1
|
Zhu JQ, Xu JN, Bian XR, Cheng P, Dou Z, Dai WT, Ju SY, Wang YJ. Enhancing the stability and activity of enzymes through layer-by-layer immobilization with nanocomposite hydrogel. Biochem Eng J 2025; 215:109604. [DOI: 10.1016/j.bej.2024.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Yang D, Chiang CH, Wititsuwannakul T, Brooks CL, Zimmerman PM, Narayan ARH. Engineering the Reaction Pathway of a Non-heme Iron Oxygenase Using Ancestral Sequence Reconstruction. J Am Chem Soc 2024; 146:34352-34363. [PMID: 39642058 DOI: 10.1021/jacs.4c08420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Non-heme iron (FeII), α-ketoglutarate (α-KG)-dependent oxygenases are a family of enzymes that catalyze an array of transformations that cascade forward after the formation of radical intermediates. Achieving control over the reaction pathway is highly valuable and a necessary step toward broadening the applications of these biocatalysts. Numerous approaches have been used to engineer the reaction pathway of FeII/α-KG-dependent enzymes, including site-directed mutagenesis, DNA shuffling, and site-saturation mutagenesis, among others. Herein, we showcase a novel ancestral sequence reconstruction (ASR)-guided strategy in which evolutionary information is used to pinpoint the residues critical for controlling different reaction pathways. Following this, a combinatorial site-directed mutagenesis approach was used to quickly evaluate the importance of each residue. These results were validated using a DNA shuffling strategy and through quantum mechanical/molecular mechanical (QM/MM) simulations. Using this approach, we identified a set of active site residues together with a key hydrogen bond between the substrate and an active site residue, which are crucial for dictating the dominant reaction pathway. Ultimately, we successfully converted both extant and ancestral enzymes that perform benzylic hydroxylation into variants that can catalyze an oxidative ring-expansion reaction, showcasing the potential of utilizing ASR to accelerate the reaction pathway engineering within enzyme families that share common structural and mechanistic features.
Collapse
Affiliation(s)
- Di Yang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chang-Hwa Chiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Enhanced Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Wang H, Gao B, Cheng H, Cao S, Ma X, Chen Y, Ye Y. Unmasking the reverse catalytic activity of 'ene'-reductases for asymmetric carbonyl desaturation. Nat Chem 2024:10.1038/s41557-024-01671-1. [PMID: 39592841 DOI: 10.1038/s41557-024-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2024] [Indexed: 11/28/2024]
Abstract
Carbonyl desaturation is a fundamental reaction widely practised in organic synthesis. While numerous methods have been developed to expand the scope of this important transformation, most of them necessitate multi-step protocols or suffer from the use of high loadings of metal or strong oxidizing conditions. Moreover, approaches that can achieve precise stereochemical control of the desaturation process are extremely rare. Here we report a biocatalytic platform for desymmetrizing desaturation of cyclohexanones to generate diverse cyclohexenones bearing a remote quaternary stereogenic centre, by reengineering 'ene'-reductases to efficiently mediate dehydrogenation, the reverse process of their native activity. This 'ene'-reductase-based desaturation system operates under mild conditions with air as the terminal oxidant, tolerates oxidation-sensitive or metal-incompatible functional groups and, more importantly, exhibits unparalleled stereoselectivity compared with those achieved with small-molecule catalysts. Mechanistic investigations suggest that the reaction proceeded through α-deprotonation followed by a rate-determining β-hydride transfer.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Bin Gao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Heli Cheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Shixuan Cao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Xinyi Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, China
| | - Yuxuan Ye
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| |
Collapse
|
4
|
Flitsch SL, Turner NJ, Li Z. Biocatalysis in Asia and the Pacific. JACS AU 2024; 4:2713-2714. [PMID: 39211609 PMCID: PMC11350737 DOI: 10.1021/jacsau.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Sabine L Flitsch
- MIB & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicholas J Turner
- MIB & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| |
Collapse
|
5
|
Jain S, Ospina F, Hammer SC. A New Age of Biocatalysis Enabled by Generic Activation Modes. JACS AU 2024; 4:2068-2080. [PMID: 38938808 PMCID: PMC11200230 DOI: 10.1021/jacsau.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Biocatalysis is currently undergoing a profound transformation. The field moves from relying on nature's chemical logic to a discipline that exploits generic activation modes, allowing for novel biocatalytic reactions and, in many instances, entirely new chemistry. Generic activation modes enable a wide range of reaction types and played a pivotal role in advancing the fields of organo- and photocatalysis. This perspective aims to summarize the principal activation modes harnessed in enzymes to develop new biocatalysts. Although extensively researched in the past, the highlighted activation modes, when applied within enzyme active sites, facilitate chemical transformations that have largely eluded efficient and selective catalysis. This advance is attributed to multiple tunable interactions in the substrate binding pocket that precisely control competing reaction pathways and transition states. We will highlight cases of new synthetic methodologies achieved by engineered enzymes and will provide insights into potential future developments in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Stephan C. Hammer
- Research Group for Organic Chemistry
and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
6
|
Lazic J, Filipovic V, Pantelic L, Milovanovic J, Vojnovic S, Nikodinovic-Runic J. Late-stage diversification of bacterial natural products through biocatalysis. Front Bioeng Biotechnol 2024; 12:1351583. [PMID: 38807651 PMCID: PMC11130421 DOI: 10.3389/fbioe.2024.1351583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial natural products (BNPs) are very important sources of leads for drug development and chemical novelty. The possibility to perform late-stage diversification of BNPs using biocatalysis is an attractive alternative route other than total chemical synthesis or metal complexation reactions. Although biocatalysis is gaining popularity as a green chemistry methodology, a vast majority of orphan sequenced genomic data related to metabolic pathways for BNP biosynthesis and its tailoring enzymes are underexplored. In this review, we report a systematic overview of biotransformations of 21 molecules, which include derivatization by halogenation, esterification, reduction, oxidation, alkylation and nitration reactions, as well as degradation products as their sub-derivatives. These BNPs were grouped based on their biological activities into antibacterial (5), antifungal (5), anticancer (5), immunosuppressive (2) and quorum sensing modulating (4) compounds. This study summarized 73 derivatives and 16 degradation sub-derivatives originating from 12 BNPs. The highest number of biocatalytic reactions was observed for drugs that are already in clinical use: 28 reactions for the antibacterial drug vancomycin, followed by 18 reactions reported for the immunosuppressive drug rapamycin. The most common biocatalysts include oxidoreductases, transferases, lipases, isomerases and haloperoxidases. This review highlights biocatalytic routes for the late-stage diversification reactions of BNPs, which potentially help to recognize the structural optimizations of bioactive scaffolds for the generation of new biomolecules, eventually leading to drug development.
Collapse
Affiliation(s)
- Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
7
|
Kamboj P, Tyagi V. Enzymatic Synthesis of Indole-Based Imidazopyridine using α-Amylase. Chembiochem 2024; 25:e202300824. [PMID: 38279707 DOI: 10.1002/cbic.202300824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 01/28/2024]
Abstract
The imidazo[1,2-a]pyridine scaffold has gained significant attention due to its presence as a lead structure in several commercially available pharmaceuticals like zolimidine, zolpidem, olprinone, soraprazan, etc. Further, indole-based imidazo[1,2-a]pyridine derivatives have been found interesting due to their anticancer and antibacterial activities. However, limited methods have been reported for the synthesis of indole-based imidazo[1,2-a]pyridines. In this study, we have successfully developed a biocatalytic process for synthesizing indole-based imidazo[1,2-a]pyridine derivatives using the α-amylase enzyme catalyzed Groebke-Blackburn-Bienayme (GBB) multicomponent reaction of 2-aminopyridine, indole-3-carboxaldehyde, and isocyanide. The generality and robustness of this protocol were shown by synthesizing differently substituted indole-based imidazo[1,2-a]pyridines in good isolated yields. Furthermore, to make α-amylase a reusable catalyst for GBB multicomponent reaction, it was immobilized onto magnetic metal-organic framework (MOF) materials [Fe3 O4 @MIL-100(Fe)] and found reusable up to four consecutive catalytic cycles without the significant loss in catalytic activity.
Collapse
Affiliation(s)
- Priya Kamboj
- School of Chemistry and Biochemistry, Thapar institute of engineering and technology (TIET), Patiala, Punjab, India, 147004
| | - Vikas Tyagi
- School of Chemistry and Biochemistry, Thapar institute of engineering and technology (TIET), Patiala, Punjab, India, 147004
| |
Collapse
|
8
|
Champagne SE, Chiang CH, Gemmel PM, Brooks CL, Narayan ARH. Biocatalytic Stereoselective Oxidation of 2-Arylindoles. J Am Chem Soc 2024; 146:2728-2735. [PMID: 38237569 PMCID: PMC11214688 DOI: 10.1021/jacs.3c12393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
3-Hydroxyindolenines can be used to access several structural motifs that are featured in natural products and pharmaceutical compounds, yet the chemical synthesis of 3-hydroxyindolenines is complicated by overoxidation, rearrangements, and complex product mixtures. The selectivity possible in enzymatic reactions can overcome these challenges and deliver enantioenriched products. Herein, we present the development of an asymmetric biocatalytic oxidation of 2-arylindole substrates aided by a curated library of flavin-dependent monooxygenases (FDMOs) sampled from an ancestral sequence space, a sequence similarity network, and a deep-learning-based latent space model. From this library of FDMOs, a previously uncharacterized enzyme, Champase, from the Valley fever fungus, Coccidioides immitis strain RS, was found to stereoselectively catalyze the oxidation of a variety of substituted indole substrates. The promiscuity of this enzyme is showcased by the oxidation of a wide variety of substituted 2-arylindoles to afford the respective 3-hydroxyindolenine products in moderate to excellent yields and up to 95:5 er.
Collapse
Affiliation(s)
- Sarah E. Champagne
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chang-Hwa Chiang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Philipp M. Gemmel
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Enhanced Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Stout CN, Wasfy NM, Chen F, Renata H. Charting the Evolution of Chemoenzymatic Strategies in the Syntheses of Complex Natural Products. J Am Chem Soc 2023; 145:18161-18181. [PMID: 37553092 PMCID: PMC11107883 DOI: 10.1021/jacs.3c03422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bolstered by recent advances in bioinformatics, genetics, and enzyme engineering, the field of chemoenzymatic synthesis has enjoyed a rapid increase in popularity and utility. This Perspective explores the integration of enzymes into multistep chemical syntheses, highlighting the unique potential of biocatalytic transformations to streamline the synthesis of complex natural products. In particular, we identify four primary conceptual approaches to chemoenzymatic synthesis and illustrate each with a number of landmark case studies. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Carter N. Stout
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, CA 92037, USA
| | - Nour M. Wasfy
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| | - Fang Chen
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| |
Collapse
|