1
|
Randolph CE, Walker KA, Yu R, Beveridge C, Manchanda P, Chopra G. Glial Biologist's Guide to Mass Spectrometry-Based Lipidomics: A Tutorial From Sample Preparation to Data Analysis. Glia 2025. [PMID: 39751169 DOI: 10.1002/glia.24665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Neurological diseases are associated with disruptions in the brain lipidome that are becoming central to disease pathogenesis. Traditionally perceived as static structural support in membranes, lipids are now known to be actively involved in cellular signaling, energy metabolism, and other cellular activities involving membrane curvature, fluidity, fusion or fission. Glia are critical in the development, health, and function of the brain, and glial regulation plays a major role in disease. The major pathways of glial dysregulation related to function are associated with downstream products of metabolism including lipids. Taking advantage of significant innovations and technical advancements in instrumentation, lipidomics has emerged as a popular omics discipline, serving as the prevailing approach to comprehensively define metabolic alterations associated with organismal development, damage or disease. A key technological platform for lipidomics studies is mass spectrometry (MS), as it affords large-scale profiling of complex biological samples. However, as MS-based techniques are often refined and advanced, the relative comfort level among biologists with this instrumentation has not followed suit. In this review, we aim to highlight the importance of the study of glial lipids and to provide a concise record of best practices and steps for MS-based lipidomics. Specifically, we outline procedures for glia lipidomics workflows ranging from sample collection and extraction to mass spectrometric analysis to data interpretation. To ensure these approaches are more accessible, this tutorial aims to familiarize glia biologists with sample handling and analysis techniques for MS-based lipidomics, and to guide non-experts toward generating high quality lipidomics data.
Collapse
Affiliation(s)
- Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Katherine A Walker
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Connor Beveridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Palak Manchanda
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Department of Computer Science (By Courtesy), Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Drug Discovery, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, Indiana, USA
- Purdue Institute for Cancer Research, West Lafayette, Indiana, USA
- Regenstrief Center for Healthcare Engineering, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Rudt E, Faist C, Schwantes V, Konrad N, Wiedmaier-Czerny N, Lehnert K, Topman-Rakover S, Brill A, Burdman S, Hayouka Z, Vetter W, Hayen H. LC-MS/MS-based phospholipid profiling of plant-pathogenic bacteria with tailored separation of methyl-branched species. Anal Bioanal Chem 2024; 416:5513-5525. [PMID: 39052053 PMCID: PMC11427607 DOI: 10.1007/s00216-024-05451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Plant-pathogenic bacteria are one of the major constraints on agricultural yield. In order to selectively treat these bacteria, it is essential to understand the molecular structure of their cell membrane. Previous studies have focused on analyzing hydrolyzed fatty acids (FA) due to the complexity of bacterial membrane lipids. These studies have highlighted the occurrence of branched-chain fatty acids (BCFA) alongside normal-chain fatty acids (NCFA) in many bacteria. As several FA are bound in the intact phospholipids of the bacterial membrane, the presence of isomeric FA complicates lipid analysis. Furthermore, commercially available reference standards do not fully cover potential lipid isomers. To address this issue, we have developed a reversed-phase high-performance liquid chromatography (RP-HPLC) method with tandem mass spectrometry (MS/MS) to analyze the phospholipids of various plant-pathogenic bacteria with a focus on BCFA containing phospholipids. The study revealed the separation of three isomeric phosphatidylethanolamines (PE) depending on the number of bound BCFA to NCFA. The validation of the retention order was based on available reference standards in combination with the analysis of hydrolyzed fatty acids through gas chromatography with mass spectrometry (GC/MS) after fractionation. Additionally, the transferability of the retention order to other major lipid classes, such as phosphatidylglycerols (PG) and cardiolipins (CL), was thoroughly examined. Using the information regarding the retention behavior, the phospholipid profile of six plant-pathogenic bacteria was structurally elucidated. Furthermore, the developed LC-MS/MS method was used to classify the plant-pathogenic bacteria based on the number of bound BCFA in the phospholipidome.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Christian Faist
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Vera Schwantes
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nele Konrad
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nina Wiedmaier-Czerny
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Katja Lehnert
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Shiri Topman-Rakover
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Aya Brill
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Walter Vetter
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany.
| |
Collapse
|
3
|
Nsiah ST, Fabijanczuk KC, McLuckey SA. Structural characterization of fatty acid anions via gas-phase charge inversion using Mg(tri-butyl-terpyridine) 2 2+ reagent ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9741. [PMID: 38567638 DOI: 10.1002/rcm.9741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
RATIONALE Free fatty acids and lipid classes containing fatty acid esters are major components of lipidome. In the absence of a chemical derivatization step, FA anions do not yield all of the structural information that may be of interest under commonly used collision-induced dissociation (CID) conditions. A line of work that avoids condensed-phase derivatization takes advantage of gas-phase ion/ion chemistry to charge invert FA anions to an ion type that provides the structural information of interest using conventional CID. This work was motivated by the potential for significant improvement in overall efficiency for obtaining FA chain structural information. METHODS A hybrid triple quadrupole/linear ion-trap tandem mass spectrometer that has been modified to enable the execution of ion/ion reaction experiments was used to evaluate the use of 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine (ttb-Terpy) as the ligand in divalent magnesium complexes for charge inversion of FA anions. RESULTS Mg(ttb-Terpy)2 2+ complexes provide significantly improved efficiency in producing structurally informative products from FA ions relative to Mg(Terpy)2 2+ complexes, as demonstrated for straight-chain FAs, branched-chain FAs, unsaturated FAs, and cyclopropane-containing FAs. It was discovered that most of the structurally informative fragmentation from [FA-H + Mg(ttb-Terpy)]+ results from the loss of a methyl radical from the ligand followed by radical-directed dissociation (RDD), which stands in contrast to the charge-remote fragmentation (CRF) believed to be operative with the [FA-H + Mg(Terpy)]+ ions. CONCLUSIONS This work demonstrates that a large fraction of product ions from the CID of ions of the form [FA-H + Mg(ttb-Terpy)]+ are derived from RDD of the FA backbone, with a very minor fraction arising from structurally uninformative dissociation channels. This ligand provides an alternative to previously used ligands for the structural characterization of FAs via CRF.
Collapse
Affiliation(s)
- Sarah T Nsiah
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Shenault DM, Fabijanczuk KC, Murtada R, Finn S, Gonzalez LE, Gao J, McLuckey SA. Gas-Phase Ion/Ion Reactions to Enable Radical-Directed Dissociation of Fatty Acid Ions: Application to Localization of Methyl Branching. Anal Chem 2024; 96:3389-3401. [PMID: 38353412 DOI: 10.1021/acs.analchem.3c04510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Methyl branching on the carbon chains of fatty acids and fatty esters is among the structural variations encountered with fatty acids and fatty esters. Branching in fatty acid/ester chains is particularly prominent in bacterial species and, for example, in vernix caseosa and sebum. The distinction of branched chains from isomeric straight-chain species and the localization of branching can be challenging to determine by mass spectrometry (MS). Condensed-phase derivatization strategies, often used in conjunction with separations, are most commonly used to address the identification and characterization of branched fatty acids. In this work, a gas-phase ion/ion strategy is presented that obviates condensed-phase derivatization and introduces a radical site into fatty acid ions to facilitate radical-directed dissociation (RDD). The gas-phase approach is also directly amenable to fatty acid anions generated via collision-induced dissociation from lipid classes that contain fatty esters. Specifically, divalent magnesium complexes bound to two terpyridine ligands that each incorporate a ((2,2,6,6-tetramethyl-1-piperidine-1-yl)oxy) (TEMPO) moiety are used to charge-invert fatty acid anions. Following the facile loss of one of the ligands and the TEMPO group of the remaining ligand, a radical site is introduced into the complex. Subsequent collision-induced dissociation (CID) of the complex exhibits preferred cleavages that localize the site(s) of branching. The approach is illustrated with iso-, anteiso-, and isoprenoid branched-chain fatty acids and an intact glycerophospholipid and is applied to a mixture of branched- and straight-chain fatty acids derived from Bacillus subtilis.
Collapse
Affiliation(s)
- De'Shovon M Shenault
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly C Fabijanczuk
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Shane Finn
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - L Edwin Gonzalez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Wang Z, Yang T, Brenna JT, Wang DH. Fatty acid isomerism: analysis and selected biological functions. Food Funct 2024; 15:1071-1088. [PMID: 38197562 DOI: 10.1039/d3fo03716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The biological functions of fatty acids and the lipids in which they are esterified are determined by their chain length, double bond position and geometry and other structural motifs such as the presence of methyl branches. Unusual isomeric features in fatty acids of human foods such as conjugated double bonds or chain branching found in dairy products, some seeds and nuts, and marine foods potentially have important effects on human health. Recent advancements in identifying fatty acids with unusual double bond positions and pinpointing the position of methyl branches have empowered the study of their biological functions. We present recent advances in fatty acid structural elucidation by mass spectrometry in comparison with the more traditional methods. The double bond position can be determined by purely instrumental methods, specifically solvent-mediated covalent adduct chemical ionization (SM-CACI) and ozone induced dissociation (OzID), with charge inversion methods showing promise. Prior derivatization using the Paternò-Büchi (PB) reaction to yield stable structures that, upon collisional activation, yield the double bond position has emerged. The chemical ionization (CI) based three ion monitoring (MRM) method has been developed to simultaneously identify and quantify low-level branched chain fatty acids (BCFAs), unattainable by electron ionization (EI) based methods. Accurate identification and quantification of unusual fatty acid isomers has led to research progress in the discovery of biomarkers for cancer, diabetes, nonalcoholic fatty liver disease (NAFLD) and atherosclerosis. Modulation of eicosanoids, weight loss and the health significance of BCFAs are also presented. This review clearly shows that the improvement of analytical capacity is critical in the study of fatty acid biological functions, and stronger coupling of the methods discussed here with fatty acid mechanistic research is promising in generating more refined outcomes.
Collapse
Affiliation(s)
- Zhen Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tingxiang Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Dong Hao Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
6
|
Fabijanczuk KC, Foreman DJ, McLuckey SA. Charge Inversion of Mono- and Dianions to Cations via Triply Charged Metal Complexes: Application to Lipid Mixtures. Anal Chem 2023; 95:16289-16297. [PMID: 37871251 DOI: 10.1021/acs.analchem.3c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Electrospray ionization (ESI) of mixtures can give rise to ions with different masses and charges with overlapping mass-to-charge (m/z) ratios. Such a scenario can be particularly problematic for the detection of low-abundance species in the presence of more highly abundant mixture components. For example, negative mode ESI of polar lipid extracts can result in highly abundant singly charged glyerophospholipids (GPLs), such as phosphatidylethanolamines (PE) and phosphatidylglycerols (PG), that can obscure much less abundant cardiolipins (CLs), which are complex phospholipids with masses roughly double those of GPLs that mostly form doubly charged anions. Despite their low relative abundance, CLs are lipidome components that perform vital biological functions. To facilitate the study of CLs in lipid mixtures without resorting to offline or online separations, we have developed a gas-phase approach employing ion/ion reactions to charge invert anionic lipid species using a trivalent metal-complex. Specifically, ytterbium(III) is shown to readily complex with three neutral ligands, N,N,N',N'-tetra-2-ethylhexyl diglycolamide (TEHDGA), to form [Yb(TEHDGA3)]3+ using ESI. Herein, we describe pilot studies to evaluate [Yb(TEHDGA)3]3+ as an ion/ion reagent to allow for chemical separation of doubly and singly charged anions, using lipid mixtures as examples, without neutralizing ions of either charge state.
Collapse
Affiliation(s)
- Kimberly C Fabijanczuk
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - David J Foreman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
7
|
Hormann FL, Sommer S, Heiles S. Formation and Tandem Mass Spectrometry of Doubly Charged Lipid-Metal Ion Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37315187 DOI: 10.1021/jasms.3c00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phospholipids are major components of most eukaryotic cell membranes. Changes in metabolic states are often accompanied by phospholipid structure variations. The structural changes of phospholipids are the hallmark of disease states, or specific lipid structures have been associated with distinct organisms. Prime examples are microorganisms that synthesize phospholipids with, for example, different branched chain fatty acids. Assignment and relative quantitation of structural isomers of phospholipids that arise from attachment of different fatty acids to the glycerophospholipid backbone are difficult with routine tandem mass spectrometry or with liquid chromatography without authentic standards. In this work, we report on the observation that all investigated phospholipid classes form doubly charged lipid-metal ion complexes during electrospray ionization (ESI) and show that these complexes can be used to assign lipid classes and fatty acid moieties, distinguish isomers of branched chain fatty acids, and relatively quantify these isomers in positive-ion mode. Use of water free methanol and addition of divalent metal salts (100 mol %) to ESI spray solutions afford highly abundant doubly charged lipid-metal ion complexes (up to 70 times of protonated compounds). Higher-energy collisional dissociation and collision-induced dissociation of doubly charged complexes yield a diverse set of lipid class-dependent fragment ions. In common for all lipid classes is the liberation of fatty acid-metal adducts that yield fragment ions from the fatty acid hydrocarbon chain upon activation. This ability is used to pinpoint sites of branching in saturated fatty acids and is showcased for free fatty acids as well as glycerophospholipids. The analytical utility of doubly charged phospholipid-metal ion complexes is demonstrated by distinguishing fatty acid branching-site isomers in phospholipid mixtures and relatively quantifying the corresponding isomeric compounds.
Collapse
Affiliation(s)
- Felix-Levin Hormann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Simon Sommer
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
8
|
Fu X, Hafza N, Götz F, Lämmerhofer M. Profiling of branched chain and straight chain saturated fatty acids by ultra-high performance liquid chromatography-mass spectrometry. J Chromatogr A 2023; 1703:464111. [PMID: 37262934 DOI: 10.1016/j.chroma.2023.464111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Branched chain fatty acids (BCFAs) are one of the important sub categories of fatty acids (FAs) which have unique functions in nature. They are commonly analyzed by GC-MS after derivatization to methyl esters (FAMEs). On the other hand, there is a lack of isomer-selective LC-MS methods which allow the distinction of different isomers with wide coverage of carbon chain length. In this work, a systematic retention and isomer selectivity study on seven commercially available UHPLC columns (six polysaccharide columns Chiralpak IA-U, IB-U, IC-U, ID-U, IG-U and IH-U; one Acquity UPLC CSH C18 column) was performed. Various experimental factors were evaluated including column temperatures, gradient profiles and flow rates to elucidate their effects on the separation ability of homologous series of BCFAs with distinct chain lengths, different branching types and branching positions. In general, IG-U outperformed the other columns in terms of isomer selectivity especially for the short and medium-chain BCFA isomers while RP C18 showed good potential in terms of selectivity for long-chain BCFA isomers. Furthermore, after the evaluation of the chromatographic retention pattern on the various columns and method optimization, we report a methodology for untargeted isomer-selective BCFA profiling without precolumn derivatization with UHPLC-ESI-MS/MS by quadrupole-time-of-flight instrument with SWATH acquisition. The best method provides selectivity for constitutional isomers of BCFAs covering distinct chain length (C5-C20) with different branching types (methyl or ethyl) and branching positions (2Me, 3Me, 4Me, 6Me, anteiso and iso-BCFAs) with an optimized LC condition on Acquity UPLC CSH C18 column. Finally, the optimized method was applied for the BCFAs profiling in lipid extracts of Staphylococcus aureus samples. Besides, pooled human platelets and pooled human plasma were evaluated as mammalian samples for presence of BCFAs as well. The new method showed strong potential for BCFA profiling in bacterial samples including different isomers anteiso and iso-BCFAs, which could be a useful tool for related subdisciplines in metabolomics and lipidomics in particular in combination with electron-activated dissociation MS. Compared to GC, the presented isomer selective LC methods can be also of great utility for preparative purposes. Equivalent (carbon) chain length numbers were calculated for RP18 and Chiralpak IG-U and compared to those of FAMEs obtained by GC.
Collapse
Affiliation(s)
- Xiaoqing Fu
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Nourhane Hafza
- University of Tübingen, Interfaculty Institute for Microbiology and Infection-Medicine Tübingen, Microbial Genetics, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Friedrich Götz
- University of Tübingen, Interfaculty Institute for Microbiology and Infection-Medicine Tübingen, Microbial Genetics, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, Tübingen 72076, Germany.
| |
Collapse
|