1
|
Desai H, Andrews KH, Bergersen KV, Ofori S, Yu F, Shikwana F, Arbing MA, Boatner LM, Villanueva M, Ung N, Reed EF, Nesvizhskii AI, Backus KM. Chemoproteogenomic stratification of the missense variant cysteinome. Nat Commun 2024; 15:9284. [PMID: 39468056 PMCID: PMC11519605 DOI: 10.1038/s41467-024-53520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Cancer genomes are rife with genetic variants; one key outcome of this variation is widespread gain-of-cysteine mutations. These acquired cysteines can be both driver mutations and sites targeted by precision therapies. However, despite their ubiquity, nearly all acquired cysteines remain unidentified via chemoproteomics; identification is a critical step to enable functional analysis, including assessment of potential druggability and susceptibility to oxidation. Here, we pair cysteine chemoproteomics-a technique that enables proteome-wide pinpointing of functional, redox sensitive, and potentially druggable residues-with genomics to reveal the hidden landscape of cysteine genetic variation. Our chemoproteogenomics platform integrates chemoproteomic, whole exome, and RNA-seq data, with a customized two-stage false discovery rate (FDR) error controlled proteomic search, which is further enhanced with a user-friendly FragPipe interface. Chemoproteogenomics analysis reveals that cysteine acquisition is a ubiquitous feature of both healthy and cancer genomes that is further elevated in the context of decreased DNA repair. Reference cysteines proximal to missense variants are also found to be pervasive, supporting heretofore untapped opportunities for variant-specific chemical probe development campaigns. As chemoproteogenomics is further distinguished by sample-matched combinatorial variant databases and is compatible with redox proteomics and small molecule screening, we expect widespread utility in guiding proteoform-specific biology and therapeutic discovery.
Collapse
Affiliation(s)
- Heta Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Katrina H Andrews
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kristina V Bergersen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Flowreen Shikwana
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Mark A Arbing
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Nicholas Ung
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Ofori S, Desai HS, Shikwana F, Boatner LM, Dominguez Iii ER, Castellón JO, Backus KM. Generating cysteine-trypsin cleavage sites with 2-chloroacetamidine capping. Chem Commun (Camb) 2024; 60:8856-8859. [PMID: 39081146 DOI: 10.1039/d4cc01583e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
An electrophilic arginine mimetic, 2-chloroacetamidine (CAM), was deployed to enable trypsin-mediated proteolysis at cysteine residues and to enhance mass spectrometry-based proteomic detection of cysteine-containing peptides. Illustrating the value of the CAM-capping strategy, proteogenomic analysis using a two-stage false discovery rate (FDR) search revealed >50% enhanced coverage of missense variants, when compared to established workflows.
Collapse
Affiliation(s)
- Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| | - Flowreen Shikwana
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, UCLA, CA, 90095, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, UCLA, CA, 90095, USA
| | - Emil R Dominguez Iii
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, UCLA, CA, 90095, USA
| | - José O Castellón
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, UCLA, CA, 90095, USA
| |
Collapse
|
3
|
Brough Z, Zhao Z, Duong van Hoa F. From bottom-up to cell surface proteomics: detergents or no detergents, that is the question. Biochem Soc Trans 2024; 52:1253-1263. [PMID: 38666604 PMCID: PMC11346462 DOI: 10.1042/bst20231020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 06/27/2024]
Abstract
Measuring the expression levels of membrane proteins (MPs) is crucial for understanding cell differentiation and tissue specificity, defining disease characteristics, identifying biomarkers, and developing therapeutics. While bottom-up proteomics addresses the need for accurately surveying the membrane proteome, the lower abundance and hydrophobic nature of MPs pose challenges in sample preparation. As MPs normally reside in the lipid bilayer, conventional extraction methods rely on detergents, introducing here a paradox - detergents prevent aggregation and facilitate protein processing, but themselves become contaminants that interfere with downstream analytical applications. Various detergent removal methods exist to mitigate this issue, including filter-aided sample preparation, SP3, suspension trapping, and membrane mimetics. This review delves into the fundamentals of each strategy, applications, merits, and limitations, providing insights into their effectiveness in MP research.
Collapse
Affiliation(s)
- Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
4
|
Qiu N, Pechalrieu D, Abegg D, Adibekian A. Chemoproteomic Profiling Maps Zinc-Dependent Cysteine Reactivity. Chem Res Toxicol 2024; 37:620-632. [PMID: 38484110 DOI: 10.1021/acs.chemrestox.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
As a vital micronutrient, zinc is integral to the structure, function, and signaling networks of diverse proteins. Dysregulated zinc levels, due to either excess intake or deficiency, are associated with a spectrum of health disorders. In this context, understanding zinc-regulated biological processes at the molecular level holds significant relevance to public health and clinical practice. Identifying and characterizing zinc-regulated proteins in their diverse proteoforms, however, remain a difficult task in advancing zinc biology. Herein, we address this challenge by developing a quantitative chemical proteomics platform that globally profiles the reactivities of proteinaceous cysteines upon cellular zinc depletion. Exploiting a protein-conjugated resin for the selective removal of Zn2+ from culture media, we identify an array of zinc-sensitive cysteines on proteins with diverse functions based on their increased reactivity upon zinc depletion. Notably, we find that zinc regulates the enzymatic activities, post-translational modifications, and subcellular distributions of selected target proteins such as peroxiredoxin 6 (PRDX6), platelet-activating factor acetylhydrolase IB subunit alpha1 (PAFAH1B3), and phosphoglycerate kinase (PGK1).
Collapse
Affiliation(s)
- Nan Qiu
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Dany Pechalrieu
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
| | - Alexander Adibekian
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St., Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S Wood St., Chicago, Illinois 60612, United States
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave., Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Burton NR, Backus KM. Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics. Commun Chem 2024; 7:80. [PMID: 38600184 PMCID: PMC11006884 DOI: 10.1038/s42004-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Mapping the ligandability or potential druggability of all proteins in the human proteome is a central goal of mass spectrometry-based covalent chemoproteomics. Achieving this ambitious objective requires high throughput and high coverage sample preparation and liquid chromatography-tandem mass spectrometry analysis for hundreds to thousands of reactive compounds and chemical probes. Conducting chemoproteomic screens at this scale benefits from technical innovations that achieve increased sample throughput. Here we realize this vision by establishing the silane-based cleavable linkers for isotopically-labeled proteomics-tandem mass tag (sCIP-TMT) proteomic platform, which is distinguished by early sample pooling that increases sample preparation throughput. sCIP-TMT pairs a custom click-compatible sCIP capture reagent that is readily functionalized in high yield with commercially available TMT reagents. Synthesis and benchmarking of a 10-plex set of sCIP-TMT reveal a substantial decrease in sample preparation time together with high coverage and high accuracy quantification. By screening a focused set of four cysteine-reactive electrophiles, we demonstrate the utility of sCIP-TMT for chemoproteomic target hunting, identifying 789 total liganded cysteines. Distinguished by its compatibility with established enrichment and quantification protocols, we expect sCIP-TMT will readily translate to a wide range of covalent chemoproteomic applications.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Burger N, Chouchani ET. A new era of cysteine proteomics - Technological advances in thiol biology. Curr Opin Chem Biol 2024; 79:102435. [PMID: 38382148 DOI: 10.1016/j.cbpa.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Cysteines are amenable to a diverse set of modifications that exhibit critical regulatory functions over the proteome and thereby control a wide range of cellular processes. Proteomic technologies have emerged as a powerful strategy to interrogate cysteine modifications across the proteome. Recent advancements in enrichment strategies, multiplexing capabilities and increased analytical sensitivity have enabled deeper quantitative cysteine profiling, capturing a substantial proportion of the cysteine proteome. This is complemented by a rapidly growing repertoire of analytical strategies illuminating the diverse landscape of cysteine modifications. Cysteine chemoproteomics technologies have evolved into a powerful strategy to facilitate the development of covalent drugs, opening unprecedented opportunities to target the extensive undrugged proteome. Herein we review recent technological and scientific advances that shape the cysteine proteomics field.
Collapse
Affiliation(s)
- Nils Burger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Wang G, Chen Y, Wei Y, Zheng L, Jiao J, Guo Y. Highly Sensitive Labeling, Clickable Functionalization, and Glycoengineering of the MUC1 Neighboring System. JACS AU 2024; 4:828-836. [PMID: 38425906 PMCID: PMC10900198 DOI: 10.1021/jacsau.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
This study introduces a novel wash-type affinity-primed proximity labeling (WAPL) strategy for labeling and surface engineering of the MUC1 protein neighboring system. The strategy entails the utilization of peroxidase in conjunction with a MUC1-selective aptamer, facilitating targeted binding to MUC1 and inducing covalent labeling of the protein neighboring system. This study reveals a novel finding that the WAPL strategy demonstrates superior labeling efficiency in comparison to nonwash-type affinity-primed proximity labeling, marking the first instance of such observations. The WAPL strategy provides signal amplification by converting a single recognition event into multiple covalent labeling events, thereby improving the detection sensitivity for subtle changes in MUC1. The WAPL platform employs two levels of labeling upgrades, modifying the biotin handles of the conventional labeling substrate, biotin-phenol. The first level involves a range of clickable molecules, facilitating dibenzoazacyclooctynylation, alkynylation, and trans-cyclooctenylation of the protein neighboring system. The second level utilizes lactose as a post-translational modification model, enabling rapid and reliable glycoengineering of the MUC1 neighboring system while remaining compatible with cell-based assays. The implementation of the WAPL strategy in protein neighboring systems has resulted in the establishment of a versatile platform that can effectively facilitate diverse monitoring and regulation techniques. This platform offers valuable insights into the regulation of relevant signaling pathways and promotes the advancement of novel therapeutic approaches, thereby bringing substantial implications for human health.
Collapse
Affiliation(s)
- Gang Wang
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
- Nanjing
University School of Life Sciences, Nanjing
University, Nanjing 210023, China
| | - Ying Chen
- School
of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Yuan Wei
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Lei Zheng
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Jianwei Jiao
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
- Laboratory
of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuna Guo
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| |
Collapse
|