1
|
Omezzine Gnioua M, Spesyvyi A, Španěl P. Gas phase H +, H 3O + and NH 4+ affinities of oxygen-bearing volatile organic compounds; DFT calculations for soft chemical ionisation mass spectrometry. Phys Chem Chem Phys 2023; 25:30343-30348. [PMID: 37909271 DOI: 10.1039/d3cp03604a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Quantum chemistry calculations were performed using the density functional theory, DFT, to understand the structures and energetics of organic ions relevant to gas phase ion chemistry in soft chemical ionisation mass spectrometry analytical methods. Geometries of a range of neutral volatile organic compound molecules and ions resulting from protonation, the addition of H3O+ and the addition of NH4+ were optimised using the B3LYP hybrid DFT method. Then, the total energies and the normal mode vibrational frequencies were determined, and the total enthalpies of the neutral molecules and ions were calculated for the standard temperature and pressure. The calculations were performed for several feasible structures of each of the ions. The proton affinities of several benchmark molecules agree with the accepted values within ±4 kJ mol-1, indicating that B3LYP/6-311++G(d,p) provides chemical accuracy for oxygen-containing volatile organic compounds. It was also found that the binding energies of H3O+ and NH4+ to molecules correlate with their proton affinities. The results contribute to the understanding of ligand switching ion-molecule reactions important for secondary electrospray ionisation, SESI, and selected ion flow tube, SIFT, mass spectrometries.
Collapse
Affiliation(s)
- Maroua Omezzine Gnioua
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 747/2, 18000 Prague 8, Czech Republic
| | - Anatolii Spesyvyi
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| |
Collapse
|
2
|
Wüthrich C, Giannoukos S, Zenobi R. Elucidating the Role of Ion Suppression in Secondary Electrospray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2498-2507. [PMID: 37843816 PMCID: PMC10623576 DOI: 10.1021/jasms.3c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Ion suppression is a known matrix effect in electrospray ionization (ESI), ambient pressure chemical ionization (APCI), and desorption electrospray ionization (DESI), but its characterization in secondary electrospray ionization (SESI) is lacking. A thorough understanding of this effect is crucial for quantitative applications of SESI, such as breath analysis. In this study, gas standards were generated by using an evaporation-based system to assess the susceptibility and suppression potential of acetone, deuterated acetone, deuterated acetic acid, and pyridine. Gas-phase effects were found to dominate ion suppression, with pyridine exhibiting the most significant suppressive effect, which is potentially linked to its gas-phase basicity. The impact of increased acetone levels on the volatiles from exhaled breath condensate was also examined. In humid conditions, a noticeable decrease in intensity of approximately 30% was observed for several features at an acetone concentration of 1 ppm. Considering that this concentration is expected for breath analysis, it becomes crucial to account for this effect when SESI is utilized to quantitatively determine specific compounds.
Collapse
Affiliation(s)
- Cedric Wüthrich
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Stamatios Giannoukos
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Španěl P, Dryahina K, Omezzine Gnioua M, Smith D. Different reactivities of H 3 O + (H 2 O) n with unsaturated and saturated aldehydes: ligand-switching reactions govern the quantitative analytical sensitivity of SESI-MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9496. [PMID: 36807598 DOI: 10.1002/rcm.9496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE The detection sensitivity of secondary electrospray ionisation mass spectrometry (SESI-MS) is much lower for saturated aldehydes than for unsaturated aldehydes. This needs to be understood in terms of gas phase ion-molecule reaction kinetics and energetics to make SESI-MS analytically more quantitative. METHODS Parallel SESI-MS and selected ion flow tube mass spectrometry (SIFT-MS) analyses were carried out of air containing variable accurately determined concentrations of saturated (C5, pentanal; C7, heptanal; C8 octanal) and unsaturated (C5, 2-pentenal; C7, 2-heptenal; C8, 2-octenal) aldehyde vapours. The influence of the source gas humidity and the ion transfer capillary temperature, 250 and 300°C, in a commercial SESI-MS instrument was explored. Separate experiments were carried out using SIFT to determine the rate coefficients, k73 , for the ligand-switching reactions of the H3 O+ (H2 O)3 ions with the six aldehydes. RESULTS The relative slopes of the plots of SESI-MS ion signal against SIFT-MS concentration were interpreted as the relative SESI-MS sensitivities for these six compounds. The sensitivities for the unsaturated aldehydes were 20 to 60 times greater than for the corresponding C5, C7 and C8 saturated aldehydes. Additionally, the SIFT experiments revealed that the measured k73 are three or four times greater for the unsaturated than for the saturated aldehydes. CONCLUSIONS The trends in SESI-MS sensitivities are rationally explained by differences in the rates of the ligand-switching reactions, which are justified by theoretically calculated equilibrium rate constants derived from thermochemical density functional theory (DFT) calculations of Gibb's free energy changes. The humidity of SESI gas thus favours the reverse reactions of the saturated aldehyde analyte ions, effectively suppressing their signals in contrast to their unsaturated counterparts.
Collapse
Affiliation(s)
- Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Kseniya Dryahina
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Maroua Omezzine Gnioua
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - David Smith
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Schlottmann F, Schaefer C, Kirk AT, Bohnhorst A, Zimmermann S. A High Kinetic Energy Ion Mobility Spectrometer for Operation at Higher Pressures of up to 60 mbar. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:893-904. [PMID: 36999893 PMCID: PMC10161227 DOI: 10.1021/jasms.2c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) are usually operated at absolute pressures around 20 mbar in order to reach high reduced electric field strengths of up to 120 Td for influencing reaction kinetics in the reaction region. Such operating points significantly increase the linear range and limit chemical cross sensitivities. Furthermore, HiKE-IMS enables ionization of compounds normally not detectable in ambient pressure IMS, such as benzene, due to additional reaction pathways and fewer clustering reactions. However, operation at higher pressures promises increased sensitivity and smaller instrument size. In this work, we therefore study the theoretical requirements to prevent dielectric breakdown while maintaining high reduced electric field strengths at higher pressures. Furthermore, we experimentally investigate influences of the pressure, discharge currents and applied voltages on the corona ionization source. Based on these results, we present a HiKE-IMS that operates at a pressure of 60 mbar and reduced electric field strengths of up to 105 Td. The corona experiments show shark fin shaped curves for the total charge at the detector with a distinct optimum operating point in the glow discharge region at a corona discharge current of 5 μA. Here, the available charge is maximized while the generation of less-reactive ion species like NOx+ is minimized. With these settings, the reactant ion population, H3O+ and O2+, for ionizing and detecting nonpolar substances like n-hexane is still available even at 60 mbar, achieving a limit of detection of just 5 ppbV for n-hexane.
Collapse
Affiliation(s)
- Florian Schlottmann
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Christoph Schaefer
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover, Germany
| |
Collapse
|
5
|
Weber R, Kaeslin J, Moeller S, Perkins N, Micic S, Moeller A. Effects of a Volatile Organic Compound Filter on Breath Profiles Measured by Secondary Electrospray High-Resolution Mass Spectrometry. Molecules 2022; 28:45. [PMID: 36615240 PMCID: PMC9822030 DOI: 10.3390/molecules28010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Environmental volatile organic compounds (VOCs) from the ambient air potentially influence on-line breath analysis measurements by secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS). The aim of this study was to investigate how inhaling through a VOC filter affects the detected breath profiles and whether it is feasible to integrate such filters into routine measurements. A total of 24 adult participants performed paired breath analysis measurements with and without the use of an activated carbon filter for inspiration. Concordance correlation coefficients (CCCs) and the Bland−Altman analysis were used to assess the agreement between the two methods. Additionally, the effect on a selection of known metabolites and contaminants was analyzed. Out of all the detected features, 78.3% showed at least a moderate agreement before and after filter usage (CCC > 0.9). The decrease in agreement of the remaining m/z features was mostly associated with reduced signal intensities after filter usage. Although a moderate-to-substantial concordance was found for almost 80% of the m/z features, the filter still had an effect by decreasing signal intensities, not only for contaminants, but also for some of the studied metabolites. Operationally, the use of the filter complicated and slowed down the conductance of measurements, limiting its applicability in clinical studies.
Collapse
Affiliation(s)
- Ronja Weber
- Department of Respiratory Medicine and Childhood Research Center, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Jérôme Kaeslin
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog Weg 1-5/10, 8093 Zurich, Switzerland
| | - Sophia Moeller
- Department of Respiratory Medicine and Childhood Research Center, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Nathan Perkins
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Srdjan Micic
- Department of Respiratory Medicine and Childhood Research Center, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Alexander Moeller
- Department of Respiratory Medicine and Childhood Research Center, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Raemistrasse 71, 8006 Zurich, Switzerland
| |
Collapse
|
6
|
Kaeslin J, Wüthrich C, Giannoukos S, Zenobi R. How Soft Is Secondary Electrospray Ionization? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1967-1974. [PMID: 36111835 DOI: 10.1021/jasms.2c00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Secondary electrospray ionization (SESI) mass spectrometry (MS) is a direct infusion technique often used for untargeted metabolomics, e.g., for online breath analysis. SESI is thought to be a soft ionization method, which is important to avoid interference from in-source fragments and to simplify compound annotation. In this work, benzylammonium ions, formed from volatile benzylamines, with known bond dissociation enthalpies were used as thermometer ions to investigate the internal energy distribution of ions that are produced by SESI. It is shown that SESI is softer than electrospray ionization (ESI), and therefore, SESI indeed qualifies as a soft ionization technique. However, we also found that the standard MS instrument settings used in the SESI community are relatively harsh. Proper soft tuning of the instrument is essential to fully benefit from the softness that SESI can provide. Moreover, there is evidence from in-source collision-induced dissociation (CID) experiments that analytes can be solvated in SESI under soft conditions, which supports a recently proposed SESI mechanism referred to as ligand switching.
Collapse
Affiliation(s)
- Jérôme Kaeslin
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Cedric Wüthrich
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Stamatios Giannoukos
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
7
|
Dryahina K, Polášek M, Smith D, Španěl P. Sensitivity of secondary electrospray ionization mass spectrometry to a range of volatile organic compounds: Ligand switching ion chemistry and the influence of Zspray™ guiding electric fields. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9187. [PMID: 34473872 DOI: 10.1002/rcm.9187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Secondary electrospray ionization (SESI) is currently only semi-quantitative. In the Zspray™ arrangement of SESI-MS, the transfer of ions from near atmospheric pressure to a triple quadrupole is achieved by guiding electric fields that partially desolvate both reagent and analyte ions which must be understood. Also, to make SESI-MS more quantitative, the mechanisms and the kinetics of the reaction processes, especially ligand switching reactions of hydrated hydronium reagent ions, H3 O+ (H2 O)n , with volatile organic compound (VOC) molecules, need to be understood. METHODS A modified Zspray™ ESI ion source operating at sub-atmospheric pressure with analyte sample gas introduced via an inlet coaxial with the spray was used. Variation of the ion-guiding electric fields was used to reveal the degree of desolvation of both reagent and analyte ions. The instrument sensitivity was determined for several classes of VOCs by introducing bag samples of suitably varying concentrations as quantified on-line using selected ion flow tube MS. RESULTS Electric field desolvation resulted in largely protonated VOCs, MH+ , and their monohydrates, MH+ H2 O, and for some VOCs proton-bound dimer ions, MH+ M, were formed. There was a highly linear response of the ion signal to the measured VOC sample concentration, which provided the instrument sensitivities, S, for 25 VOCs. The startling results show very wide variations in S from near 0 to 1 for hydrocarbons, and up to 100, on a relative scale, for polar compounds such as monoketones and unsaturated aldehydes. CONCLUSIONS The complex ion chemistry occurring in the SESI ion source, largely involving gas-phase ligand switching, results in widely variable sensitivities for different classes of VOCs. The sensitivity is observed to depend on the dipole moment and proton affinity of the analyte VOC molecule, M, and to decrease with the observed fraction of MH+ H2 O, but other yet unrecognized factors must play a significant role.
Collapse
Affiliation(s)
- Kseniya Dryahina
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslav Polášek
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - David Smith
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Patrik Španěl
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|