1
|
Chen B, He J, Hu Z, Zeng X. Assignment of Disulfide Bonds in HNTX-XXI by Double-Enzymatic Digestion and Edman Degradation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39514342 DOI: 10.1021/jasms.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
HNTX-XXI, a peptide toxin derived from the venom of the spider Ornithoctonus hainana, comprises a 64-amino-acid protein architecture that notably incorporates eight cysteine residues positioned at positions 2, 10, 14, 16, 17, 23, 36, and 63. The close spatial proximity of Cys16 and Cys17 poses a challenge in resolving their disulfide bridge configurations using standard methodologies. In this study, we introduce an innovative and highly efficient approach for delineating disulfide pairings in peptides containing adjacent cysteines. Our methodology integrates a two-step proteolytic digestion strategy utilizing trypsin and Glu-specific staphylococcal V8 protease coupled with a subsequent round of Edman degradation. This multifaceted approach enables the precise characterization of the disulfide bonds within the peptide. Specifically, targeted proteolysis by trypsin and V8, followed by reversed-phase HPLC separation of the resulting peptides, facilitated the unambiguous identification of disulfide linkages between Cys10-Cys23 and Cys14-Cys63. For the fragment containing the four remaining cysteines, a single cycle of Edman degradation was employed, strategically breaking the peptide bond between the adjacent cysteines. This pivotal step enabled the isolation and analysis of the resulting fragments. Subsequently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was utilized, revealing the presence of two additional disulfide bonds: Cys2-Cys17 and Cys16-Cys36. Collectively, these findings allow for the definitive assignment of the four disulfide linkages in HNTX-XXI as Cys2-Cys17, Cys10-Cys23, Cys14-Cys63, and Cys16-Cys36. This rapid and sensitive methodology represents a significant advancement in the structural characterization of peptide toxins with complex disulfide bond patterns, underscoring its potential for broad application in the field of venom peptide research.
Collapse
Affiliation(s)
- Bo Chen
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410000, China
| | - Juan He
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410000, China
| | - Zhaotun Hu
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410000, China
| | - Xiongzhi Zeng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410000, China
| |
Collapse
|
2
|
Vogg B, Poetzl J, Schwebig A, Sekhar S, Kivitz A, Krivtsova N, Renner O, Body JJ, Eastell R. The Totality of Evidence for SDZ-deno: A Biosimilar to Reference Denosumab. Clin Ther 2024; 46:916-926. [PMID: 39294041 DOI: 10.1016/j.clinthera.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
PURPOSE Sandoz biosimilar denosumab (GP2411 [SDZ-deno]; Jubbonti/Wyost) is approved by the US FDA, EMA and Health Canada for all indications of reference denosumab (REF-deno; Prolia/Xgeva), a fully human IgG2κ monoclonal antibody that binds with high affinity and specificity to receptor activator of nuclear factor kappa-B ligand (RANKL). Denosumab blocks RANKL, preventing bone resorption and loss of bone density/architecture in conditions characterized by excessive bone loss such as osteoporosis in postmenopausal women and metastatic bone disease, among others. METHODS This narrative review summarizes the totality of evidence (ToE) for SDZ-deno that supported its approval as Jubbonti/Wyost in the EU and US. FINDINGS Analytical evaluation indicated that SDZ-deno has high purity and structural homology with REF-deno. SDZ-deno also demonstrated similar binding affinities, size and charge variants, and disulfide isoforms to REF-deno, and did not trigger clinically meaningful antibody-dependent cellular cytotoxicity. In clinical evaluation, SDZ-deno was similar to REF-deno in pharmacokinetics (PK) and pharmacodynamics (PD) in a 39-week Phase I study in 502 healthy male participants, and to REF-deno in a 72-week Phase III study in 527 postmenopausal women with osteoporosis. In both studies, the 90% and 95% confidence intervals (for PK and PD endpoints, respectively) of the geometric mean ratios for AUCinf, Cmax (and AUClast in the Phase I study; PK endpoints), and area under the effect versus time curve of percent change from baseline in serum carboxy-terminal crosslinked telopeptide of type I collagen (PD endpoint), were fully contained within the prespecified equivalence margins (0.80, 1.25). The Phase III study also demonstrated SDZ-deno is similar in efficacy to REF-deno in postmenopausal women with osteoporosis, as the difference in percent change from baseline in lumbar spine bone mineral density at week 52 between REF-deno and SDZ-deno was fully contained within the prespecified equivalence margins (-1.45, 1.45). SDZ-deno was well tolerated in both studies. As the ToE has established biosimilarity of SDZ-deno and REF-deno, extrapolation to all indications is justified based on the common mechanism of action and the comparable PK, safety, and immunogenicity across all indications. IMPLICATIONS The ToE for SDZ-deno suggests it will be an effective biosimilar to REF-deno, and its lower unit price is anticipated to increase the number of appropriate patients who will benefit.
Collapse
Affiliation(s)
- Barbara Vogg
- Hexal AG (a Sandoz company), Holzkirchen, Germany.
| | | | | | | | - Alan Kivitz
- Altoona Center for Clinical Research, Duncansville, Pennsylvania
| | | | | | - Jean-Jacques Body
- Department of Medicine, University Hospital Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Richard Eastell
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Naylor CN, Nagy G. Recent advances in high-resolution traveling wave-based ion mobility separations coupled to mass spectrometry. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39087820 DOI: 10.1002/mas.21902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Recently, ion mobility spectrometry-mass spectrometry (IMS-MS) has become more readily incorporated into various omics-based workflows. These growing applications are due to developments in instrumentation within the last decade that have enabled higher-resolution ion mobility separations. Two such platforms are the cyclic (cIMS) and structures for lossless ion manipulations (SLIM), both of which use traveling wave ion mobility spectrometry (TWIMS). High-resolution separations achieved with these techniques stem from the drastically increased pathlengths, on the order of 10 s of meters to >1 km, in both cIMS-MS and SLIM IMS-MS, respectively. Herein, we highlight recent developments and advances, for the period 2019-2023, in high-resolution traveling wave-based IMS-MS through instrumentation, calibration strategies, hyphenated techniques, and applications. Specifically, we will discuss applications including CCS calculations in multipass IMS-MS separations, coupling of IMS-MS with chromatography, imaging, and cryogenic infrared spectroscopy, and isomeric separations of glycans, lipids, and other small metabolites.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Cheng J, Liang T, Xie XQ, Feng Z, Meng L. A new era of antibody discovery: an in-depth review of AI-driven approaches. Drug Discov Today 2024; 29:103984. [PMID: 38642702 DOI: 10.1016/j.drudis.2024.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Given their high affinity and specificity for a range of macromolecules, antibodies are widely used in the treatment of autoimmune diseases, cancers, inflammatory diseases, and Alzheimer's disease (AD). Traditional experimental methods are time-consuming, expensive, and labor-intensive. Recent advances in artificial intelligence (AI) technologies provide complementary methods that can reduce the time and costs required for antibody design by minimizing failures and increasing the success rate of experimental tests. In this review, we scrutinize the plethora of AI-driven methodologies that have been deployed over the past 4 years for modeling antibody structures, predicting antibody-antigen interactions, optimizing antibody affinity, and generating novel antibody candidates. We also briefly address the challenges faced in integrating AI-based models with traditional antibody discovery pipelines and highlight the potential future directions in this burgeoning field.
Collapse
Affiliation(s)
- Jin Cheng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Tianjian Liang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Li Meng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| |
Collapse
|
5
|
Griffiths D, Anderson M, Richardson K, Inaba-Inoue S, Allen WJ, Collinson I, Beis K, Morris M, Giles K, Politis A. Cyclic Ion Mobility for Hydrogen/Deuterium Exchange-Mass Spectrometry Applications. Anal Chem 2024; 96:5869-5877. [PMID: 38561318 PMCID: PMC11024883 DOI: 10.1021/acs.analchem.3c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a powerful tool to probe protein dynamics. As a bottom-up technique, HDX-MS provides information at peptide-level resolution, allowing structural localization of dynamic changes. Consequently, the HDX-MS data quality is largely determined by the number of peptides that are identified and monitored after deuteration. Integration of ion mobility (IM) into HDX-MS workflows has been shown to increase the data quality by providing an orthogonal mode of peptide ion separation in the gas phase. This is of critical importance for challenging targets such as integral membrane proteins (IMPs), which often suffer from low sequence coverage or redundancy in HDX-MS analyses. The increasing complexity of samples being investigated by HDX-MS, such as membrane mimetic reconstituted and in vivo IMPs, has generated need for instrumentation with greater resolving power. Recently, Giles et al. developed cyclic ion mobility (cIM), an IM device with racetrack geometry that enables scalable, multipass IM separations. Using one-pass and multipass cIM routines, we use the recently commercialized SELECT SERIES Cyclic IM spectrometer for HDX-MS analyses of four detergent solubilized IMP samples and report its enhanced performance. Furthermore, we develop a novel processing strategy capable of better handling multipass cIM data. Interestingly, use of one-pass and multipass cIM routines produced unique peptide populations, with their combined peptide output being 31 to 222% higher than previous generation SYNAPT G2-Si instrumentation. Thus, we propose a novel HDX-MS workflow with integrated cIM that has the potential to enable the analysis of more complex systems with greater accuracy and speed.
Collapse
Affiliation(s)
- Damon Griffiths
- Faculty
of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, Princess
Street, Manchester M1 7DN, United Kingdom
| | - Malcolm Anderson
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Keith Richardson
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Satomi Inaba-Inoue
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford
Appleton Laboratory, Research Complex at Harwell, Oxfordshire, Didcot OX11 0FA, United Kingdom
- Diffraction
and Scattering Division, Japan Synchrotron
Radiation Research Institute, SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198, Japan
| | - William J. Allen
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ian Collinson
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Konstantinos Beis
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford
Appleton Laboratory, Research Complex at Harwell, Oxfordshire, Didcot OX11 0FA, United Kingdom
| | - Michael Morris
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Kevin Giles
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Argyris Politis
- Faculty
of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
6
|
Elsayed YY, Kühl T, Imhof D. Edman Degradation Reveals Unequivocal Analysis of the Disulfide Connectivity in Peptides and Proteins. Anal Chem 2024; 96:4057-4066. [PMID: 38407829 DOI: 10.1021/acs.analchem.3c04229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Disulfide bridges in peptides and proteins play an essential role in maintaining their conformation, structural integrity, and consequently function. Despite ongoing efforts, it is still not possible to detect disulfide bonds and the connectivity of multiply bridged peptides directly through a simple and sufficiently validated protein sequencing or peptide mapping method. Partial or complete reduction and chemical cysteine modification are required as initial steps, followed by the application of a proper detection method. Edman degradation (ED) has been used for primary sequence determination but is largely neglected since the establishment of mass spectrometry (MS)-based protein sequencing. Here, we evaluated and thoroughly characterized the phenyl thiohydantoin (PTH) cysteine derivatives PTH-S-methyl cysteine and PTH-S-carbamidomethyl cysteine as bioanalytical standards for cysteine detection and quantification as well as for the elucidation of the disulfide connectivity in peptides by ED. Validation of the established derivatives was performed according to the guidelines of the International Committee of Harmonization on bioanalytical method validation, and their analytical properties were confirmed as reference standards. A series of model peptides was sequenced to test the usability of the PTH-Cys-derivatives as standards, whereas the native disulfide-bonded peptides CCAP-vil, μ-conotoxin KIIIA, and human insulin were used as case studies to determine their disulfide bond connectivity completely independent of MS analysis.
Collapse
Affiliation(s)
- Yomnah Y Elsayed
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Cairo 11566, Egypt
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| |
Collapse
|
7
|
Gozzo TA, Bush MF. Quantitatively Differentiating Antibodies Using Charge-State Manipulation, Collisional Activation, and Ion Mobility-Mass Spectrometry. Anal Chem 2024; 96:505-513. [PMID: 38146701 DOI: 10.1021/acs.analchem.3c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Antibody-based therapeutics continue to expand both in the number of products and in their use in patients. These heterogeneous proteins challenge traditional drug characterization strategies, but ion mobility (IM) and mass spectrometry (MS) approaches have eased the challenge of higher-order structural characterization. Energy-dependent IM-MS, e.g., collision-induced unfolding (CIU), has been demonstrated to be sensitive to subtle differences in structure. In this study, we combine a charge-reduction method, cation-to-anion proton-transfer reactions (CAPTR), with energy-dependent IM-MS and varied solution conditions to probe their combined effects on the gas-phase structures of IgG1κ and IgG4κ from human myeloma. CAPTR paired with MS-only analysis improves the confidence of charge-state assignments and the resolution of the interfering protein species. Collision cross-section distributions were determined for each of the charge-reduced products. Similarity scoring was used to quantitatively compare distributions determined from matched experiments analyzing samples of the two antibodies. Relative to workflows using energy-dependent IM-MS without charge-state manipulation, combining CAPTR and energy-dependent IM-MS enhanced the differentiation of these antibodies. Combined, these results indicate that CAPTR can benefit many aspects of antibody characterization and differentiation.
Collapse
Affiliation(s)
- Theresa A Gozzo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
8
|
Takayama M. Transient Conformations Leading to Peptide Fragment Ion [c + 2H] + via Intramolecular Hydrogen Bonding Using MALDI In-source Decay Mass Spectrometry of Serine-, Threonine-, and/or Cysteine-Containing Peptides. Molecules 2023; 28:7700. [PMID: 38067431 PMCID: PMC10708033 DOI: 10.3390/molecules28237700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The formation of a peptide fragment ion [c + 2H]+ was examined using ultraviolet matrix-assisted laser desorption/ionization in-source decay mass spectrometry (UV/MALDI-ISD MS). Unusually, an ISD experiment with a hydrogen-abstracting oxidative matrix 4-nitro-1-naphthol (4,1-NNL) resulted in a [c + 2H]+ ion when the analyte peptides contained serine (Ser), threonine (Thr), and/or cysteine (Cys) residues, although the ISD with 4,1-NNL merely resulted in [a]+ and [d]+ ions. The [c + 2H]+ ion observed could be rationalized through intramolecular hydrogen atom transfer (HAT), like a Type-II reaction via a seven-membered conformation involving intramolecular hydrogen bonding (HB) between the active hydrogens (-OH and -SH) of the Ser/Thr/Cys residues and the backbone carbonyl oxygen at the adjacent amino (N)-terminal side residue. The ISD of the Cys-containing peptide resulted in the [c + 2H]+ ions, which originated from cleavage at the backbone N-Cα bonds far from the Cys residue, suggesting that the peptide molecule formed 16- and 22-membered transient conformations in the gas phase. The time-dependent density functional theory (TDDFT) calculations of the model structures of the Ser and Cys residues indicated that the Cys residue did not show a constructive bond interaction between the donor thiol (-SH) and carbonyl oxygen (=CO), while the Ser residue formed a distinct intramolecular HB.
Collapse
Affiliation(s)
- Mitsuo Takayama
- Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
9
|
Nagy K, Gellén G, Papp D, Schlosser G, Révész Á. Optimum collision energies for proteomics: The impact of ion mobility separation. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4957. [PMID: 37415399 DOI: 10.1002/jms.4957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Ion mobility spectrometry (IMS) is a widespread separation technique used in various research fields. It can be coupled to liquid chromatography-mass spectrometry (LC-MS/MS) methods providing an additional separation dimension. During IMS, ions are subjected to multiple collisions with buffer gas, which may cause significant ion heating. The present project addresses this phenomenon from the bottom-up proteomics point of view. We performed LC-MS/MS measurements on a cyclic ion mobility mass spectrometer with varied collision energy (CE) settings both with and without IMS. We investigated the CE dependence of identification score, using Byonic search engine, for more than 1000 tryptic peptides from HeLa digest standard. We determined the optimal CE values-giving the highest identification score-for both setups (i.e., with and without IMS). Results show that lower CE is advantageous when IMS separation is applied, by 6.3 V on average. This value belongs to the one-cycle separation configuration, and multiple cycles may supposedly have even larger impact. The effect of IMS is also reflected in the trends of optimal CE values versus m/z functions. The parameters suggested by the manufacturer were found to be almost optimal for the setup without IMS; on the other hand, they are obviously too high with IMS. Practical consideration on setting up a mass spectrometric platform hyphenated to IMS is also presented. Furthermore, the two CID (collision induced dissociation) fragmentation cells of the instrument-located before and after the IMS cell-were also compared, and we found that CE adjustment is needed when the trap cell is used for activation instead of the transfer cell. Data have been deposited in the MassIVE repository (MSV000090944).
Collapse
Affiliation(s)
- Kinga Nagy
- MS Proteomics Research Group, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György PhD School of Chemistry, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Gabriella Gellén
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Dávid Papp
- Hevesy György PhD School of Chemistry, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Ágnes Révész
- MS Proteomics Research Group, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| |
Collapse
|
10
|
Sharon EM, Henderson LW, Clemmer DE. Resolving Hidden Solution Conformations of Hemoglobin Using IMS-IMS on a Cyclic Instrument. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1559-1568. [PMID: 37418419 PMCID: PMC10916761 DOI: 10.1021/jasms.3c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) experiments on a cyclic IMS instrument were used to examine heterogeneous distributions of structures found in the 15+ to 18+ charge states of the hemoglobin tetramer (Hb). The resolving power of IMS measurements is known to increase with increasing drift-region length. This effect is not significant for Hb charge states as peaks were shown to broaden with increasing drift-region length. This observation suggests that multiple structures with similar cross sections may be present. To examine this hypothesis, selections of drift time distributions were isolated and subsequently reinjected into the mobility region for additional separation. These IMS-IMS experiments demonstrate that selected regions separate further upon additional passes around the drift cell, consistent with the idea that initial resolving power was limited due to the presence of many closely related conformations. Additional variable temperature electrospray ionization (vT-ESI) experiments were conducted to study how changing the solution temperature affects solution conformations. Some features in these IMS-IMS studies were observed to change similarly with solution temperature compared to features in the single IMS distribution. Other features changed differently in the selected mobility data, indicating that solution structures that were obscured upon IMS analysis because of the complex heterogeneity of the original distribution are discernible after reducing the number of conformers that are analyzed by further IMS analysis. These results illustrate that the combination of vT-ESI with IMS-IMS is useful for resolving and exploring conformer distributions and stabilities in systems that exhibit a large degree of structural heterogeneity.
Collapse
Affiliation(s)
- Edie M Sharon
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Lucas W Henderson
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Zercher BP, Gozzo TA, Wageman A, Bush MF. Enhancing the Depth of Analyses with Next-Generation Ion Mobility Experiments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:27-48. [PMID: 37000959 PMCID: PMC10545071 DOI: 10.1146/annurev-anchem-091522-031329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent developments in ion mobility (IM) technology have expanded the capability to separate and characterize gas-phase ions of biomolecules, especially when paired with mass spectrometry. This next generation of IM technology has been ushered in by creative innovation focused on both instrument architectures and how electric fields are applied. In this review, we focus on the application of high-resolution and multidimensional IM to biomolecular analyses, encompassing the fields of glycomics, lipidomics, peptidomics, and proteomics. We highlight selected research that demonstrates the application of the new IM toolkit to challenging biomolecular systems. Through our review of recently published literature, we outline the current strengths of respective technologies and perspectives for future applications.
Collapse
Affiliation(s)
- Benjamin P Zercher
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Theresa A Gozzo
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - AnneClaire Wageman
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
12
|
Peris-Díaz MD, Barkhanskiy A, Liggett E, Barran P, Krężel A. Ion mobility mass spectrometry and molecular dynamics simulations unravel the conformational stability of zinc metallothionein-2 species. Chem Commun (Camb) 2023; 59:4471-4474. [PMID: 36960761 PMCID: PMC10089061 DOI: 10.1039/d2cc06559b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/10/2023] [Indexed: 03/25/2023]
Abstract
Ion mobility-mass spectrometry (IM-MS) unraveled different conformational stability in Zn4-7-metallothionein-2. We introduced a new molecular dynamics simulation approach that permitted the exploration of all of the conformational space confirming the experimental data, and revealed that not only the Zn-S bonds but also the α-β domain interactions modulate protein unfolding.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland.
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Alexey Barkhanskiy
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Ellen Liggett
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
13
|
Deslignière E, Ollivier S, Beck A, Ropartz D, Rogniaux H, Cianférani S. Benefits and Limitations of High-Resolution Cyclic IM-MS for Conformational Characterization of Native Therapeutic Monoclonal Antibodies. Anal Chem 2023; 95:4162-4171. [PMID: 36780376 DOI: 10.1021/acs.analchem.2c05265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Monoclonal antibodies (mAbs) currently represent the main class of therapeutic proteins. mAbs approved by regulatory agencies are selected from IgG1, IgG2, and IgG4 subclasses, which possess different interchain disulfide connectivities. Ion mobility coupled to native mass spectrometry (IM-MS) has emerged as a valuable approach to tackle the challenging characterization of mAbs' higher order structures. However, due to the limited resolution of first-generation IM-MS instruments, subtle conformational differences on large proteins have long been hard to capture. Recent technological developments have aimed at increasing available IM resolving powers and acquisition mode capabilities, namely, through the release of high-resolution IM-MS (HR-IM-MS) instruments, like cyclic IM-MS (cIM-MS). Here, we outline the advantages and drawbacks of cIM-MS for better conformational characterization of intact mAbs (∼150 kDa) in native conditions compared to first-generation instruments. We first assessed the extent to which multipass cIM-MS experiments could improve the separation of mAbs' conformers. These initial results evidenced some limitations of HR-IM-MS for large native biomolecules which possess rich conformational landscapes that remain challenging to decipher even with higher IM resolving powers. Conversely, for collision-induced unfolding (CIU) approaches, higher resolution proved to be particularly useful (i) to reveal new unfolding states and (ii) to enhance the separation of coexisting activated states, thus allowing one to apprehend gas-phase CIU behaviors of mAbs directly at the intact level. Altogether, this study offers a first panoramic overview of the capabilities of cIM-MS for therapeutic mAbs, paving the way for more widespread HR-IM-MS/CIU characterization of mAb-derived formats.
Collapse
Affiliation(s)
- Evolène Deslignière
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67000, France.,Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67087, France
| | - Simon Ollivier
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Alain Beck
- IRPF Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois 74160, France
| | - David Ropartz
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Hélène Rogniaux
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67000, France.,Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67087, France
| |
Collapse
|
14
|
Wei B, Zenaidee MA, Lantz C, Williams BJ, Totten S, Ogorzalek Loo RR, Loo JA. Top-down mass spectrometry and assigning internal fragments for determining disulfide bond positions in proteins. Analyst 2022; 148:26-37. [PMID: 36399030 PMCID: PMC9772244 DOI: 10.1039/d2an01517j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Disulfide bonds in proteins have a substantial impact on protein structure, stability, and biological activity. Localizing disulfide bonds is critical for understanding protein folding and higher-order structure. Conventional top-down mass spectrometry (TD-MS), where only terminal fragments are assigned for disulfide-intact proteins, can access disulfide information, but suffers from low fragmentation efficiency, thereby limiting sequence coverage. Here, we show that assigning internal fragments generated from TD-MS enhances the sequence coverage of disulfide-intact proteins by 20-60% by returning information from the interior of the protein sequence, which cannot be obtained by terminal fragments alone. The inclusion of internal fragments can extend the sequence information of disulfide-intact proteins to near complete sequence coverage. Importantly, the enhanced sequence information that arise from the assignment of internal fragments can be used to determine the relative position of disulfide bonds and the exact disulfide connectivity between cysteines. The data presented here demonstrates the benefits of incorporating internal fragment analysis into the TD-MS workflow for analyzing disulfide-intact proteins, which would be valuable for characterizing biotherapeutic proteins such as monoclonal antibodies and antibody-drug conjugates.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Muhammad A Zenaidee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Isomer analysis by mass spectrometry in clinical science. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Cooper-Shepherd DA, Olivos HJ, Wu Z, Palmer ME. Exploiting Self-Association to Evaluate Enantiomeric Composition by Cyclic Ion Mobility-Mass Spectrometry. Anal Chem 2022; 94:8441-8448. [PMID: 35657797 PMCID: PMC9201813 DOI: 10.1021/acs.analchem.2c01212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
The characterization of enantiomers is an important analytical challenge in the chemical and life sciences. Thorough evaluation of the purity of chiral molecules is particularly required in the pharmaceutical industry where safety concerns are paramount. Assessment of the enantiomeric composition is still challenging and time-consuming, meaning that alternative approaches are required. In this study, we exploit the formation of dimers as diastereomeric pairs of enantiomers to affect separation by high resolution cyclic ion mobility-mass spectrometry. Using the example of (R/S)-thalidomide, we show that even though this is not an enantiomer separation, we can determine which enantiomer is in excess and obtain quantitative information on the enantiomer composition without the need for a chiral modifier. Further examples of the approach are presented, including d/l-tryptophan and (R/S)-propanolol, and demonstrate the need for mobility resolving power in excess of 400 (CCS/ΔCCS).
Collapse
Affiliation(s)
| | - Hernando J. Olivos
- Waters
Corporation, 34 Maple
Street, Milford, Massachusetts 01757, United States
| | - Zhaoxiang Wu
- Waters
Corporation, 34 Maple
Street, Milford, Massachusetts 01757, United States
| | - Martin E. Palmer
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| |
Collapse
|