1
|
Spesyvyi A, Žabka J, Polášek M, Malečková M, Khawaja N, Schmidt J, Kempf S, Postberg F, Charvat A, Abel B. Selected ice nanoparticle accelerator hypervelocity impact mass spectrometer (SELINA-HIMS): features and impacts of charged particles. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230208. [PMID: 38736336 DOI: 10.1098/rsta.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
The selected ice nanoparticle accelerator, SELINA, was used to prepare beams of single ice particles with positive or negative charge. Positively charged particles were prepared from deionized water and 0.05-0.2 molar solutions of sodium chloride in water, and negatively charged ice particles were generated from water without salt. Depending on the electrospray source configuration, the measured particles vary from 50 to 1000 nm in diameter. The kinetic energy per charge for all particles was set to 200 eV by the collisional equilibration in quadrupoles, which resulted in primary velocities up to 600 m/s for the lowest m/z particles. The electrospray ionization and thus particle formation from SELINA become less efficient with increasing salt concentration, resulting in a lower detected particle frequency and size. Good instrument operation is achievable for concentrations below 0.2 M. After we have verified and characterized positively and negatively charged ice particles, we have combined SELINA with a target and time-of-flight spectrometer for a 'proof-of-principle' post acceleration of 120 nm particles towards hypervelocity (v ~ 3000 m/s) and detection of fragments from the particle impact (SELINA-HIMS). General conditions are discussed for the acceleration of particles between 50 and 1000 nm to velocities well above 3000 m/s with SELINA-HIMS instrument. This article is part of the theme issue 'Dust in the Solar System and beyond'.
Collapse
Affiliation(s)
- Anatolii Spesyvyi
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Prague 18223, Czechia
| | - Ján Žabka
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Prague 18223, Czechia
| | - Miroslav Polášek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Prague 18223, Czechia
| | - Michaela Malečková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Prague 18223, Czechia
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin , Berlin, 12249, Germany
| | - Jürgen Schmidt
- Institute of Geological Sciences, Freie Universität Berlin , Berlin, 12249, Germany
| | - Sascha Kempf
- Laboratory for Atmospheric and Space Physics, University of Colorado , Boulder, CO, 80303, USA
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin , Berlin, 12249, Germany
| | - Ales Charvat
- Institute of Chemical Technology and Wilhelm Ostwald-Institute of Physical and Theoretical Chemistry , Leipzig, 04103, Germany
- Leibniz Institute of Surface Engineering , Leipzig, 04318, Germany
| | - Bernd Abel
- Institute of Chemical Technology and Wilhelm Ostwald-Institute of Physical and Theoretical Chemistry , Leipzig, 04103, Germany
- Leibniz Institute of Surface Engineering , Leipzig, 04318, Germany
| |
Collapse
|
2
|
Burke SE, Auvil ZA, Hanold KA, Continetti RE. Detection of intact amino acids with a hypervelocity ice grain impact mass spectrometer. Proc Natl Acad Sci U S A 2023; 120:e2313447120. [PMID: 38048472 PMCID: PMC10723046 DOI: 10.1073/pnas.2313447120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
Astrobiology studies are a top priority in answering one of the most fundamental questions in planetary science: Is there life beyond Earth? Saturn's icy moon Enceladus is a prime target in the search for life in our solar system, identified by NASA as the second-highest priority site for a flagship mission in the next decade. The orbital sampling technique of impact ionization mass spectrometry indicated the presence of complex organics in the small icy plume particles ejected by Enceladus encountered previously by Cassini. However, high interaction velocities caused ambiguity as to the origin and identity of the organics. Laboratory validation of this technique is needed to show that biosignature molecules can survive an impact at hypervelocity speeds for detection. Here, we present results on the hypervelocity impact of organic-laden submicron ice grains for in situ mass spectrometric characterization with the first technique to accurately replicate this plume sampling scenario: the Hypervelocity Ice Grain Impact Mass Spectrometer. Our results show good agreement with Cassini data at comparable compositions. We show that amino acids entrained in ice grains can be detected intact after impact at speeds up to 4.2 km/s and that salt reduces their detectability, validating the predictions from other model systems. Our results provide a benchmark for this orbital sampling method to successfully detect signs of life and for the interpretation of past and future data. This work has implications not only for a potential Enceladus mission but also for the forthcoming Europa Clipper mission.
Collapse
Affiliation(s)
- Sally E. Burke
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0340
| | - Zachary A. Auvil
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0340
| | - Karl A. Hanold
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0340
| | - Robert E. Continetti
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093-0340
| |
Collapse
|