1
|
Harrison JA, Gabriel J, Pruška A, Zenobi R. Conformational Dynamics of Hemoglobin in Solution and the Gas Phase Elucidated by Mass Spectrometry. Anal Chem 2024. [PMID: 39556209 DOI: 10.1021/acs.analchem.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Solution and gas-phase measurements can provide valuable insights into biomolecular conformational dynamics. By comparing the data from such experiments, it is possible to elucidate the nature of the interactions governing a biomolecule's stability. Here, we measured human, bovine, and porcine hemoglobin stability in solution and the gas phase using collision-induced dissociation, collision-induced unfolding, surface-induced dissociation, and temperature-controlled nanoelectrospray mass spectrometry. Hemoglobin dimer and tetramer stability in solution and gas phases did not correlate, likely due to differences in the composition of positive and negative amino acids on the surface of these molecules. Specifically, the absence of Lys-116 on the β-subunit makes it easier for the human hemoglobin dimer to dissociate in the gas phase. However, the presence of Lys-60 makes the subunit more rigid thus it cannot unfold to the same extent as the other hemoglobin. Hemoglobin tetramers of different origins had similar stability in the gas phase, as there was no difference in the composition of charged amino acids at the tetramer interface. These results highlight how temperature-controlled mass spectrometry and collision-induced unfolding can elucidate the structural reasons behind differences in the gas-phase and solution stability of protein complexes.
Collapse
Affiliation(s)
- Julian A Harrison
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| | - Janic Gabriel
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
2
|
Haidar Y, Konermann L. Effects of Hydrogen/Deuterium Exchange on Protein Stability in Solution and in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37314114 DOI: 10.1021/jasms.3c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based techniques are widely used for probing protein structure and dynamics in solution. H/D exchange (HDX)-MS is one of the most common approaches in this context. HDX is often considered to be a "benign" labeling method, in that it does not perturb protein behavior in solution. However, several studies have reported that D2O pushes unfolding equilibria toward the native state. The origin, and even the existence of this protein stabilization remain controversial. Here we conducted thermal unfolding assays in solution to confirm that deuterated proteins in D2O are more stable, with 2-4 K higher melting temperatures than unlabeled proteins in H2O. Previous studies tentatively attributed this phenomenon to strengthened H-bonds after deuteration, an effect that may arise from the lower zero-point vibrational energy of the deuterated species. Specifically, it was proposed that strengthened water-water bonds (W···W) in D2O lower the solubility of nonpolar side chains. The current work takes a broader view by noting that protein stability in solution also depends on water-protein (W···P) and protein-protein (P···P) H-bonds. To help unravel these contributions, we performed collision-induced unfolding (CIU) experiments on gaseous proteins generated by native electrospray ionization. CIU profiles of deuterated and unlabeled proteins were indistinguishable, implying that P···P contacts are insensitive to deuteration. Thus, protein stabilization in D2O is attributable to solvent effects, rather than alterations of intraprotein H-bonds. Strengthening of W···W contacts represents one possible explanation, but the stabilizing effect of D2O can also originate from weakened W···P bonds. Future work will be required to elucidate which of these two scenarios is correct, or if both contribute to protein stabilization in D2O. In any case, the often-repeated adage that "D-bonds are more stable than H-bonds" does not apply to intramolecular contacts in native proteins.
Collapse
Affiliation(s)
- Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
3
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
4
|
Lento C, Wilson DJ. Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. Chem Rev 2021; 122:7624-7646. [PMID: 34324314 DOI: 10.1021/acs.chemrev.1c00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life at the molecular level is a dynamic world, where the key players-proteins, oligonucleotides, lipids, and carbohydrates-are in a perpetual state of structural flux, shifting rapidly between local minima on their conformational free energy landscapes. The techniques of classical structural biology, X-ray crystallography, structural NMR, and cryo-electron microscopy (cryo-EM), while capable of extraordinary structural resolution, are innately ill-suited to characterize biomolecules in their dynamically active states. Subsecond time-resolved mass spectrometry (MS) provides a unique window into the dynamic world of biological macromolecules, offering the capacity to directly monitor biochemical processes and conformational shifts with a structural dimension provided by the electrospray charge-state distribution, ion mobility, covalent labeling, or hydrogen-deuterium exchange. Over the past two decades, this suite of techniques has provided important insights into the inherently dynamic processes that drive function and pathogenesis in biological macromolecules, including (mis)folding, complexation, aggregation, ligand binding, and enzyme catalysis, among others. This Review provides a comprehensive account of subsecond time-resolved MS and the advances it has enabled in dynamic structural biology, with an emphasis on insights into the dynamic drivers of protein function.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
5
|
Zhou L, Wang D, Iftikhar M, Lu Y, Zhou M. Conformational changes and binding property of the periplasmic binding protein BtuF during vitamin B 12 transport revealed by collision-induced unfolding, hydrogen-deuterium exchange mass spectrometry and molecular dynamic simulation. Int J Biol Macromol 2021; 187:350-360. [PMID: 34303738 DOI: 10.1016/j.ijbiomac.2021.07.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
The periplasmic binding protein (PBP) BtuF plays a key role in transporting vitamin B12 from periplasm to the ATP-binding cassette (ABC) transporter BtuCD. Conformational changes of BtuF during transport can hardly be captured by traditional biophysical methods and the exact mechanism regarding B12 and BtuF recognition is still under debate. In the present work, conformational changes of BtuF upon B12 binding and release were investigated using hybrid approaches including collision-induced unfolding (CIU), hydrogen deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulation. It was found that B12 binding increased the stability of BtuF. In addition, fast exchange regions of BtuF were localized. Most importantly, midpoint of hinge helix in BtuF was found highly flexible, and binding of B12 proceed in a manner similar to the Venus flytrap mechanism. Our study therefore delineates a clear view of BtuF delivering B12, and demonstrated a hybrid approach encompassing MS and computer based methods that holds great potential to the probing of conformational dynamics of proteins in action.
Collapse
Affiliation(s)
- Lijun Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Defu Wang
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mehwish Iftikhar
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yinghong Lu
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
6
|
Konermann L, Aliyari E, Lee JH. Mobile Protons Limit the Stability of Salt Bridges in the Gas Phase: Implications for the Structures of Electrosprayed Protein Ions. J Phys Chem B 2021; 125:3803-3814. [PMID: 33848419 DOI: 10.1021/acs.jpcb.1c00944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrosprayed protein ions can retain native-like conformations. The intramolecular contacts that stabilize these compact gas-phase structures remain poorly understood. Recent work has uncovered abundant salt bridges in electrosprayed proteins. Salt bridges are zwitterionic BH+/A- contacts. The low dielectric constant in the vacuum strengthens electrostatic interactions, suggesting that salt bridges could be a key contributor to the retention of compact protein structures. A problem with this assertion is that H+ are mobile, such that H+ transfer can convert salt bridges into neutral B0/HA0 contacts. This possible salt bridge annihilation puts into question the role of zwitterionic motifs in the gas phase, and it calls for a detailed analysis of BH+/A- versus B0/HA0 interactions. Here, we investigate this issue using molecular dynamics (MD) simulations and electrospray experiments. MD data for short model peptides revealed that salt bridges with static H+ have dissociation energies around 700 kJ mol-1. The corresponding B0/HA0 contacts are 1 order of magnitude weaker. When considering the effects of mobile H+, BH+/A- bond energies were found to be between these two extremes, confirming that H+ migration can significantly weaken salt bridges. Next, we examined the protein ubiquitin under collision-induced unfolding (CIU) conditions. CIU simulations were conducted using three different MD models: (i) Positive-only runs with static H+ did not allow for salt bridge formation and produced highly expanded CIU structures. (ii) Zwitterionic runs with static H+ resulted in abundant salt bridges, culminating in much more compact CIU structures. (iii) Mobile H+ simulations allowed for the dynamic formation/annihilation of salt bridges, generating CIU structures intermediate between scenarios (i) and (ii). Our results uncover that mobile H+ limit the stabilizing effects of salt bridges in the gas phase. Failure to consider the effects of mobile H+ in MD simulations will result in unrealistic outcomes under CIU conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Justin H Lee
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
7
|
Yin V, Konermann L. Probing the Effects of Heterogeneous Oxidative Modifications on the Stability of Cytochrome c in Solution and in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:73-83. [PMID: 32401029 DOI: 10.1021/jasms.0c00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covalent modifications by reactive oxygen species can modulate the function and stability of proteins. Thermal unfolding experiments in solution are a standard tool for probing oxidation-induced stability changes. Complementary to such solution investigations, the stability of electrosprayed protein ions can be assessed in the gas phase by collision-induced unfolding (CIU) and ion-mobility spectrometry. A question that remains to be explored is whether oxidation-induced stability alterations in solution are mirrored by the CIU behavior of gaseous protein ions. Here, we address this question using chloramine-T-oxidized cytochrome c (CT-cyt c) as a model system. CT-cyt c comprises various proteoforms that have undergone MetO formation (+16 Da) and Lys carbonylation (LysCH2-NH2 → LysCHO, -1 Da). We found that CT-cyt c in solution was destabilized, with a ∼5 °C reduced melting temperature compared to unmodified controls. Surprisingly, CIU experiments revealed the opposite trend, i.e., a stabilization of CT-cyt c in the gas phase. To pinpoint the source of this effect, we performed proteoform-resolved CIU on CT-cyt c fractions that had been separated by cation exchange chromatography. In this way, it was possible to identify MetO formation at residue 80 as the key modification responsible for stabilization in the gas phase. Possibly, this effect is caused by newly formed contacts of the sulfoxide with aromatic residues in the protein core. Overall, our results demonstrate that oxidative modifications can affect protein stability in solution and in the gas phase very differently.
Collapse
Affiliation(s)
- Victor Yin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
8
|
Patil R, Chikhale R, Khanal P, Gurav N, Ayyanar M, Sinha S, Prasad S, Dey YN, Wanjari M, Gurav SS. Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19. INFORMATICS IN MEDICINE UNLOCKED 2020; 22:100504. [PMID: 33363251 PMCID: PMC7756171 DOI: 10.1016/j.imu.2020.100504] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
Bioflavonoids are the largest group of plant-derived polyphenolic compounds with diverse biological potential and have also been proven efficacious in the treatment of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). The present investigation validates molecular docking, simulation, and MM-PBSA studies of fifteen bioactive bioflavonoids derived from plants as a plausible potential antiviral in the treatment of COVID-19. Molecular docking studies for 15 flavonoids on the three SARS CoV-2 proteins, non-structural protein-15 Endoribonuclease (NSP15), the receptor-binding domain of spike protein (RBD of S protein), and main protease (Mpro/3CLpro) were performed and selected protein-ligand complexes were subjected to Molecular Dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-PBSA method. All flavonoids were further assessed for their effectiveness as adjuvant therapy by network pharmacology analysis on the target proteins. The network pharmacology analysis suggests the involvement of selected bioflavonoids in the modulation of multiple signaling pathways like p53, FoxO, MAPK, Wnt, Rap1, TNF, adipocytokine, and leukocyte transendothelial migration which plays a significant role in immunomodulation, minimizing the oxidative stress and inflammation. Molecular docking and molecular dynamics simulation studies illustrated the potential of glycyrrhizic acid, amentoflavone, and mulberroside in inhibiting key SARS-CoV-2 proteins and these results could be exploited further in designing future ligands from natural sources.
Collapse
Key Words
- 2019-nCoV, 2019 Novel Coronavirus
- Amentoflavone
- Bioflavonoids
- COVID-19, Coronavirus Disease-2019
- CoV, Corona Virus
- Glycyrrhizic acid
- In-silico study
- MD, Molecular Dynamics
- MM-PBSA, Molecular Mechanics Poisson-Boltzmann Surface Area
- Mulberroside
- NSP, Non-structural Protein
- Novel Coronavirus-2
- OPLS, Optimized Potentials for Liquid Simulations
- ORF, Open Reading Frame
- RBD, Receptor Binding Domain
- RMSD, Root Mean Square Deviation
- SARS, Severe Acute Respiratory syndrome
- SARS-CoV-2, Severe Acute Respiratory syndrome Coronavirus-2
- SDF, Structure Data File
- WHO, World Health Organization
- Å, Angstrom
Collapse
Affiliation(s)
- Rajesh Patil
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Pune, Maharashtra, India
| | - Rupesh Chikhale
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| | - Nilambari Gurav
- PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa, 403401, India
| | - Muniappan Ayyanar
- Department of Botany, A. Veeriya Vandayar Memorial Sri Pushpam College (Autonomous), Affiliated to Bharathidasan University, Poondi, Thanjavur, 613 503, India
| | - Saurabh Sinha
- Department of Pharmaceutical Sciences, Mohanlal Shukhadia University, Udaipur, Rajasthan, 313 001, India
| | - Satyendra Prasad
- Department of Pharmaceutical Sciences, R.T.M. University, Nagpur, Maharashtra, 440033, India
| | - Yadu Nandan Dey
- School of Pharmaceutical Technology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Manish Wanjari
- Regional Ayurveda Research Institute for Drug Development, Gwalior, 474009, Madhya Pradesh, India
| | - Shailendra S Gurav
- Department of Pharmacognosy and Phytochemistry, Goa College of Pharmacy, Panaji, Goa University, Goa, 403 001, India
| |
Collapse
|