1
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
3
|
Snyder DT, Jones BJ, Lin YF, Cooper-Shepherd DA, Hewitt D, Wildgoose J, Brown JM, Langridge JI, Wysocki VH. Surface-induced dissociation of protein complexes on a cyclic ion mobility spectrometer. Analyst 2021; 146:6861-6873. [PMID: 34632987 PMCID: PMC8574189 DOI: 10.1039/d1an01407b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe the implementation of a simple three-electrode surface-induced dissociation (SID) cell on a cyclic ion mobility spectrometer (cIMS) and demonstrate the utility of multipass mobility separations for resolving multiple conformations of protein complexes generated during collision-induced and surface-induced unfolding (CIU & SIU) experiments. In addition to CIU and SIU, SID of protein complexes is readily accomplished within the native instrument software and with no additional external power supplies by entering a single SID collision energy, a simplification in user experience compared to prior implementations. A set of cyclic homomeric protein complexes and a heterohexamer with known CID and SID behavior were analyzed to investigate mass and mobility resolution improvements, the latter of which improved by 20-50% (median: 33%) compared to a linear travelling wave device. Multiple passes of intact complexes, or their SID fragments, increased the mobility resolution by an average of 15% per pass, with the racetrack effect being observed after ∼3 or 4 passes, depending on the drift time spread of the analytes. Even with modest improvements to apparent mobility resolving power, multipass experiments were particularly useful for separating conformations produced from CIU and SIU experiments. We illustrate several examples where either (1) multipass experiments revealed multiple overlapping conformations previously unobserved or obscured due to limited mobility resolution, or (2) CIU or SIU conformations that appeared 'native' in a single pass experiment were actually slightly compacted or expanded, with the change only being measurable through multipass experiments. The work conducted here, the first utilization of multipass cyclic ion mobility for CIU, SIU, and SID of protein assemblies and a demonstration of a wholly integrated SIU/SID workflow, paves the way for widespread adoption of SID technology for native mass spectrometry and also improves our understanding of gas-phase protein complex CIU and SIU conformationomes.
Collapse
Affiliation(s)
- Dalton T Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210
| | - Benjamin J Jones
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA 43210.
| | - Yu-Fu Lin
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA 43210.
| | | | - Darren Hewitt
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Jason Wildgoose
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Jeffery M Brown
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - James I Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Vicki H Wysocki
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA 43210.
| |
Collapse
|
4
|
Panczyk EM, Snyder DT, Ridgeway ME, Somogyi Á, Park MA, Wysocki VH. Surface-Induced Dissociation of Protein Complexes Selected by Trapped Ion Mobility Spectrometry. Anal Chem 2021; 93:5513-5520. [PMID: 33751887 DOI: 10.1021/acs.analchem.0c05373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Native mass spectrometry (nMS), particularly in conjunction with gas-phase ion mobility spectrometry measurements, has proven useful as a structural biology tool for evaluating the stoichiometry, conformation, and topology of protein complexes. Here, we demonstrate the combination of trapped ion mobility spectrometry (TIMS) and surface-induced dissociation (SID) on a Bruker SolariX XR 15 T FT-ICR mass spectrometer for the structural analysis of protein complexes. We successfully performed SID on mobility-selected protein complexes, including the streptavidin tetramer and cholera toxin B with bound ligands. Additionally, TIMS-SID was employed on a mixture of the peptides desArg1 and desArg9 bradykinin to mobility-separate and identify the individual peptides. Importantly, results show that native-like conformations can be maintained throughout the TIMS analysis. The TIMS-SID spectra are analogous to SID spectra acquired using quadrupole mass selection, indicating little measurable, if any, structural rearrangement during mobility selection. Mobility parking was used on the ion or mobility of interest and 50-200 SID mass spectra were averaged. High-quality TIMS-SID spectra were acquired over a period of 2-10 min, comparable to or slightly longer than SID coupled with ion mobility on various instrument platforms in our laboratory. The ultrahigh resolving power of the 15 T FT-ICR allowed for the identification and relative quantification of overlapping SID fragments with the same nominal m/z based on isotope patterns, and it shows promise as a platform to probe small mass differences, such as protein/ligand binding or post-translational modifications. These results represent the potential of TIMS-SID-MS for the analysis of both protein complexes and peptides.
Collapse
Affiliation(s)
- Erin M Panczyk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.,Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dalton T Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Árpád Somogyi
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States.,Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.,Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States.,Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Snyder DT, Panczyk EM, Somogyi A, Kaplan DA, Wysocki V. Simple and Minimally Invasive SID Devices for Native Mass Spectrometry. Anal Chem 2020; 92:11195-11203. [PMID: 32700898 DOI: 10.1021/acs.analchem.0c01657] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe a set of simple devices for surface-induced dissociation of proteins and protein complexes on three instrument platforms. All of the devices use a novel yet simple split lens geometry that is minimally invasive (requiring a few millimeters along the ion path axis) and is easier to operate than prior generations of devices. The split lens is designed to be small enough to replace the entrance lens of a Bruker FT-ICR collision cell, the dynamic range enhancement (DRE) lens of a Waters Q-IM-TOF, or the exit lens of a transfer multipole of a Thermo Scientific Extended Mass Range (EMR) Orbitrap. Despite the decrease in size and reduction in number of electrodes to 3 (from 10 to 12 in Gen 1 and ∼6 in Gen 2), we show sensitivity improvement in a variety of cases across all platforms while also maintaining SID capabilities across a wide mass and energy range. The coupling of SID, high resolution, and ion mobility is demonstrated for a variety of protein complexes of varying topologies.
Collapse
|