [PMID: 38005379 PMCID: PMC10674781 DOI: 10.3390/molecules28227657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The increase in carbon dioxide emissions has significantly impacted human society and the global environment. As carbon dioxide is the most abundant and cheap C1 resource, the conversion and utilization of carbon dioxide have received extensive attention from researchers. Among the many carbon dioxide conversion and utilization methods, the reverse water-gas conversion (RWGS) reaction is considered one of the most effective. This review discusses the research progress made in RWGS with various heterogeneous metal catalyst types, covering topics such as catalyst performance, thermodynamic analysis, kinetics and reaction mechanisms, and catalyst design and preparation, and suggests future research on RWGS heterogeneous catalysts.
Collapse
Affiliation(s)
- Changjian Zhou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Jiahao Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Yuqing Fu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Hui Dai
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
5
|
Zhang J, Feng K, Li Z, Yang B, Yan B, Luo KH. Defect-Driven Efficient Selective CO 2 Hydrogenation with Mo-Based Clusters. JACS AU 2023; 3:2736-2748. [PMID: 37885587 PMCID: PMC10598559 DOI: 10.1021/jacsau.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Synthetic fuels produced from CO2 show promise in combating climate change. The reverse water gas shift (RWGS) reaction is the key to opening the CO2 molecule, and CO serves as a versatile intermediate for creating various hydrocarbons. Mo-based catalysts are of great interest for RWGS reactions featured for their stability and strong metal-oxygen interactions. Our study identified Mo defects as the intrinsic origin of the high activity of cluster Mo2C for CO2-selective hydrogenation. Specifically, we found that defected Mo2C clusters supported on nitrogen-doped graphene exhibited exceptional catalytic performance, attaining a reaction rate of 6.3 gCO/gcat/h at 400 °C with over 99% CO selectivity and good stability. Such a catalyst outperformed other Mo-based catalysts and noble metal-based catalysts in terms of facile dissociation of CO2, highly selective hydrogenation, and nonbarrier liberation of CO. Our study revealed that as a potential descriptor, the atomic magnetism linearly correlates to the liberation capacity of CO, and Mo defects facilitated product desorption by reducing the magnetization of the adsorption site. On the other hand, the defects were effective in neutralizing the negative charges of surface hydrogen, which is crucial for selective hydrogenation. Finally, we have successfully demonstrated that the combination of a carbon support and the carbonization process synergistically serves as a feasible strategy for creating rich Mo defects, and biochar can be a low-cost alternative option for large-scale applications.
Collapse
Affiliation(s)
- Jiajun Zhang
- National
Engineering Research Center of Green Recycling for Strategic Metal
Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Center
for Combustion Energy, Key Laboratory for Thermal Science and Power
Engineering of Ministry of Education, International Joint Laboratory
on Low Carbon Clean Energy Innovation, Tsinghua
University, Beijing 100084, China
| | - Kai Feng
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhengwen Li
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bin Yang
- Center
for Combustion Energy, Key Laboratory for Thermal Science and Power
Engineering of Ministry of Education, International Joint Laboratory
on Low Carbon Clean Energy Innovation, Tsinghua
University, Beijing 100084, China
| | - Binhang Yan
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Hong Luo
- Center
for Combustion Energy, Key Laboratory for Thermal Science and Power
Engineering of Ministry of Education, International Joint Laboratory
on Low Carbon Clean Energy Innovation, Tsinghua
University, Beijing 100084, China
- Department
of Mechanical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
6
|
Liu YZ, He XY, Chen JJ, Zhao ZP, Li XN, He SG. Filtration of the preferred catalyst for reverse water-gas shift among Rh n- ( n = 3-11) clusters by mass spectrometry under variable temperatures. Dalton Trans 2023; 52:6668-6676. [PMID: 37114992 DOI: 10.1039/d3dt00802a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The key to optimizing energy-consuming catalytic conversions lies in acquiring a fundamental understanding of the nature of the active sites and the mechanisms of elementary steps at an atomically precise level, while it is challenging to capture the crucial step that determines the overall temperature of a real-life catalytic reaction. Herein, benefiting from a newly-developed high-temperature ion trap reactor, the reverse water-gas shift (CO2 + H2 → CO + H2O) reaction catalyzed by the Rhn- (n = 3-11) clusters was investigated under variable temperatures (298-783 K) and the critical temperature that each elementary step (Rhn- + CO2 and RhnO- + H2) requires to take place was identified. The Rh4- cluster strikingly surpasses other Rhn- clusters to drive the catalysis at a mild starting temperature (∼440 K). This finding represents the first example that a specifically sized cluster catalyst that works under an optimum condition can be accurately filtered by using state-of-the-art mass spectrometric experiments and rationalized by quantum-chemical calculations.
Collapse
Affiliation(s)
- Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xing-Yue He
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Zhong-Pu Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Wang H, Bootharaju MS, Kim JH, Wang Y, Wang K, Zhao M, Zhang R, Xu J, Hyeon T, Wang X, Song S, Zhang H. Synergistic Interactions of Neighboring Platinum and Iron Atoms Enhance Reverse Water-Gas Shift Reaction Performance. J Am Chem Soc 2023; 145:2264-2270. [PMID: 36689604 DOI: 10.1021/jacs.2c10435] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The limitations of conventional strategies in finely controlling the composition and structure demand new promotional effects for upgrading the reverse water-gas shift (RWGS) catalysts for enhanced fuel production. We report the design and synthesis of a hetero-dual-site catalyst for boosting RWGS performance by controllably loading Fe atoms at the neighboring Pt atom on the surface of commercial CeO2. The Fe-Pt/CeO2 exhibits a remarkably high catalytic performance (TOFPt: 43,519 h-1) for CO2 to CO conversion with ∼100% CO selectivity at a relatively low temperature of 350 °C. Furthermore, the catalyst retains over 80% activity after 200 h of continuous operation. The experimental and computational investigations reveal a "two-way synergistic effect", where Fe atoms can not only serve as promotors to alter the charge density of Pt atoms but also be activated by the excess active hydrogen species generated by Pt atoms, enhancing catalytic activity and stability.
Collapse
Affiliation(s)
- Huilin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jing Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|