1
|
Lee JU, Kim S, Munshi MU, Hwangbo S, Lee SY, Moon B, Lee HS, Oh HB. Elucidating Tertiary Structures of Affibody in Vacuo Using Genetic Code Expansion and FRIPS Mass Spectrometry. Anal Chem 2024; 96:20296-20303. [PMID: 39663559 DOI: 10.1021/acs.analchem.4c05148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Radical-directed protein fragmentation techniques, particularly free radical-initiated peptide sequencing (FRIPS) mass spectrometry (MS), offer significant potential for elucidating protein structures in the gas phase. This study presents a novel approach to protein structural analysis in vacuo, combining FRIPS MS with genetic code expansion (GCE) technology. By incorporating unnatural amino acids (UAAs) at specific sites within an Affibody protein, we effectively introduced a radical precursor at six distinct positions. The study explores structural information derived from radical-directed fragmentations by analyzing the proximity and pathways of radical transfer within the protein's tertiary structure. Our findings reveal that in the lowest charge state (+5), the Affibody retains a folded conformation resembling its native structure, with significant radical-directed fragmentations occurring through both "through-sequence" and "through-space" mechanisms. These results demonstrate the potential of FRIPS MS to provide residue-specific insights into protein folding and structural information in the gas phase, paving the way for a more detailed protein structure analysis.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
- Analytical Sciences Center, LG Chem, Seoul 07796, Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk 28160, Republic of Korea
| | | | - Song Hwangbo
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - So Yeon Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
2
|
Silzel JW, Chen C, Sanchez-Marsetti C, Farias P, Carta V, Harman WH, Julian RR. Chromophore Optimization in Organometallic Au(III) Cys Arylation of Peptides and Proteins for 266 nm Photoactivation. Anal Chem 2024; 96:14581-14589. [PMID: 39196765 PMCID: PMC11391407 DOI: 10.1021/acs.analchem.4c03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Cysteine is the most reactive naturally occurring amino acid due to the presence of a free thiol, presenting a tantalizing handle for covalent modification of peptides/proteins. Although many mass spectrometry experiments could benefit from site-specific modification of Cys, the utility of direct arylation has not been thoroughly explored. Recently, Spokoyny and co-workers reported a Au(III) organometallic reagent that robustly arylates Cys and tolerates a wide variety of solvents and conditions. Given the chromophoric nature of aryl groups and the known susceptibility of carbon-sulfur bonds to photodissociation, we set out to identify an aryl group that could efficiently cleave Cys carbon-sulfur bonds at 266 nm. A streamlined workflow was developed to facilitate rapid examination of a large number of aryls with minimal sample using a simple test peptide, RAAACGVLK. We were able to identify several aryl groups that yield abundant homolytic photodissociation of the adjacent Cys carbon-sulfur bonds with short activation times (<10 ms). In addition, we characterized the radical products created by photodissociation by subjecting the product ions to further collisional activation. Finally, we tested Cys arylation with human hemoglobin, identified reaction conditions that facilitate efficient modification of intact proteins, and evaluated the photochemistry and activation of these large radical ions.
Collapse
Affiliation(s)
- Jacob W Silzel
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chengwei Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | | | - Phillip Farias
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Veronica Carta
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - W Hill Harman
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Donndelinger DV, Yan T, Scoggins TR, Specker JT, Prentice BM. Sequencing of Phosphopeptides Using a Sequential Charge Inversion Ion/Ion Reaction and Electron Capture Dissociation Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1556-1566. [PMID: 38806410 PMCID: PMC11665916 DOI: 10.1021/jasms.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Protein phosphorylation, a common post-translational modification (PTM), is fundamental in a plethora of biological processes, most importantly in modulating cell signaling pathways. Matrix-assisted laser desorption/ionization (MALDI) coupled to tandem mass spectrometry (MS/MS) is an attractive method for phosphopeptide characterization due to its high speed, low limit of detection, and surface sampling capabilities. However, MALDI analysis of phosphopeptides is constrained by relatively low abundances in biological samples and poor relative ionization efficiencies in positive ion mode. Additionally, MALDI tends to produce singly charged ions, generally limiting the accessible MS/MS techniques that can be used for peptide sequencing. For example, collision induced dissociation (CID) is readily amendable to the analysis of singly charged ions, but results in facile loss of phosphoric acid, precluding the localization of the PTM. Electron-based dissociation methods (e.g., electron capture dissociation, ECD) are well suited for PTM localization, but require multiply charged peptide cations to avoid neutralization during ECD. Conversely, phosphopeptides are readily ionized using MALDI in negative ion mode. If the precursor ions are first formed in negative ion mode, a gas-phase charge inversion ion/ion reaction could then be used to transform the phosphopeptide anions produced via MALDI into multiply charged cations that are well-suited for ECD. Herein we demonstrate a multistep workflow combining a charge inversion ion/ion reaction that first transforms MALDI-generated phosphopeptide monoanions into multiply charged cations, and then subjects these multiply charged phosphopeptide cations to ECD for sequence determination and phosphate bond localization.
Collapse
Affiliation(s)
| | - Tingting Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Troy R. Scoggins
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | | | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
4
|
Wu HT, Riggs DL, Lyon YA, Julian RR. Statistical Framework for Identifying Differences in Similar Mass Spectra: Expanding Possibilities for Isomer Identification. Anal Chem 2023; 95:6996-7005. [PMID: 37128750 PMCID: PMC10157605 DOI: 10.1021/acs.analchem.3c00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Isomeric molecules are important analytes in many biological and chemical arenas, yet their similarity poses challenges for many analytical methods, including mass spectrometry (MS). Tandem-MS provides significantly more information about isomers than intact mass analysis, but highly similar fragmentation patterns are common and include cases where no unique m/z peaks are generated between isomeric pairs. However, even in such situations, differences in peak intensity can exist and potentially contain additional information. Herein, we present a framework for comparing mass spectra that differ only in terms of peak intensity and include calculation of a statistical probability that the spectra derive from different analytes. This framework allows for confident identification of peptide isomers by collision-induced dissociation, higher-energy collisional dissociation, electron-transfer dissociation, and radical-directed dissociation. The method successfully identified many types of isomers including various d/l amino acid substitutions, Leu/Ile, and Asp/IsoAsp. The method can accommodate a wide range of changes in instrumental settings including source voltages, isolation widths, and resolution without influencing the analysis. It is shown that quantification of the composition of isomeric mixtures can be enabled with calibration curves, which were found to be highly linear and reproducible. The analysis can be implemented with data collected by either direct infusion or liquid-chromatography MS. Although this framework is presented in the context of isomer characterization, it should also prove useful in many other contexts where similar mass spectra are generated.
Collapse
Affiliation(s)
- Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Dylan L. Riggs
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yana A. Lyon
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|