1
|
Improving the Condition of European Hare Through Nutrition. JOURNAL OF LANDSCAPE ECOLOGY 2021. [DOI: 10.2478/jlecol-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The objective of the article is to evaluate the effects of a newly designed granulated mixture enriched with Bohemian knotweed (Reynoutria x bohemica) on European hare (Lepus europaeus) kept at closed farms. The positive influence of knotweed on the microbiome in the digestive system and better usage of the fodder were proven based on biochemical and haematological analysis of blood. Lower manifestation of pathogenic organisms is also expected. Finally, the positive influence on higher weight gains in baby hares was proven, which improves their condition. The results can be used in practice at closed farms breeding European hare focused on releasing bred young hares into open hunting grounds where it is possible to obtain a monetary contribution for the releasing of hares from a grant of the Ministry of Agriculture of the Czech Republic in the field of hunting. Furthermore, the results can be used for feeding hares in open hunting grounds.
Collapse
|
2
|
Zheng X, Chen H, Su Q, Wang C, Sha G, Ma C, Sun Z, Yang X, Li X, Tian Y. Resveratrol improves the iron deficiency adaptation of Malus baccata seedlings by regulating iron absorption. BMC PLANT BIOLOGY 2021; 21:433. [PMID: 34556040 PMCID: PMC8459475 DOI: 10.1186/s12870-021-03215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Resveratrol (Res), a phytoalexin, has been widely reported to participate in plant resistance to fungal infections. However, little information is available on its role in abiotic stress, especially in iron deficiency stress. Malus baccata is widely used as apple rootstock in China, but it is sensitive to iron deficiency. RESULTS In this study, we investigated the role of exogenous Res in M. baccata seedings under iron deficiency stress. Results showed that applying 100 μM exogenous Res could alleviate iron deficiency stress. The seedlings treated with Res had a lower etiolation rate and higher chlorophyll content and photosynthetic rate compared with the apple seedlings without Res treatment. Exogenous Res increased the iron content in the roots and leaves by inducing the expression of MbAHA genes and improving the H+-ATPase activity. As a result, the rhizosphere pH decreased, iron solubility increased, the expression of MbFRO2 and MbIRT1 was induced, and the ferric-chelated reductase activity was enhanced to absorb large amounts of Fe2+ into the root cells under iron deficiency conditions. Moreover, exogenous Res application increased the contents of IAA, ABA, and GA3 and decreased the contents of DHZR and BL for responding to iron deficiency stress indirectly. In addition, Res functioned as an antioxidant that strengthened the activities of antioxidant enzymes and thus eliminated reactive oxygen species production induced by iron deficiency stress. CONCLUSION Resveratrol improves the iron deficiency adaptation of M. baccata seedlings mainly by regulating iron absorption.
Collapse
Affiliation(s)
- Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Huifang Chen
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Qiufang Su
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Guangli Sha
- Qingdao Academy of Agricultrual Science, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China.
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China.
| |
Collapse
|
3
|
The Effect of Reynoutria × Bohemica on the Condition of Capreolus Capreolus and Cervus Elaphus. JOURNAL OF LANDSCAPE ECOLOGY 2021. [DOI: 10.2478/jlecol-2021-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The objective of the work is to evaluate the effects of a granulated feeding mixture enriched with knotweed (Reynoutria × bohemica) on roe deer (Capreolus capreolus) bred at a closed farm and red deer (Cervus elaphus) bred at a farm. Based on both biochemical and haematological blood analysis, the knotweed is expected to have an influence on the microbiome in the digestive system as well as allowing better utilisation of fodder and lower manifestation of pathogenic organisms. The results are of practical use mainly on farms and in hobby breeding but also in deer parks. Furthermore, the results may be used for feeding deer in open hunting grounds.
Collapse
|
4
|
Molecular dynamics simulations and theoretical calculations of cyclodextrin-polydatin inclusion complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Wang HW, Sun K, Guan YX, Qiu MH, Zhang L, Dai CC. Fungal endophyte Phomopsis liquidambari biodegrades soil resveratrol: a potential allelochemical in peanut monocropping systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5899-5909. [PMID: 31225657 DOI: 10.1002/jsfa.9865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/23/2019] [Accepted: 06/11/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Most allelochemicals are secondary products released from root excretions or plant residues that accumulate in continuous cropping systems and cause severe decline in peanut yield. Resveratrol is a plant-derived stilbene that is released from peanut residues and accumulates in the soil; however, its allelopathic effects on peanut production are overlooked. Effective management solutions need to be developed to relieve allelopathy caused by soil resveratrol. Here, the biodegradation of resveratrol by the fungal endophyte Phomopsis liquidambari was investigated in a mineral salt medium and a soil trial. Resveratrol and its metabolites (produced by degradation by P. liquidambari) were detected by high-performance liquid chromatography-mass spectrometry (HPLC-MS). RESULTS Resveratrol released from peanut residues reached a maximum concentration of 0.18 μg g-1 soil in litterbag experiments. Exogenous resveratrol inhibited peanut growth, nodule formation, and soil dehydrogenase activity, and reduced the soil microbial biomass carbon content and bacterial abundance, indicating an allelopathic role in peanut growth. More than 97% of the resveratrol was degraded within 72 and 168 h by P. liquidambari in pure culture and soil conditions, respectively. Resveratrol was first cleaved to 3,5-dihydroxybenzaldehyde and 4-hydroxybenzaldehyde, which were subsequently oxidized into 3,5-dihydroxybenzoic acid and 4-hydroxybenzoic acid, respectively. Fungal resveratrol cleavage oxygenase and the related gene expression were enhanced when P. liquidambari was induced by the resveratrol during the incubation. CONCLUSION Our results indicate that the practical application of the fungal endophyte P. liquidambari has strong potential for biodegrading soil resveratrol, which can cause allelopathy in peanut continuous cropping systems. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yong-Xiang Guan
- Soil Quality Protection and Environmental Monitoring Station of Jiangsu Province, Nanjing, China
| | - Mei-Hua Qiu
- Soil Quality Protection and Environmental Monitoring Station of Jiangsu Province, Nanjing, China
| | - Li Zhang
- Soil Quality Protection and Environmental Monitoring Station of Jiangsu Province, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
De Bona GS, Adrian M, Negrel J, Chiltz A, Klinguer A, Poinssot B, Héloir MC, Angelini E, Vincenzi S, Bertazzon N. Dual Mode of Action of Grape Cane Extracts against Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5512-5520. [PMID: 31008600 DOI: 10.1021/acs.jafc.8b07098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Crude extracts of Vitis vinifera canes represent a natural source of stilbene compounds with well characterized antifungals properties. In our trials, exogenous application of a stilbene extract (SE) obtained from grape canes on grapevine leaves reduces the necrotic lesions caused by Botrytis cinerea. The SE showed to possess a direct antifungal activity by inhibiting the mycelium growth. The activation of some grapevine defense mechanism was also investigated. H2O2 production and activation of mitogen-activated protein kinase (MAPK) phosphorylation cascades as well as accumulation of stilbenoid phytoalexins were explored on grapevine cell suspension. Moreover, the transcription of genes encoding for proteins affecting defense responses was analyzed on grapevine plants. The SE induced some grapevine defense mechanisms including MAPK activation, and the expression of pathogenesis-related (PR) genes and of a gene encoding the glutathione-S-transferase 1 ( GST1) . By contrast, treatment of grapevine leaves with SE negatively regulates de novo stilbene production.
Collapse
Affiliation(s)
| | - Marielle Adrian
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Jonathan Negrel
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Annick Chiltz
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Benoît Poinssot
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Marie-Claire Héloir
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Elisa Angelini
- CREA Research Centre for Viticulture and Enology, Via XXVIII Aprile 26 , Conegliano , Treviso 31015 , Italy
| | | | - Nadia Bertazzon
- CREA Research Centre for Viticulture and Enology, Via XXVIII Aprile 26 , Conegliano , Treviso 31015 , Italy
| |
Collapse
|
7
|
Jian W, He D, Song S. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New Oxadiazole-Stilbene Hybrids against Phytopathogenic Fungi. Sci Rep 2016; 6:31045. [PMID: 27530962 PMCID: PMC4987640 DOI: 10.1038/srep31045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/12/2016] [Indexed: 02/08/2023] Open
Abstract
Natural stilbenes (especially resveratrol) play important roles in plant protection by acting as both constitutive and inducible defenses. However, their exogenous applications on crops as fungicidal agents are challenged by their oxidative degradation and limited availability. In this study, a new class of resveratrol-inspired oxadiazole-stilbene hybrids was synthesized via Wittig-Horner reaction. Bioassay results indicated that some of the compounds exhibited potent fungicidal activity against Botrytis cinerea in vitro. Among these stilbene hybrids, compounds 11 showed promising inhibitory activity with the EC50 value of 144.6 μg/mL, which was superior to that of resveratrol (315.6 μg/mL). Remarkably, the considerably abnormal mycelial morphology was observed in the presence of compound 11. The inhibitory profile was further proposed by homology modeling and molecular docking studies, which showed the possible interaction of resveratrol and oxadiazole-stilbene hybrids with the cytochrome P450-dependent sterol 14α-demethylase from B. cinerea (BcCYP51) for the first time. Taken together, these results would provide new insights into the fungicidal mechanism of stilbenes, as well as an important clue for biology-oriented synthesis of stilbene hybrids with improved bioactivity against plant pathogenic fungi in crop protection.
Collapse
Affiliation(s)
- Weilin Jian
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Daohang He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Shaoyun Song
- State Key Lab of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
8
|
Kong Q, Ren X, Tu L, Zheng X, Wang Z, Pan Y. The Mechanism of Action of Pterostilbene in Xinjiang Wine Grape Against the Growth ofGeotrichum citri-aurantii. FOOD BIOTECHNOL 2016. [DOI: 10.1080/08905436.2016.1198705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Water-soluble inclusion complexes of trans-polydatin by cyclodextrin complexation: Preparation, characterization and bioactivity evaluation. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.03.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Xu J, Li M, Jiao P, Tao H, Wei N, Ma F, Zhang J. Dynamic transcription profiles of "Qinguan" apple (Malus × domestica) leaves in response to Marssonina coronaria inoculation. FRONTIERS IN PLANT SCIENCE 2015; 6:842. [PMID: 26528306 PMCID: PMC4602106 DOI: 10.3389/fpls.2015.00842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/25/2015] [Indexed: 05/22/2023]
Abstract
Marssonina apple blotch, caused by the fungus Marssonina coronaria, is one of the most destructive apple diseases in China and East Asia. A better understanding of the plant's response to fungi during pathogenesis is urgently needed to improve plant resistance and to breed resistant cultivars. To address this, the transcriptomes of "Qinguan" (a cultivar with high resistance to M. coronaria) apple leaves were sequenced at 12, 24, 48, and 72 h post-inoculation (hpi) with Marssonina coronaria. The comparative results showed that a total of 1956 genes were differentially expressed between the inoculated and control samples at the 4 time points. Gene ontology (GO) term enrichment analysis of differentially expressed genes (DEGs) revealed changes in cellular component, secondary metabolism including chalcone isomerase activity, phytoalexin biosynthetic process, anthocyanin-containing compound biosynthetic process, lignin biosynthetic process, positive regulation of flavonoid biosynthetic process; and molecular functions or biological processes related to the defense response, biotic stimulus response, wounding response and fungus response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs were significantly enriched in flavonoid biosynthesis, vitamin B6 metabolism, phenylpropanoid biosynthesis, and the stilbenoid, diarylheptanoid and gingerol biosynthesis pathways. Furthermore, the importance of changes in cellular components and partial polyphenol compounds when encountering M. coronaria are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junke Zhang
- The Department of Pomology, College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
11
|
Exploiting natural variation of secondary metabolism identifies a gene controlling the glycosylation diversity of dihydroxybenzoic acids in Arabidopsis thaliana. Genetics 2014; 198:1267-76. [PMID: 25173843 DOI: 10.1534/genetics.114.168690] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant secondary metabolism is an active research area because of the unique and important roles the specialized metabolites have in the interaction of plants with their biotic and abiotic environment, the diversity and complexity of the compounds and their importance to human medicine. Thousands of natural accessions of Arabidopsis thaliana characterized with increasing genomic precision are available, providing new opportunities to explore the biochemical and genetic mechanisms affecting variation in secondary metabolism within this model species. In this study, we focused on four aromatic metabolites that were differentially accumulated among 96 Arabidopsis natural accessions as revealed by leaf metabolic profiling. Using UV, mass spectrometry, and NMR data, we identified these four compounds as different dihydroxybenzoic acid (DHBA) glycosides, namely 2,5-dihydroxybenzoic acid (gentisic acid) 5-O-β-D-glucoside, 2,3-dihydroxybenzoic acid 3-O-β-D-glucoside, 2,5-dihydroxybenzoic acid 5-O-β-D-xyloside, and 2,3-dihydroxybenzoic acid 3-O-β-D-xyloside. Quantitative trait locus (QTL) mapping using recombinant inbred lines generated from C24 and Col-0 revealed a major-effect QTL controlling the relative proportion of xylosides vs. glucosides. Association mapping identified markers linked to a gene encoding a UDP glycosyltransferase gene. Analysis of Transfer DNA (T-DNA) knockout lines verified that this gene is required for DHBA xylosylation in planta and recombinant protein was able to xylosylate DHBA in vitro. This study demonstrates that exploiting natural variation of secondary metabolism is a powerful approach for gene function discovery.
Collapse
|
12
|
Greene GH, McGary KL, Rokas A, Slot JC. Ecology drives the distribution of specialized tyrosine metabolism modules in fungi. Genome Biol Evol 2014; 6:121-32. [PMID: 24391152 PMCID: PMC3914699 DOI: 10.1093/gbe/evt208] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene clusters encoding accessory or environmentally specialized metabolic pathways likely play a significant role in the evolution of fungal genomes. Two such gene clusters encoding enzymes associated with the tyrosine metabolism pathway (KEGG #00350) have been identified in the filamentous fungus Aspergillus fumigatus. The l-tyrosine degradation (TD) gene cluster encodes a functional module that facilitates breakdown of the phenolic amino acid, l-tyrosine through a homogentisate intermediate, but is also involved in the production of pyomelanin, a fungal pathogenicity factor. The gentisate catabolism (GC) gene cluster encodes a functional module likely involved in phenolic compound degradation, which may enable metabolism of biphenolic stilbenes in multiple lineages. Our investigation of the evolution of the TD and GC gene clusters in 214 fungal genomes revealed spotty distributions partially shaped by gene cluster loss and horizontal gene transfer (HGT). Specifically, a TD gene cluster shows evidence of HGT between the extremophilic, melanized fungi Exophiala dermatitidis and Baudoinia compniacensis, and a GC gene cluster shows evidence of HGT between Sordariomycete and Dothideomycete grass pathogens. These results suggest that the distribution of specialized tyrosine metabolism modules is influenced by both the ecology and phylogeny of fungal species.
Collapse
|
13
|
Yu SY, Gao R, Zhang L, Luo J, Jiang H, Wang S. Curcumin ameliorates ethanol-induced memory deficits and enhanced brain nitric oxide synthase activity in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:210-6. [PMID: 23500667 DOI: 10.1016/j.pnpbp.2013.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 02/05/2023]
Abstract
Ethanol consumption has well-known deleterious effects on memory. However, the mechanism by which ethanol exerts its effects on memory has received little attention, which has retarded the identification and development of effective therapeutic strategies against ethanol toxicity. The aim of this study was to explore the neuronal mechanisms underlying the protective action of curcumin, a natural polyphenolic compound of Curcuma longa, against ethanol-induced memory deficits. Adult mice were pretreated with curcumin (40 mg/kg, i.p.) before administration of ethanol (1 g/kg, i.p.) for the memory acquisition measurement, or were sacrificed 30 min later for evaluation of regional brain differences in the nitric oxide synthase (NOS) activity and nitric oxide (NO) concentration. The results showed that pretreatment with curcumin significantly ameliorated the memory deficits resulting from acute ethanol administration to mice in the novel object recognition and inhibitory avoidance tasks. Furthermore, acute ethanol treatment increased the NOS activity and NO production in brain regions associated with memory including prefrontal cortex (PFC), amygdala and hippocampus, while this enhancement was suppressed by pretreatment with curcumin. Taken together, these results suggest that the protective effects of curcumin on acute ethanol-induced memory deficits are mediated, at least in part, by suppressing NOS activity in the brain of mice. Thus, manipulation of the NOS/NO signaling pathway might be beneficial for the prevention of ethanol toxicity.
Collapse
Affiliation(s)
- Shu Yan Yu
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China.
| | | | | | | | | | | |
Collapse
|
14
|
Adrian M, Jeandet P. Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions. Fitoterapia 2012; 83:1345-50. [DOI: 10.1016/j.fitote.2012.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/01/2012] [Indexed: 11/17/2022]
|
15
|
Specific Conditions for Resveratrol Neuroprotection against Ethanol-Induced Toxicity. J Toxicol 2012; 2012:973134. [PMID: 22778731 PMCID: PMC3385672 DOI: 10.1155/2012/973134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 01/11/2023] Open
Abstract
Aims. 3,5,4′-Trihydroxy-trans-stilbene, a natural polyphenolic compound present in wine and grapes and better known as resveratrol, has free radical scavenging properties and is a potent protector against oxidative stress induced by alcohol metabolism. Today, the mechanism by which ethanol exerts its toxicity is still not well understood, but it is generally considered that free radical generation plays an important role in the appearance of structural and functional alterations in cells. The aim of this study was to evaluate the protective action of resveratrol against ethanol-induced brain cell injury. Methods. Primary cultures of rat astrocytes were exposed to ethanol, with or without a pretreatment with resveratrol. We examined the dose-dependent effects of this resveratrol pretreatment on cytotoxicity and genotoxicity induced by ethanol. Cytotoxicity was assessed using the MTT reduction test. Genotoxicity was evidenced using single cell gel electrophoresis. In addition, DNA staining with fluorescent dyes allowed visualization of nuclear damage using confocal microscopy. Results. Cell pretreatment with low concentrations of trans-resveratrol (0.1–10 μM) slowed down cell death and DNA damage induced by ethanol exposure, while higher concentrations (50–100 μM) enhanced these same effects. No protection by cis-resveratrol was observed. Conclusion. Protection offered by trans-resveratrol against ethanol-induced neurotoxicity was only effective for low concentrations of this polyphenol.
Collapse
|
16
|
Kovářová M, Frantík T, Koblihová H, Bartůňková K, Nývltová Z, Vosátka M. Effect of clone selection, nitrogen supply, leaf damage and mycorrhizal fungi on stilbene and emodin production in knotweed. BMC PLANT BIOLOGY 2011; 11:98. [PMID: 21624119 PMCID: PMC3123627 DOI: 10.1186/1471-2229-11-98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/30/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fallopia japonica and its hybrid, F. xbohemica, due to their fast spread, are famous as nature threats rather than blessings. Their fast growth rate, height, coverage, efficient nutrient translocation between tillers and organs and high phenolic production, may be perceived either as dangerous or beneficial features that bring about the elimination of native species or a life-supporting source. To the best of our knowledge, there have not been any studies aimed at increasing the targeted production of medically desired compounds by these remarkable plants. We designed a two-year pot experiment to determine the extent to which stilbene (resveratrol, piceatannol, resveratrolosid, piceid and astringins) and emodin contents of F. japonica, F. sachalinensis and two selected F. xbohemica clones are affected by soil nitrogen (N) supply, leaf damage and mycorrhizal inoculation. RESULTS 1) Knotweeds are able to grow on substrates with extremely low nitrogen content and have a high efficiency of N translocation. The fast-spreading hybrid clones store less N in their rhizomes than the parental species. 2) The highest concentrations of stilbenes were found in the belowground biomass of F. japonica. However, because of the high belowground biomass of one clone of F. xbohemica, this hybrid produced more stilbenes per plant than F. japonica. 3) Leaf damage increased the resveratrol and emodin contents in the belowground biomass of the non-inoculated knotweed plants. 4) Although knotweed is supposed to be a non-mycorrhizal species, its roots are able to host the fungi. Inoculation with mycorrhizal fungi resulted in up to 2% root colonisation. 5) Both leaf damage and inoculation with mycorrhizal fungi elicited an increase of the piceid (resveratrol-glucoside) content in the belowground biomass of F. japonica. However, the mycorrhizal fungi only elicited this response in the absence of leaf damage. Because the leaf damage suppressed the effect of the root fungi, the effect of leaf damage prevailed over the effect of the mycorrhizal fungi on the piceid content in the belowground biomass. CONCLUSIONS Two widely spread knotweed species, F. japonica and F. xbohemica, are promising sources of compounds that may have a positive impact on human health. The content of some of the target compounds in the plant tissues can be significantly altered by the cultivation conditions including stress imposed on the plants, inoculation with mycorrhizal fungi and selection of the appropriate plant clone.
Collapse
Affiliation(s)
- Marcela Kovářová
- Institute of Botany, Czech Academy of Science, Průhonice 1, 252 43, Czech Republic
| | - Tomáš Frantík
- Institute of Botany, Czech Academy of Science, Průhonice 1, 252 43, Czech Republic
| | - Helena Koblihová
- Institute of Botany, Czech Academy of Science, Průhonice 1, 252 43, Czech Republic
| | - Kristýna Bartůňková
- Institute of Botany, Czech Academy of Science, Průhonice 1, 252 43, Czech Republic
| | | | - Miroslav Vosátka
- Institute of Botany, Czech Academy of Science, Průhonice 1, 252 43, Czech Republic
| |
Collapse
|
17
|
Ruan B, Yang Y, Zhu Z, Lv P, Zhu H. ( E)-2,3-Bis(4-methoxyphenyl)acrylic acid. Acta Crystallogr Sect E Struct Rep Online 2009; 65:o944. [PMID: 21583988 PMCID: PMC2977645 DOI: 10.1107/s1600536809011751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 03/30/2009] [Indexed: 12/04/2022]
Abstract
In the title molecule, C17H16O4, the angle between the aromatic ring planes is 69.1 (6)°. The crystal structure is stabilized by intermolecular O—H⋯O hydrogen bonds; molecules related by a centre of symmetry are linked to form inversion dimers.
Collapse
|
18
|
Selma MV, Freitas PM, Almela L, González-Barrio R, Espín JC, Suslow T, Tomás-Barberán F, Gil MI. Ultraviolet-C and induced stilbenes control ochratoxigenic Aspergillus in grapes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9990-9996. [PMID: 18841974 DOI: 10.1021/jf8018062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study investigated the efficacy of ultraviolet-C (254 nm) and induced stilbenes to inhibit Aspergillus carbonarius and Aspergillus tubingensis and control ochratoxin A production in grapes. In addition, the stilbene synthesis as a response to UV-C treatment and to infection of ochratoxigenic Aspergillus was compared. The initial microbial inactivation by a previously optimized UV-C illumination protocol for increasing trans-resveratrol content in grapes (50 W/m (2), 40 cm, 60 s) was similar on undamaged and damaged grapes, achieving 1.2 and 1.3 log conidia/100 g reductions, respectively. After 5 days of storage at 22 degrees C, UV-C treatment and the stilbenes induced by UV-C inhibited ochratoxigenic Aspergillus growth in undamaged grapes. UV-C elicited the biosynthesis of trans-resveratrol, while microbial infection and tissue damage triggered the biosynthesis of trans-piceid. trans-Resveratrol was not synthesized as a consequence of ochratoxigenic Aspergillus contamination. However, when trans-resveratrol was synthesized by UV-C, it contributed to inhibiting the development of ochratoxin A producing aspergilli. Furthermore, UV-C treatment also contributed to decrease ochratoxin A production by ochratoxigenic aspergilli. Therefore, UV-C is a promising emerging technology either for reducing the potential ochratoxigenic risk in grapes, which is of particular interest to the wine industry, and also for increasing trans-resveratrol content of grapes, which would provide an added value to the wine.
Collapse
Affiliation(s)
- María V Selma
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu CKY, Shih CH, Chu IK, Lo C. Accumulation of trans-piceid in sorghum seedlings infected with Colletotrichum sublineolum. PHYTOCHEMISTRY 2008; 69:700-706. [PMID: 17963800 DOI: 10.1016/j.phytochem.2007.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 09/03/2007] [Accepted: 09/12/2007] [Indexed: 05/25/2023]
Abstract
Sorghum SbSTS1, a pathogen inducible gene, was previously demonstrated to encode an enzyme with stilbene synthase activity. In this study, we attempt to identify the stilbene derivatives that accumulate in infected sorghum seedlings after inoculation with the anthracnose pathogen Colletotrichum sublineolum. Scanning for precursor ions that produced the common stilbene aglycones as diagnostic ions was performed in a triple quadrupole mass spectrometer. It was found that infected sorghum seedlings accumulated trans-piceid as the major stilbene metabolite together with an unknown resveratrol derivative. Time-course accumulation of trans-piceid was examined in two sorghum cultivars, DK18 and DK77, which are resistant and susceptible to C. sublineolum, respectively. In both cultivars, trans-piceid was not detected until 48h after inoculation, consistent with the late induction of SbSTS1 reported previously in infected sorghum plants. The levels of trans-piceid detected in DK77 seedlings were approximately three times the levels detected in DK18 seedlings at 120h after inoculation. In vitro assays demonstrated that trans-piceid did not exhibit significant toxicity on conidial germination and mycelial growth of C. sublineolum. Hence trans-piceid alone may not represent an important defense component against the anthracnose pathogen in sorghum seedlings.
Collapse
Affiliation(s)
- Christine K Y Yu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | |
Collapse
|
20
|
Rollinger JM, Spitaler R, Menz M, Marschall K, Zelger R, Ellmerer EP, Schneider P, Stuppner H. Venturia inaequalis-inhibiting Diels-Alder adducts from Morus root bark. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:8432-6. [PMID: 17061817 DOI: 10.1021/jf061871g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In organic apple orcharding there is a continuous need for natural fungicides effective against Venturia inaequalis (Cooke) Winter, the causal agent of apple scab. In this study an in vitro assay is presented for determining the germination inhibitory potential of extracts and pure compounds. From a screening of plant extracts, the methanol extract of Morus root bark revealed distinct V. inaequalis inhibiting qualities, which were subjected to a bioguided fractionation. Among the isolated metabolites [moracins M (1), O/P (2), kuwanon L (3), and sanggenons D (4), B (5), G (6), O (7), E (8), and C (9)] all the Diels-Alder adducts (3-9) showed an antifungal activity with IC50 values between 10 and 123 microM. The in vitro activity of the most active fraction (A5, IC50 39.0 +/- 4.2 microg/mL) was evaluated in vivo, confirming a distinct antifungal activity against V. inaequalis for the tested natural material.
Collapse
Affiliation(s)
- Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy , Innrain 52c, and Institute of Organic Chemistry, Innrain 52a, Center for Molecular Biosciences Innsbruck, Leopold Franzens-Universität, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rühmann S, Treutter D, Fritsche S, Briviba K, Szankowski I. Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:4633-40. [PMID: 16787008 DOI: 10.1021/jf060249l] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A stilbene synthase gene along with the selectable marker gene bar for herbicide resistance was transferred via Agrobacterium tumefaciens mediated transformation into apple (Malus domesticaBorkh.) cvs. 'Elstar' and 'Holsteiner Cox'. The stilbene synthase catalyzes the conversion of 1 molecule of p-coumaroyl-CoA and 3 molecules of malonyl-CoA into 3,4',5-trihydroxystilbene, commonly known as resveratrol. This phytoalexin has implications in both phytopathology and human health. Greenhouse-grown transgenic and nontransformed control plants were grafted onto dwarfing rootstock M27. Flowering and fruiting occurred within the following years, offering the opportunity to analyze transgenic apple fruit and fertility of transgenic plants as well as inheritance of the transgenes into the seedling progeny. Molecular analysis revealed that the stilbene synthase is expressed in transgenic plants and in the skin and flesh of transgenic apple fruit. After formation, resveratrol is modified by the addition of a hexose sugar. The resulting component was characterized as piceid. With the aim of characterizing the influence of the novel biosynthetic pathway on the accumulation of other phenolic compounds naturally present in apple fruit, the amounts of flavanols, flavonols, phloretin derivatives and hydroxycinnamic acids in wild type and transgenic fruit were determined by HPLC. In all investigated transformed lines that accumulated piceid, no negative correlation between levels of piceid and the above-mentioned compounds was observed, except for the flavonol contents, which slightly decreased. Inheritance of the transgenes was confirmed in the seedling progeny, which were obtained after pollination of transgenic plants with nontransgenic pollen and vice versa after pollination of nontransgenic plants with pollen obtained from transgenic plants. The fertility of stilbene synthase transgenic plants was demonstrated. To the authors' knowledge this is the first time that data are available on piceid synthesis in transgenic apple fruit and the effects of its accumulation on levels of other phenolic compounds present in the fruit.
Collapse
Affiliation(s)
- Susanne Rühmann
- Institute for Biological Production Systems, Fruit Science Section, University of Hanover, Herrenhaeuser Strasse 2, 30419 Hannover, Germany
| | | | | | | | | |
Collapse
|
22
|
Gachon CMM, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. TRENDS IN PLANT SCIENCE 2005; 10:542-9. [PMID: 16214386 DOI: 10.1016/j.tplants.2005.09.007] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/19/2005] [Accepted: 09/22/2005] [Indexed: 05/03/2023]
Abstract
Glycosylation is a widespread modification of plant secondary metabolites. It is involved in various functions, including the regulation of hormone homeostasis, the detoxification of xenobiotics and the biosynthesis and storage of secondary compounds. In plants, these reactions are controlled by a specific subclass of the ubiquitous glycosyltransferase family. Although these enzymes have been studied intensively for many years, to date only a handful have been characterized in planta. Plant genome projects have uncovered unsuspected complexity within this family that is hindering the characterization of single genes. However, genome information also paves the way for the development of functional genomic approaches. Here, we highlight recent progress and the outcomes of novel strategies developed to uncover the physiological roles of these glycosyltransferases.
Collapse
Affiliation(s)
- Claire M M Gachon
- Institut de Biotechnologie des Plantes, CNRS-Université Paris-Sud, UMR8618, Bâtiment 630, 91405 Orsay Cedex, France
| | | | | |
Collapse
|