1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Ablat N, Ablimit M, Sun Y, Zhao X, Pu X. Application of new imaging methods in the development of Chinese medicine. Biomed Pharmacother 2022; 153:113470. [DOI: 10.1016/j.biopha.2022.113470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
|
3
|
Wang Q, Sun N, Kunzke T, Buck A, Shen J, Prade VM, Stöckl B, Wang J, Feuchtinger A, Walch A. A simple preparation step to remove excess liquid lipids in white adipose tissue enabling improved detection of metabolites via MALDI-FTICR imaging MS. Histochem Cell Biol 2022; 157:595-605. [PMID: 35391562 PMCID: PMC9114030 DOI: 10.1007/s00418-022-02088-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 11/10/2022]
Abstract
Matrix-assisted laser desorption ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) imaging mass spectrometry (MS) is a powerful technology used to analyze metabolites in various tissues. However, it faces significant challenges in studying adipose tissues. Poor matrix distribution and crystallization caused by excess liquid lipids on the surface of tissue sections hamper m/z species detection, an adverse effect that particularly presents in lipid-rich white adipose tissue (WAT). In this study, we integrated a simple and low-cost preparation step into the existing MALDI-FTICR imaging MS pipeline. The new method—referred to as filter paper application—is characterized by an easy sample handling and high reproducibility. The aforementioned filter paper is placed onto the tissue prior to matrix application in order to remove the layer of excess liquid lipids. Consequently, MALDI-FTICR imaging MS detection was significantly improved, resulting in a higher number of detected m/z species and higher ion intensities. After analyzing various durations of filter paper application, 30 s was found to be optimal, resulting in the detection of more than 3700 m/z species. Apart from the most common lipids found in WAT, other molecules involved in various metabolic pathways were detected, including nucleotides, carbohydrates, and amino acids. Our study is the first to propose a solution to a specific limitation of MALDI-FTICR imaging MS in investigating lipid-rich WAT. The filter paper approach can be performed quickly and is particularly effective for achieving uniform matrix distribution on fresh frozen WAT while maintaining tissue integrity. It thus helps to gain insight into the metabolism in WAT.
Collapse
Affiliation(s)
- Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Jian Shen
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Verena M Prade
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Barbara Stöckl
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Jun Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|