1
|
Anwar G, Cao Y, Shi WJ, Niu L, Yan JW. Rational Design, Synthesis, and Evaluation of Rofecoxib-Based Photosensitizers for the NIR Imaging and Photo-Oxidization of Aβ Aggregates. ACS Chem Neurosci 2024; 15:4202-4209. [PMID: 39492634 DOI: 10.1021/acschemneuro.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
The photo-oxidation of amyloid-β (Aβ) protein catalyzed by Aβ-targeting photosensitizers shows high potential in treating Alzheimer's disease (AD). Herein, we report the first example of photosensitizers based on the rofecoxib scaffold, in which rational introduction of the electron-absorbing pyridinium/quinolinium moiety to the skeleton of rofecoxib could not only extend the absorption and emission wavelengths but also increase the efficiency of singlet oxygen (1O2) production. The emission wavelengths of R-S-MP, R-S-MC, and R-S-MQ are red-shifted to 860 nm, which might benefit the NIR imaging of Aβ aggregates with low photoscattering and autofluorescence. In addition, R-S-MP can identify Aβ plaques in brain sections of AD mice and detect abnormal viscosity environments, facilitating the pathological study of Alzheimer's disease. Most importantly, upon complexation with Aβ plaques, R-S-MP and R-S-MC could produce high singlet oxygen (1O2) under light irradiation, which can achieve the specific photo-oxidation of Aβ protein. Our optimized photosensitizers could change the conformation of β-rich Aβ protein and enhance its clearance through the lysosomal pathway, leading to the reduction of the Aβ-mediated neurotoxicity. All these excellent characteristics of our dual-functional photosensitizers for simultaneous imaging and photo-oxidation of Aβ aggregates suggest their promising prospects in pathological research in AD.
Collapse
Affiliation(s)
- Gulziba Anwar
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yingmei Cao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Wen-Jing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Zhou Y, Zhu J, Gao F, Hu M, Qian C, Wang X, Wang X. Fighting fire with fire: remodeling Aβ aggregation with H-aggregates of a europium(III) complex. Dalton Trans 2024; 53:14966-14970. [PMID: 39189405 DOI: 10.1039/d4dt02188f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We herein report a "Fight Aggregation with Aggregation" (FAA) approach for redirection of amyloid-β peptide (Aβ) aggregation using a europium(III) complex (EuL3) that can undergo H-aggregation in aqueous solution under physiological conditions. The H-aggregates of EuL3 may serve as scaffolds that can facilitate the accumulation of Aβ to form non-fibrillar co-assemblies. As a result, the Aβ aggregation-induced cytotoxicity was inhibited.
Collapse
Affiliation(s)
- Yuancun Zhou
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Jiacheng Zhu
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Furong Gao
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ming Hu
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Chengyuan Qian
- School of Life Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Xin Wang
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xiaohui Wang
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
3
|
Solé-Daura A, Maseras F. Straightforward computational determination of energy-transfer kinetics through the application of the Marcus theory. Chem Sci 2024:d4sc03352c. [PMID: 39149213 PMCID: PMC11322899 DOI: 10.1039/d4sc03352c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Energy transfer (EnT) photocatalysis holds the potential to revolutionize synthetic chemistry, unlocking the excited-state reactivity of non-chromophoric compounds via indirect sensitization. This strategy gives access to synthetic routes to valuable molecular scaffolds that are otherwise inaccessible through ground-state pathways. Despite the promising nature of this chemistry, it still represents a largely uncharted area for computational chemistry, hindering the development of structure-activity relationships and design rules to rationally exploit the potential of EnT photocatalysis. Here, we examined the application of the classical Marcus theory in combination with DFT calculations as a convenient strategy to estimate the kinetics of EnT processes, focusing on the indirect sensitization of alkenes recently reported by Gilmour, Kerzig and co-workers for subsequent isomerization [Zähringer et al., J. Am. Chem. Soc., 2023, 145, 21576]. Our results demonstrate a remarkable capability of this approach to estimate free-energy barriers for EnT processes with high accuracy, yielding precise qualitative assessments and quantitative predictions with typical discrepancies of less than 2 kcal mol-1 compared to experimental values and a small mean average error (MAE) of 1.2 kcal mol-1.
Collapse
Affiliation(s)
- Albert Solé-Daura
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Avgda. Països Catalans, 16 43007 Tarragona Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Avgda. Països Catalans, 16 43007 Tarragona Spain
| |
Collapse
|
4
|
Umeda H, Suda K, Yokogawa D, Azumaya Y, Kitada N, Maki SA, Kawashima SA, Mitsunuma H, Yamanashi Y, Kanai M. Unimolecular Chemiexcited Oxygenation of Pathogenic Amyloids. Angew Chem Int Ed Engl 2024; 63:e202405605. [PMID: 38757875 DOI: 10.1002/anie.202405605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Pathogenic protein aggregates, called amyloids, are etiologically relevant to various diseases, including neurodegenerative Alzheimer disease. Catalytic photooxygenation of amyloids, such as amyloid-β (Aβ), reduces their toxicity; however, the requirement for light irradiation may limit its utility in large animals, including humans, due to the low tissue permeability of light. Here, we report that Cypridina luciferin analogs, dmCLA-Cl and dmCLA-Br, promoted selective oxygenation of amyloids through chemiexcitation without external light irradiation. Further structural optimization of dmCLA-Cl led to the identification of a derivative with a polar carboxylate functional group and low cellular toxicity: dmCLA-Cl-acid. dmCLA-Cl-acid promoted oxygenation of Aβ amyloid and reduced its cellular toxicity without photoirradiation. The chemiexcited oxygenation developed in this study may be an effective approach to neutralizing the toxicity of amyloids, which can accumulate deep inside the body, and treating amyloidosis.
Collapse
Affiliation(s)
- Hiroki Umeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kayo Suda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Yuto Azumaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobuo Kitada
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
| | - Shojiro A Maki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuki Yamanashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
5
|
Li L, Xia L, Xiao F, Xiao Y, Ji W, Xu B, Wang H. Antimicrobial photodynamic inactivation pH-responsive films based on gelatin/chitosan incorporated with aloe-emodin. Food Chem 2024; 444:138686. [PMID: 38340503 DOI: 10.1016/j.foodchem.2024.138686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Using novel active food packaging has gradually become a daily necessity in terms of impeding microbial contamination. Here, an antimicrobial photodynamic inactivation (PDI) pH-responsive film is developed by incorporating aloe-emodin (AE) into a vehicle of gelatin/chitosan (GC). Besides enhancement in hydrophobicity, the well-dispersed crystals of AE in the GC matrix by hydrogen bonding can upgrade the film's mechanical strength and barrier. The matrix is capable of regulating the release of AE in response to acidic stimuli by a combination mechanism of diffusion and polymer relaxation. Being benefitted from the inherent bioactivity of AE and the PDI activity under visible light irradiation (i.e., 456 nm), the target film of GC-AE2 has excellent antibacterial effect towards Staphylococcus aureus and Escherichia coli, showing bacterial viability of 9.93 ± 1.33 % and 14.85 ± 1.16 %, respectively. Furthermore, the film can effectively thwart Botrytis cinerea infection in cherry tomatoes, demonstrating its potential in preventing the microbial spoilage of postharvest fruits.
Collapse
Affiliation(s)
- Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, Anhui, China
| | - Li Xia
- School of Biological Engineering, Huainan Normal University, 232038 Huainan, Anhui, China
| | - Feng Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yewen Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Wei Ji
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, Anhui, China.
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China.
| |
Collapse
|
6
|
Grcic L, Leech G, Kwan K, Storr T. Targeting misfolding and aggregation of the amyloid-β peptide and mutant p53 protein using multifunctional molecules. Chem Commun (Camb) 2024; 60:1372-1388. [PMID: 38204416 DOI: 10.1039/d3cc05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-β (Aβ) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aβ peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aβ peptide and mutant p53 protein, a common therapeutic approach may be applicable.
Collapse
Affiliation(s)
- Lauryn Grcic
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Grace Leech
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
7
|
Akasaka T, Watanabe H, Ono M. In Vivo Near-Infrared Fluorescence Imaging Selective for Soluble Amyloid β Aggregates Using y-Shaped BODIPY Derivative. J Med Chem 2023; 66:14029-14046. [PMID: 37824378 DOI: 10.1021/acs.jmedchem.3c01057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Soluble amyloid β (Aβ) aggregates, suggested to be the most toxic forms of Aβ, draw attention as therapeutic targets and biomarkers of Alzheimer's disease (AD). As soluble Aβ aggregates are transient and diverse, imaging their diverse forms in vivo is expected to have a marked impact on research and diagnosis of AD. Herein, we report a near-infrared fluorescent (NIRF) probe, BAOP-16, targeting diverse soluble Aβ aggregates. BAOP-16, whose molecular shape resembles "y", showed a marked selective increase in fluorescence intensity upon binding to soluble Aβ aggregates in the near-infrared region and a high binding affinity for them. Additionally, BAOP-16 could detect Aβ oligomers in the brains of Aβ-inoculated model mice. In an in vivo fluorescence imaging study of BAOP-16, brains of AD model mice displayed significantly higher fluorescence signals than those of wild-type mice. These results indicate that BAOP-16 could be useful for the in vivo NIRF imaging of diverse soluble Aβ aggregates.
Collapse
Affiliation(s)
- Takahiro Akasaka
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|