Malowicki SMM, Martin R, Qian MC. Volatile composition in raspberry cultivars grown in the Pacific Northwest determined by stir bar sorptive extraction-gas chromatography-mass spectrometry.
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008;
56:4128-4133. [PMID:
18473468 DOI:
10.1021/jf073489p]
[Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Twenty-nine volatile compounds in 'Chilliwack', 'Tulameen', 'Willamette', 'Yellow Meeker', and 'Meeker' raspberries were quantified using stir bar sorptive extraction (SBSE) paired with gas chromatography-mass spectrometry (GC-MS). Good correlation coefficients were obtained with most aroma-active compounds in raspberry, with quantification limits of 1 microg/kg. However, poor recoveries were observed for raspberry ketone and zingerone. Quantitative data showed that volatile concentrations varied for different cultivars. Large variations for alpha-ionone, beta-ionone, geraniol, linalool, and ( Z)-3-hexenol were observed in different raspberry cultivars. In addition, the volatile compositions in 'Meeker' raspberry grown at different locations also varied. The chiral isomeric ratios of raspberry ketone, alpha-ionone, alpha-pinene, linalool, terpinen-4-ol, delta-octalactone, delta-decalactone, and 6-methyl-5-hepten-2-ol were studied using a CyclosilB column. alpha-Ionone, alpha-pinene, delta-octalactone, and delta-decalactone had strong chiral isomeric preference, with more than 96% for one isomeric form. Much weaker chiral isomeric preference was observed for terpinen-4-ol, while linalool was almost a racemic mixture. Both growing locations and cultivars affect the isomeric ratio of linalool with a range of 37-51% for ( R)-linalool.
Collapse