1
|
Siar EH, Abellanas-Perez P, Morellon-Sterling R, Bolivar JM, Rocha-Martin J, Fernandez-Lafuente R. Designing tailor-made steric matters to improve the immobilized ficin specificity for small versus large proteins. J Biotechnol 2024; 395:12-21. [PMID: 39260701 DOI: 10.1016/j.jbiotec.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
The development of strategies that can permit to adjust the size specificity of immobilized proteases by the generation of steric hindrances may enlarge its applicability. Using as a model ficin immobilized on glyoxyl agarose, two strategies were assayed to generate tailor made steric hindrances. First, ficin has been coimmobilized on supports coated with large proteins (hemoglobin or bovine serum albumin (BSA)). While coimmobilization of ficin with BSA presented no effect on the activity versus any of the assayed substrates, coimmobilization with hemoglobin permitted to improve the immobilized ficin specificity for casein versus hemoglobin, but still significant activity versus hemoglobin remained. Second, aldehyde-dextran has been employed to modify the immobilized ficin, trying to generate steric hindrances to avoid the entry of large proteins (hemoglobin) while enabling the entry of small ones (casein). This also increased the size specificity of ficin, but still did not suppress the activity versus hemoglobin. The combination of both strategies and the use of 37ºC during the proteolysis enabled to almost fully nullify the hydrolytic activity versus hemoglobin while preserving a high percentage of the activity versus casein. The modifications improved enzyme stability and the biocatalyst could be reused for 5 cycles without alteration of its properties.
Collapse
Affiliation(s)
- El Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Agri-food Engineering Laboratory (GENIAAL), Institute of Food, Nutrition and Agri-Food Technologies (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | | | | | - Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave, Madrid 28040, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
2
|
Siar EH, Abellanas-Perez P, Rocha-Martin J, Fernandez-Lafuente R. Tailoring the specificity of ficin versus large hemoglobin and small casein by co-immobilizing inert proteins on the immobilized enzyme layer and further modification with aldehyde dextran. Int J Biol Macromol 2024; 277:134487. [PMID: 39102910 DOI: 10.1016/j.ijbiomac.2024.134487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Ficin has been immobilized at full loading on glyoxyl agarose beads. Then, ficin was blocked with 2,2'-dipyridyldisulfide. To be effective, the modification must be performed in the presence of 0.5 M urea, as the enzyme was not inhibited under standard conditions, very likely because the catalytic Cys was not fully exposed to the medium. Activity could be fully recovered by incubation with 1 M mercaptoethanol. This biocatalyst could hydrolyze hemoglobin and casein. The objective of this paper was to increase the enzyme specificity versus small proteins by generating steric hindrances to the access of large proteins. The step by step blocking via ionic exchange of the biocatalyst with aminated bovine serum albumin (BSA), aldehyde dextran and a second layer of aminated BSA produced a biocatalyst that maintained its activity versus small synthetic substrates, increased the biocatalyst stability, while reduced its activity to over 50 % versus casein. Interestingly, this treatment almost fully annulled the activity versus hemoglobin, more effectively at 37 °C than at 55 °C. The biocatalyst could be reused 5 times without changes in activity. The changes could be caused by steric hindrances, but it cannot be discarded some changes in enzyme sequence specificity caused by the modifications.
Collapse
Affiliation(s)
- El Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; Transformation and Food Product Elaboration Laboratory, Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Constantine, Algeria
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
3
|
Lui TY, Chen X, Hu D, Chan TWD. Probing High-order Protein Complexes Using Native Mass Spectrometry and Hydrogen/Deuterium Exchange Mass Spectrometry: A Case Study Using Fresh and Commercial Hemoglobin Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1921-1929. [PMID: 38957002 DOI: 10.1021/jasms.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Native mass spectrometry (MS) analysis of protein complexes is highly susceptible to matrix effect, and addressing this predicament using buffer exchange is a common approach. Nevertheless, optimization of the buffer exchange protocol is not trivial. With the use of hemoglobin (Hb) as the model entity, it was discovered that the native mass spectrum of protein assembly is highly dependent on the buffer-exchange protocol. Given the dependence of native MS on the purification protocol, this work attempts to use hydrogen/deuterium exchange mass spectrometry (HDX-MS) for comparative studies of hemoglobin complexes in untreated fresh and commercial samples. The information obtained from the HDX study was found to correlate well with the native mass spectrometry analysis of the properly buffer-exchanged Hb samples. Both native MS and HDX-MS showed that the fresh Hb sample has retained the expected tetrameric structure, whereas the commercial Hb has largely been denatured to the dimeric form. These findings prove the complementarity of native MS and HDX-MS in the analysis of high-order protein complexes and stress the necessity to validate the integrity of the high-order structures of the proteins prior to the use of the protein samples for other biomedical studies.
Collapse
Affiliation(s)
- T-Y Lui
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, P. R. China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250000, P. R. China
| | - Danna Hu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
4
|
Villacob RA, Feizi N, Beno SC, Solouki T. Collision-Induced Unfolding, Tandem MS, Bottom-up Proteomics, and Interactomics for Identification of Protein Complexes in Native Surface Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:13-30. [PMID: 38095581 DOI: 10.1021/jasms.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Endogenously occurring salts and nonvolatile matrix components in untreated biological surfaces can suppress protein ionization and promote adduct formation, challenging protein identification. Characterization of labile proteins within biological specimens is particularly demanding because additional purification or sample treatment steps can be time-intensive and can disrupt noncovalent interactions. It is demonstrated that the combined use of collision-induced unfolding, tandem mass spectrometry, and bottom-up proteomics improves protein characterization in native surface mass spectrometry (NSMS). This multiprong analysis is achieved by acquiring NSMS, MS/MS, ion mobility (IM), and bottom-up proteomics data from a single surface extracted sample. The validity of this multiprong approach was confirmed by the successful characterization of nine surface-deposited proteins, with molecular weights ranging from 8 to 147 kDa, in two separate mixtures. Bottom-up proteomics provided a list of proteins to match against observed proteins in NSMS and their detected subunits in tandem MS. The method was applied to characterize endogenous proteins from untreated chicken liver samples. The subcapsular liver sampling for NSMS analysis allowed for the detection of endogenous proteins with molecular weights of up to ∼220 kDa. Moreover, using IM-MS, collision cross sections and collision-induced unfolding pathways of enzymatic proteins and protein complexes of up to 145 kDa were obtained.
Collapse
Affiliation(s)
- Raul A Villacob
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Neda Feizi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sarah C Beno
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
5
|
Abstract
Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed.
Collapse
Affiliation(s)
- Kelly R Karch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Dalton T Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
7
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
8
|
Rolland AD, Biberic LS, Prell JS. Investigation of Charge-State-Dependent Compaction of Protein Ions with Native Ion Mobility-Mass Spectrometry and Theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:369-381. [PMID: 35073092 PMCID: PMC11404549 DOI: 10.1021/jasms.1c00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The precise relationship between native gas-phase protein ion structure, charge, desolvation, and activation remains elusive. Much evidence supports the Charge Residue Model for native protein ions formed by electrospray ionization, but scaling laws derived from it relate only to overall ion size. Closer examination of drift tube CCSs across individual native protein ion charge state distributions (CSDs) reveals deviations from global trends. To investigate whether this is due to structure variation across CSDs or contributions of long-range charge-dipole interactions, we performed in vacuo force field molecular dynamics (MD) simulations of multiple charge conformers of three proteins representing a variety of physical and structural features: β-lactoglobulin, concanavalin A, and glutamate dehydrogenase. Results from these simulated ions indicate subtle structure variation across their native CSDs, although effects of these structural differences and long-range charge-dependent interactions on CCS are small. The structure and CCS of smaller proteins may be more sensitive to charge due to their low surface-to-volume ratios and reduced capacity to compact. Secondary and higher order structure from condensed-phase structures is largely retained in these simulations, supporting the use of the term "native-like" to describe results from native ion mobility-mass spectrometry experiments, although, notably, the most compact structure can be the most different from the condensed-phase structure. Collapse of surface side chains to self-solvate through formation of new hydrogen bonds is a major feature of gas-phase compaction and likely occurs during the desolvation process. Results from these MD simulations provide new insight into the relationship of gas-phase protein ion structure, charge, and CCS.
Collapse
Affiliation(s)
- Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lejla S Biberic
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
9
|
Aliyari E, Konermann L. Atomistic Insights into the Formation of Nonspecific Protein Complexes during Electrospray Ionization. Anal Chem 2021; 93:12748-12757. [PMID: 34494821 DOI: 10.1021/acs.analchem.1c02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Native electrospray ionization (ESI)-mass spectrometry (MS) is widely used for the detection and characterization of multi-protein complexes. A well-known problem with this approach is the possible occurrence of nonspecific protein clustering in the ESI plume. This effect can distort the results of binding affinity measurements, and it can even generate gas-phase complexes from proteins that are strictly monomeric in bulk solution. By combining experiments and molecular dynamics (MD) simulations, the current work for the first time provides detailed insights into the ESI clustering of proteins. Using ubiquitin as a model system, we demonstrate how the entrapment of more than one protein molecule in an ESI droplet can generate nonspecific clusters (e.g., dimers or trimers) via solvent evaporation to dryness. These events are in line with earlier proposals, according to which protein clustering is associated with the charged residue model (CRM). MD simulations on cytochrome c (which carries a large intrinsic positive charge) confirmed the viability of this CRM avenue. In addition, the cytochrome c data uncovered an alternative mechanism where protein-protein contacts were formed early within ESI droplets, followed by cluster ejection from the droplet surface. This second pathway is consistent with the ion evaporation model (IEM). The observation of these IEM events for large protein clusters is unexpected because the IEM has been thought to be associated primarily with low-molecular-weight analytes. In all cases, our MD simulations produced protein clusters that were stabilized by intermolecular salt bridges. The MD-generated charge states agreed with experiments. Overall, this work reveals that ESI-induced protein clustering does not follow a tightly orchestrated pathway but can proceed along different avenues.
Collapse
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|