1
|
Pradhan T, Chelike DK, Roy D, Pramanik T, Dolui S. Stimuli-Responsive Multiacceptor Conjugated Polymers: Recent Trend and Future Direction. ACS POLYMERS AU 2025; 5:62-79. [PMID: 40226348 PMCID: PMC11986728 DOI: 10.1021/acspolymersau.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 04/15/2025]
Abstract
Apart from the visual effects, geometric shapes of materials play an important role in their engineering and biomedical applications. Responsive materials-based patient-specific anatomical models provide better insights into the structure and pathology. Polymers are by far the most utilized class of materials for advanced science and technology. Because of these properties, these polymers have been used as functional coatings, thermoplastics, biomedical materials, separators, and binders for Li-ion batteries, fuel cell membranes, piezoelectric devices, high-quality wires and cables, and so on. Reactive to stimuli because of their unusual electrical characteristics and adaptability, stimuli-responsive multiacceptor conjugated polymers have been a prominent focus of materials science study. These polymers combine several electron-accepting units inside their conjugated backbone, resulting in increased functionality and responsiveness to a variety of stimuli. The production, workings, and wide range of applications of stimuli-responsive multiacceptor conjugated polymers are the focus of this review.
Collapse
Affiliation(s)
- Tamanna Pradhan
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dinesh Kumar Chelike
- Department
of Chemistry, Rungta College of Engineering
& Technology Bhilai, Kohka, Durg, Chhattisgarh 490024, India
| | - Debarshi Roy
- Jay
FineChem Pvt. Ltd., Vapi, Gujarat 396191, India
| | - Tanay Pramanik
- Department
of Chemistry, Institute of Engineering and Management, University of Engineering and Management Kolkata, University Area, Action area 3,
Newtown, Kolkata 700160, India
| | - Subrata Dolui
- Graduate
School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashihiroshima 739-8527, Japan
| |
Collapse
|
2
|
Ismail M, Wang Y, Li Y, Liu J, Zheng M, Zou Y. Stimuli-Responsive Polymeric Nanocarriers Accelerate On-Demand Drug Release to Combat Glioblastoma. Biomacromolecules 2024; 25:6250-6282. [PMID: 39259212 DOI: 10.1021/acs.biomac.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor with a poor prognosis and limited treatment options. Drug delivery by stimuli-responsive nanocarriers holds great promise for improving the treatment modalities of GBM. At the beginning of the review, we highlighted the stimuli-active polymeric nanocarriers carrying therapies that potentially boost anti-GBM responses by employing endogenous (pH, redox, hypoxia, enzyme) or exogenous stimuli (light, ultrasonic, magnetic, temperature, radiation) as triggers for controlled drug release mainly via hydrophobic/hydrophilic transition, degradability, ionizability, etc. Modifying these nanocarriers with target ligands further enhanced their capacity to traverse the blood-brain barrier (BBB) and preferentially accumulate in glioma cells. These unique features potentially lead to more effective brain cancer treatment with minimal adverse reactions and superior therapeutic outcomes. Finally, the review summarizes the existing difficulties and future prospects in stimuli-responsive nanocarriers for treating GBM. Overall, this review offers theoretical guidelines for developing intelligent and versatile stimuli-responsive nanocarriers to facilitate precise drug delivery and treatment of GBM in clinical settings.
Collapse
Affiliation(s)
- Muhammad Ismail
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yibin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yundong Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yan Zou
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
3
|
Huang Q, Ding C, Wang W, Yang L, Wu Y, Zeng W, Li Z, Shi Z, Mei L, Zeng X, Zhao Y, Chen H. An "AND" logic gate-based supramolecular therapeutic nanoplatform for combatting drug-resistant non-small cell lung cancer. SCIENCE ADVANCES 2024; 10:eadp9071. [PMID: 39321294 PMCID: PMC11423878 DOI: 10.1126/sciadv.adp9071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Despite targeted therapies like epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), non-small cell lung cancer (NSCLC) remains a clinical challenge due to drug resistance hampering their efficacy. Here, we designed an "AND" logic gate-based supramolecular therapeutic platform (HA-BPY-GEF-NPs) for the treatment of EGFR-TKI resistant NSCLC. This system integrates both internal and external stimuli-responsive mechanisms that need to be activated in a preset sequence, enabling it to precisely control drug release behavior for enhancing therapeutic precision. By programming the system to respond to sequential near-infrared (NIR) irradiation and enzyme (cathepsin B) inputs, the release of gefitinib is effectively confined to the tumor region. Moreover, the NIR irradiation induces reactive oxygen species production, suppressing tumor growth and inhibiting bypass signaling pathways. The designed drug delivery system offers a highly controlled and targeted therapeutic approach, effectively inhibiting tumor growth, suppressing bypass signaling pathways, and overcoming EGFR-TKI resistance, thus offering a potential solution for maximizing therapeutic benefits.
Collapse
Affiliation(s)
- Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Chendi Ding
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wenfeng Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhaoqing Shi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|