1
|
Lawrence MJ, Grayson P, Jeffrey JD, Docker MF, Garroway CJ, Wilson JM, Manzon RG, Wilkie MP, Jeffries KM. Differences in the transcriptome response in the gills of sea lamprey acutely exposed to 3-trifluoromethyl-4-nitrophenol (TFM), niclosamide or a TFM:niclosamide mixture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101122. [PMID: 37659214 DOI: 10.1016/j.cbd.2023.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Sea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America makes use of two pesticides: 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide, which are often co-applied. Sea lamprey appear to be vulnerable to these agents resulting from a lack of detoxification responses with evidence suggesting that lampricide mixtures produce a synergistic effect. However, there is a lack of information pertaining to the physiological responses of sea lamprey to niclosamide and TFM:niclosamide mixtures. Here, we characterized the transcriptomic responses of the sea lamprey to TFM, niclosamide, and a TFM:niclosamide (1.5 %) mixture in the gill. Along with a control, larval sea lamprey were exposed to each treatment for 6 h, after which gill tissues were extracted for measuring whole-transcriptome responses using RNA sequencing. Differential gene expression patterns were summarized, which included identifying the broad roles of genes and common expression patterns among the treatments. While niclosamide treatment resulted in no differentially expressed genes, TFM- and mixture-treated fish had several differentially expressed genes that were associated with the cell cycle, DNA damage, metabolism, immune function, and detoxification. However, there was no common differential expression among treatments. For the first time, we characterized the transcriptomic response of sea lamprey to niclosamide and a TFM:niclosamide mixture and identified that these agents impact mRNA transcript abundance of genes associated with the cell cycle and cellular death, and immune function, which are likely mediated through mitochondrial dysregulation. These results may help to inform the production of more targeted and effective lampricides in sea lamprey control efforts.
Collapse
Affiliation(s)
- M J Lawrence
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - P Grayson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - J D Jeffrey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - M F Docker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - C J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - J M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - R G Manzon
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| | - M P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - K M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Hou HZ, Su Y, Liu GL, Peng YJ, Wang JP. Determination of niclosamide and its two metabolites in fish by molecularly imprinted microsphere-based pseudo-ELISA. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1450-1458. [PMID: 37820002 DOI: 10.1080/19440049.2023.2267139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Niclosamide is usually used for the treatment of parasite infections in animals. However, niclosamide and one of its metabolites 2-chloro-4-nitroaniline are mutagenic substances, and their residues in animal-derived foods are potential risks to consumers. As far as we know, there has been no immunoassay or pseudo immunoassay reported to determine niclosamide and its metabolites in animal-derived foods. In this study, a molecularly imprinted microsphere for niclosamide was first synthesized, and a streptavidin-horseradish peroxidase labelled conjugate was also synthesized. The two reagents were used to develop a pseudo enzyme-linked immunosorbent assay on conventional microplates for the determination of niclosamide and its two metabolites (2-chloro-4-nitroaniline and 5-chlorosalicylic acid) in fish. Because biotinylated horseradish peroxidase was used to amplify the signal, the method sensitivities for the three analytes were increased fivefold to 27.5-fold (limits of detection of 0.004-0.03 ng/mL) in comparison with the use of single horseradish peroxidase labelled conjugate (limits of detection of 0.11-0.16 ng/mL). Their recoveries from the standards fortified blank fish samples were in the range of 70.6-95.5%. This is the first study reporting a molecularly imprinted polymer-based pseudo immunoassay for screening of niclosamide and its metabolites in food sample.
Collapse
Affiliation(s)
- Hao Zhe Hou
- College of Veterinary Medicine, Hebei Agricultural University, Baoding Hebei, China
| | - Yan Su
- College of Veterinary Medicine, Hebei Agricultural University, Baoding Hebei, China
| | - Ge Lin Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding Hebei, China
| | - Yao Jia Peng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding Hebei, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding Hebei, China
| |
Collapse
|
3
|
Lawrence M, Grayson P, Jeffrey J, Docker M, Garroway C, Wilson J, Manzon R, Wilkie M, Jeffries K. Transcriptomic impacts and potential routes of detoxification in a lampricide-tolerant teleost exposed to TFM and niclosamide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101074. [PMID: 37028257 DOI: 10.1016/j.cbd.2023.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Sea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America often relies on the application of 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide mixtures to kill larval sea lamprey. Selectivity of TFM against lampreys appears to be due to differential detoxification ability in these jawless fishes compared to bony fishes, particularly teleosts. However, the proximate mechanisms of tolerance to the TFM and niclosamide mixture and the mechanisms of niclosamide toxicity on its own are poorly understood, especially among non-target fishes. Here, we used RNA sequencing to identify specific mRNA transcripts and functional processes that responded to niclosamide or a TFM:niclosamide mixture in bluegill (Lepomis macrochirus). Bluegill were exposed to niclosamide or TFM:niclosamide mixture, along with a time-matched control group, and gill and liver tissues were sampled at 6, 12, and 24 h. We summarized the whole-transcriptome patterns through gene ontology (GO) term enrichment and through differential expression of detoxification genes. The niclosamide treatment resulted in an upregulation of several transcripts associated with detoxification (cyp, ugt, sult, gst), which may help explain the relatively high detoxification capacity in bluegill. Conversely, the TFM:niclosamide mixture resulted in an enrichment of processes related to arrested cell cycle and growth, and cell death alongside a diverse detoxification gene response. Detoxification of both lampricides likely involves the use of phase I and II biotransformation genes. Our findings strongly suggest that the unusually high tolerance of bluegill to lampricides is due to these animals having an inherently high capacity and flexible detoxification response to such compounds.
Collapse
|
4
|
Ionescu RA, Hepditch SLJ, Wilkie MP. The lampricide 3-trifluoromethyl-4-nitrophenol causes temporary metabolic disturbances in juvenile lake sturgeon ( Acipenser fulvescens): implications for sea lamprey control and fish conservation. CONSERVATION PHYSIOLOGY 2021; 9:coab069. [PMID: 34512991 PMCID: PMC8427354 DOI: 10.1093/conphys/coab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/19/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The pesticide 3-trifluoromethyl-4-nitrophenol (TFM) is applied to rivers and streams draining into the Laurentian Great Lakes to control populations of invasive sea lamprey (Petromyzon marinus), which are ongoing threats to fisheries during the lamprey's hematophagous, parasitic juvenile life stage. While TFM targets larval sea lamprey during treatments, threatened populations of juvenile lake sturgeon (Acipenser fulvescens), particularly young-of-the-year (<100 mm in length), may be adversely affected by TFM when their habitats overlap with larval sea lamprey. Exposure to TFM causes marked reductions in tissue glycogen and high energy phosphagens in lamprey and rainbow trout (Oncorhynchus mykiss) by interfering with oxidative ATP production in the mitochondria. To test that environmentally relevant concentrations of TFM would similarly affect juvenile lake sturgeon, we exposed them to the larval sea lamprey minimum lethal concentration (9-h LC99.9), which mimicked concentrations of a typical lampricide application and quantified energy stores and metabolites in the carcass, liver and brain. Exposure to TFM reduced brain ATP, PCr and glycogen by 50-60%, while lactate increased by 45-50% at 6 and 9 h. A rapid and sustained depletion of liver glucose and glycogen of more than 50% was also observed, whereas the respective concentrations of ATP and glycogen were reduced by 60% and 80% after 9 h, along with higher lactate and a slight metabolic acidosis (~0.1 pH unit). We conclude that exposure to environmentally relevant concentrations of TFM causes metabolic disturbances in lake sturgeon that can lead to impaired physiological performance and, in some cases, mortality. Our observations support practices such as delaying TFM treatments to late summer/fall or using alternative TFM application strategies to mitigate non-target effects in waters where lake sturgeon are present. These actions would help to conserve this historically and culturally significant species in the Great Lakes.
Collapse
Affiliation(s)
- R Adrian Ionescu
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Scott L J Hepditch
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
- Current Address: Centre Eau Terre Environment, Institut National de la Recherche Scientifique, Québec, Québec City G1K 9A9, Canada
| | - Michael P Wilkie
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
5
|
Lawrence MJ, Mitrovic D, Foubister D, Bragg LM, Sutherby J, Docker MF, Servos MR, Wilkie MP, Jeffries KM. Contrasting physiological responses between invasive sea lamprey and non-target bluegill in response to acute lampricide exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105848. [PMID: 34274866 DOI: 10.1016/j.aquatox.2021.105848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023]
Abstract
Control of invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes of North America uses lampricides, which consist of 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide. Lampricides are thought to inhibit aerobic energy synthesis, with TFM having a relatively greater selective action against lampreys. While the toxicity and physiological effects of TFM are known, the impacts associated with exposure to niclosamide and TFM:niclosamide mixtures are poorly characterized in fishes. Therefore, focusing on energy metabolism, we quantified the physiological responses of larval sea lamprey and bluegill (Lepomis macrochirus), a non-target, native species. Exposures consisted of each lampricide alone (TFM at the species-specific 24 h LC10; niclosamide at 1.5% of the mixture's TFM concentration) or a mixture of the two (larval sea lamprey at TFM 24 h LC10 + 1.5% niclosamide; bluegill at sea lamprey's TFM 24 h LC99.9 + 1.5% niclosamide) for 24 h. Tissues (brain, skeletal muscle, and liver) were sampled at 6, 12, and 24 h of exposure and assayed for concentrations of ATP, phosphocreatine, glycogen, lactate, and glucose and tissue lampricide levels. In larval sea lamprey, TFM had little effect on brain and skeletal muscle, but niclosamide resulted in a depletion of high energy substrates in both tissues. Mixture-exposed lamprey showed depletion of high energy substrates, accumulation of lactate, and high mortality rates. Bluegill were largely unaffected by toxicant exposures. However, bluegill liver showed lower glycogen and lactate under all three toxicant exposures suggesting increased metabolic turnover. Bluegill also had lower concentrations of TFM and niclosamide in their tissues when compared to lamprey. Our results indicate that lampricide toxicity in sea lamprey larvae is mediated through a depletion of high energy substrates because of impaired aerobic ATP synthesis. We also confirmed that non-target bluegill showed high tolerance to lampricide exposure, an effect potentially mediated through a high detoxification capacity relative to lampreys.
Collapse
Affiliation(s)
- M J Lawrence
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - D Mitrovic
- Department of Biology and Laurier Institute for Water Science (LIWS), Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - D Foubister
- Department of Biology and Laurier Institute for Water Science (LIWS), Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - L M Bragg
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - J Sutherby
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - M F Docker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - M R Servos
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - M P Wilkie
- Department of Biology and Laurier Institute for Water Science (LIWS), Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - K M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
6
|
Hepditch SL, Birceanu O, Wilkie MP. A Toxic Unit and Additive Index Approach to Understanding the Interactions of 2 Piscicides, 3-Trifluoromethyl-4-Nitrophenol and Niclosamide, in Rainbow Trout. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1419-1430. [PMID: 33507577 PMCID: PMC8252420 DOI: 10.1002/etc.4994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/11/2020] [Accepted: 01/20/2021] [Indexed: 05/11/2023]
Abstract
The toxic unit and additive index approaches were used to understand how 2 pesticides, 3-trifluoromethyl-4-nitrophenol (TFM) and 2,5-dichloro-4-nitrosalicylanilide (niclosamide; Nic), interact in mixtures. Our first objective was to determine whether the interaction was strictly additive or greater than additive at doses comparable to those used to control invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes, and our second was to compare the utility of the toxic unit and additive index models for determining how TFM and Nic interacted. Typically, TFM is mixed with Nic (1-2%, w/v) to increase its potency and reduce TFM use. However, there is little information on how the 2 chemicals interact. Using a well-studied, resident nontarget fish, the rainbow trout (Oncorhynchus mykiss), we conducted toxicity tests with TFM, Nic, and TFM:Nic (100:1, w/v; TFM/1% Nic) mixtures over 12 h to determine if the interaction was strictly additive, less than additive (antagonistic), or greater than additive (synergistic). The toxic unit and additive index approaches indicated synergistic interactions at environmentally relevant concentrations, suggesting that both are valid approaches for predicting how TFM and Nic interact. The toxic unit approach was simpler to conceptualize and to calculate, and we recommend that it be used when describing how TFM and Nic, and other similar organic compounds, interact with each other in aquatic ecosystems. Environ Toxicol Chem 2021;40:1419-1430. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Oana Birceanu
- Department of BiologyWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Michael P. Wilkie
- Department of BiologyWilfrid Laurier UniversityWaterlooOntarioCanada
| |
Collapse
|
7
|
Wilkie MP, Hubert TD, Boogaard MA, Birceanu O. Control of invasive sea lampreys using the piscicides TFM and niclosamide: Toxicology, successes & future prospects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:235-252. [PMID: 30770146 DOI: 10.1016/j.aquatox.2018.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
The invasion of the Laurentian Great Lakes of North America by sea lampreys (Petromyzon marinus) in the early 20th century contributed to the depletion of commercial, recreational and culturally important fish populations, devastating the economies of communities that relied on the fishery. Sea lamprey populations were subsequently controlled using an aggressive integrated pest-management program which employed barriers and traps to prevent sea lamprey from migrating to their spawning grounds and the use of the piscicides (lampricides) 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide to eliminate larval sea lampreys from their nursery streams. Although sea lampreys have not been eradicated from the Great Lakes, populations have been suppressed to less than 10% of their peak numbers in the mid-1900s. The ongoing use of lampricides provides the foundation for sea lamprey control in the Great Lakes, one of the most successful invasive species control programs in the world. Yet, significant gaps remain in our understanding of how lampricides are taken-up and handled by sea lampreys, how lampricides exert their toxic effects, and how they adversely affect non-target invertebrate and vertebrates species. In this review we examine what has been learned about the uptake, handling and elimination, and the mode of TFM and niclosamide toxicity in lampreys and in non-target animals, particularly in the last 10 years. It is now clear that the mode of TFM toxicity is the same in non-target fishes and lampreys, in which TFM interferes with oxidative phosphorylation by the mitochondria leading to decreased ATP production. Vulnerability to TFM is related to abiotic factors such as water pH and alkalinity, which we propose changes the relative amounts of the bioavailable un-ionized form of TFM in the gill microenvironment. Niclosamide, which is also a molluscicide used to control snails in areas prone to schistosomiasis infections of humans, also likely works by uncoupling oxidative phosphorylation, but less is known about other aspects of its toxicology. The effects of TFM include reductions in energy stores, particularly glycogen and high energy phosphagens. However, non-target fishes readily recover from sub-lethal TFM exposure as demonstrated by the rapid restoration of energy stores and clearance of TFM. Although both TFM and niclosamide are non-persistent in the environment and critical for sea lamprey control, increasing public and institutional concerns about pesticides in the environment makes it imperative to explore other means of sea lamprey control. Accordingly, we also address possible "next-generation" strategies of sea lamprey control including genetic tools such as RNA interference and CRISPR-Cas9 to impair critical physiological processes (e.g. reproduction, digestion, metamorphosis) in lamprey, and the use of green chemistry to develop more environmentally benign chemical methods of sea lamprey control.
Collapse
Affiliation(s)
- Michael P Wilkie
- Department of Biology & Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada.
| | - Terrance D Hubert
- Upper Midwest Environmental Sciences Center, United States Geological Survey, La Crosse, WI, 54603, USA
| | - Michael A Boogaard
- Upper Midwest Environmental Sciences Center, United States Geological Survey, La Crosse, WI, 54603, USA
| | - Oana Birceanu
- Department of Biology & Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| |
Collapse
|
8
|
Liu Y, Wang F, Ai X, Wang Z, Yang Q, Dong J, Xu N. Residue depletion and risk assessment of niclosamide in three species of freshwater fish. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1497-1507. [DOI: 10.1080/19440049.2018.1488184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan China
- Research Center for Trace Elements (Guangzhou), Huazhong Agricultural University, Wuhan China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and rural affairs, Beijing China
| | - Fuhua Wang
- Research Center for Trace Elements (Guangzhou), Huazhong Agricultural University, Wuhan China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and rural affairs, Beijing China
| | - Zhenyue Wang
- Department of Aquatic Animal medicine, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan China
| |
Collapse
|
9
|
Bussy U, Chung-Davidson YW, Buchinger T, Li K, Smith SA, Daniel Jones A, Li W. Metabolism of a sea lamprey pesticide by fish liver enzymes part B: method development and application in quantification of TFM metabolites formed in vivo. Anal Bioanal Chem 2017; 410:1763-1774. [DOI: 10.1007/s00216-017-0831-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 01/24/2023]
|
10
|
Dissipation, residues and risk assessment of metaldehyde and niclosamide ethanolamine in pakchoi after field application. Food Chem 2017; 229:604-609. [DOI: 10.1016/j.foodchem.2017.02.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/18/2017] [Accepted: 02/23/2017] [Indexed: 11/21/2022]
|
11
|
Siefkes MJ. Use of physiological knowledge to control the invasive sea lamprey ( Petromyzon marinus) in the Laurentian Great Lakes. CONSERVATION PHYSIOLOGY 2017; 5:cox031. [PMID: 28580146 PMCID: PMC5448140 DOI: 10.1093/conphys/cox031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 05/14/2023]
Abstract
Sea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America is an example of using physiological knowledge to successfully control an invasive species and rehabilitate an ecosystem and valuable fishery. The parasitic sea lamprey contributed to the devastating collapse of native fish communities after invading the Great Lakes during the 1800s and early 1900s. Economic tragedy ensued with the loss of the fishery and severe impacts to property values and tourism resulting from sea lamprey-induced ecological changes. To control the sea lamprey and rehabilitate the once vibrant Great Lakes ecosystem and economy, the Great Lakes Fishery Commission (Commission) was formed by treaty between Canada and the United States in 1955. The Commission has developed a sea lamprey control programme based on their physiological vulnerabilities, which includes (i) the application of selective pesticides (lampricides), which successfully kill sedentary sea lamprey larvae in their natal streams; (ii) barriers to spawning migrations and associated traps to prevent infestations of upstream habitats and remove adult sea lamprey before they reproduce; and (iii) the release of sterilized males to reduce the reproductive potential of spawning populations in select streams. Since 1958, the application of the sea lamprey control programme has suppressed sea lamprey populations by ~90% from peak abundance. Great Lakes fish populations have rebounded and the economy is now thriving. In hopes of further enhancing the efficacy and selectivity of the sea lamprey control programme, the Commission is exploring the use of (i) sea lamprey chemosensory cues (pheromones and alarm cues) to manipulate behaviours and physiologies, and (ii) genetics to identify and manipulate genes associated with key physiological functions, for control purposes. Overall, the Commission capitalizes on the unique physiology of the sea lamprey and strives to develop a diverse integrated programme to successfully control a once devastating invasive species.
Collapse
Affiliation(s)
- Michael J. Siefkes
- Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI 48105, USA
- Corresponding author: Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI 48105, USA. Tel: +1 7346693013; Fax: +1 7347412010;
| |
Collapse
|
12
|
Birceanu O, Sorensen LA, Henry M, McClelland GB, Wang YS, Wilkie MP. The effects of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) on fuel stores and ion balance in a non-target fish, the rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2014; 160:30-41. [PMID: 24177273 DOI: 10.1016/j.cbpc.2013.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/24/2022]
Abstract
The pesticide 3-trifluoromethyl-4-nitrophenol (TFM) is used to control sea lamprey (Petromyzon marinus) populations in the Great Lakes through its application to nursery streams containing larval sea lampreys. TFM uncouples oxidative phosphorylation, impairing mitochondrial ATP production in sea lampreys and rainbow trout (Oncorhynchus mykiss). However, little else is known about its sub-lethal effects on non-target aquatic species. The present study tested the hypotheses that TFM exposure in hard water leads to (i) marked depletion of energy stores in metabolically active tissues (brain, muscle, kidney, liver) and (ii) disruption of active ion transport across the gill, adversely affecting electrolyte homeostasis in trout. Exposure of trout to 11.0mgl(-1) TFM (12-h LC50) led to increases in muscle TFM and TFM-glucuronide concentrations, peaking at 9h and 12h, respectively. Muscle and brain glycogen was reduced by 50%, while kidney and muscle lactate increased with TFM exposure. Kidney ATP and phosphocreatine decreased by 50% and 70%, respectively. TFM exposure caused no changes in whole body ion (Na(+), Cl(-), Ca(2+), K(+)) concentrations, gill Na(+)/K(+) ATPase activity, or unidirectional Na(+) movements across the gills. We conclude that TFM causes a mismatch between ATP supply and demand in trout, leading to increased reliance on glycolysis, but it does not have physiologically relevant effects on ion balance in hard water.
Collapse
Affiliation(s)
- Oana Birceanu
- Department of Biology and the Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada.
| | - Lisa A Sorensen
- Department of Biology and the Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada.
| | - Matthew Henry
- Department of Biology and the Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada.
| | - Grant B McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.
| | - Yuxiang S Wang
- Department of Biology, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada.
| | - Michael P Wilkie
- Department of Biology and the Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada.
| |
Collapse
|
13
|
Risk Assessment for Niclosamide Residues in Water and Sediments from Nan Ji Shan Island within Poyang Lake Region, China. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.721.608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The objective of this study was to determine and assess niclosamide residue levels in the Nan Ji Shan island within Poyang Lake Region, from March to June, September, October and December of 2012. Water and sediment samples from the Nan Ji Shan island were extracted with alkaline ethylacetate,and were detected by high performance liquid chromatography (HPLC). Niclosamide residues were detected in all water and sediment samples in varying concentrations during the two periods using molluscicide, niclosamide residues concentration water samples ranged from 0.01 to 0.038 mg/L, and from 0.1 to 0.473 mg/kg in sediments. According to the guidelines for potential risk assessment drawn up by the US Environmental Protection Agency, the risk of niclosamide residue was assessed. The results indicated that it would cause greater effect on fish, invertebrates and aquatic plants, but the influence on human and avian was relatively smaller.
Collapse
|
14
|
Birceanu O, McClelland GB, Wang YS, Brown JCL, Wilkie MP. The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) uncouples mitochondrial oxidative phosphorylation in both sea lamprey (Petromyzon marinus) and TFM-tolerant rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:342-9. [PMID: 21172453 DOI: 10.1016/j.cbpc.2010.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/09/2010] [Accepted: 12/09/2010] [Indexed: 11/17/2022]
Abstract
The toxicity of 3-trifluoromethyl-4-nitrophenol (TFM) appears to be due to a mismatch between ATP supply and demand in lamprey, depleting glycogen stores and starving the nervous system of ATP. The cause of this TFM-induced ATP deficit is unclear. One possibility is that TFM uncouples mitochondrial oxidative phosphorylation, thus impairing ATP production. To test this hypothesis, mitochondria were isolated from the livers of sea lamprey and rainbow trout, and O(2) consumption rates were measured in the presence of TFM or 2,4-dinitrophenol (2,4-DNP), a known uncoupler of oxidative phosphorylation. TFM and 2,4-DNP markedly increased State IV respiration in a dose-dependent fashion, but had no effect on State III respiration, which is consistent with uncoupling of oxidative phosphorylation. To determine how TFM uncoupled oxidative phosphorylation, the mitochondrial transmembrane potential (TMP) was recorded using the mitochondria-specific dye rhodamine 123. Mitochondrial TMP decreased by 22% in sea lamprey, and by 28% in trout following treatment with 50μmolL(-1) TFM. These findings suggest that TFM acted as a protonophore, dissipating the proton motive force needed to drive ATP synthesis. We conclude that the mode of TFM toxicity in sea lamprey and rainbow trout is via uncoupling of oxidative phosphorylation, leading to impaired ATP production.
Collapse
Affiliation(s)
- Oana Birceanu
- Department of Biology, Wilfrid Laurier University, 75 University Avenue W, Waterloo, Ontario, Canada N2L 3C5.
| | | | | | | | | |
Collapse
|
15
|
Wilkinson SM, Watson MA, Willis AC, McLeod MD. Experimental and Kinetic Studies of the Escherichia coli Glucuronylsynthase: An Engineered Enzyme for the Synthesis of Glucuronide Conjugates. J Org Chem 2011; 76:1992-2000. [DOI: 10.1021/jo101914s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shane M. Wilkinson
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Morgan A. Watson
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Anthony C. Willis
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Malcolm D. McLeod
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
16
|
Birceanu O, McClelland GB, Wang YS, Wilkie MP. Failure of ATP supply to match ATP demand: the mechanism of toxicity of the lampricide, 3-trifluoromethyl-4-nitrophenol (TFM), used to control sea lamprey (Petromyzon marinus) populations in the Great Lakes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 94:265-274. [PMID: 19716611 DOI: 10.1016/j.aquatox.2009.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/09/2009] [Accepted: 07/14/2009] [Indexed: 05/28/2023]
Abstract
Although the pesticide, 3-trifluoromethyl-4-nitrophenol (TFM), has been extensively used to control invasive sea lamprey (Petromyzon marinus) populations in the Great Lakes, it is surprising that its mechanism(s) of toxicity is unresolved. A better knowledge of the mode of toxicity of this pesticide is needed for predicting and improving the effectiveness of TFM treatments on lamprey, and for risk assessments regarding potential adverse effects on invertebrate and vertebrate non-target organisms. We investigated two hypotheses of TFM toxicity in larval sea lamprey. The first was that TFM interferes with oxidative ATP production by mitochondria, causing rapid depletion of energy stores in vital, metabolically active tissues such as the liver and brain. The second was that TFM toxicity resulted from disruption of gill-ion uptake, adversely affecting ion homeostasis. Exposure of larval sea lamprey to 4.6 m gl(-1) TFM (12-h LC50) caused glycogen concentrations in the brain to decrease by 80% after 12h, suggesting that the animals increased their reliance on glycolysis to generate ATP due to a shortfall in ATP supply. This conclusion was reinforced by a 9-fold increase in brain lactate concentration, a 30% decrease in brain ATP concentration, and an 80% decrease in phosphocreatine (PCr) concentration after 9 and 12h. A more pronounced trend was noted in the liver, where glycogen decreased by 85% and ATP was no longer detected after 9 and 12h. TFM led to marginal changes in whole body Na(+), Cl(-), Ca(2+) and K(+), as well as in plasma Na(+) and Cl(-), which were unlikely to have contributed to toxicity. TFM had no adverse effect on Na(+) uptake rates or gill Na(+)/K(+)-ATPase activity. We conclude that TFM toxicity in the sea lamprey is due to a mismatch between ATP consumption and ATP production rates, leading to a depletion of glycogen in the liver and brain, which ultimately leads to neural arrest and death.
Collapse
Affiliation(s)
- Oana Birceanu
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, N2L 3C5 Canada.
| | | | | | | |
Collapse
|